

Ref: APL/MEL/EMD/EC/MoEFCC/207/05/23

Date-23.05.2023

To.

Additional Principal Chief Conservator of Forest (APCCF)
Ministry of Environment, Forest and Climate Change

Integrated Regional Office, Bhopal Kendriya Paryavaran Bhavan, Link Road No- 3, E-5, Ravi Shankar Nagar Bhopal - 462 016 (M.P)

Sub: Six Monthly Compliance Status of Environment Clearances for Mahan Thermal Power Plant at Village Bandhaura, District Singrauli, Madhya Pradesh.

Ref: Environmental clearance letter no. **J-13011/56/2006-IA.II (T)** Dated- 20.04.2007 & Its subsequent amendment vide letter dated 10.02.2009, 23.08.2013 and 08.04.2016.

Dear Sir,

With reference to above subject, please find enclosed herewith Six-Monthly Environment Clearances (EC) compliance status report along with Environmental monitoring reports as Ambient Air Quality, Water Quality, Noise level & Soil quality, CAAQM data, Met. data, Greenbelt development, Fly ash & CSR Report etc. for the period of October'2022 to March'2023 in soft (e-mail).

This is for your kind information & record please.

Thanking You, Yours faithfully,

for Mahan Energen Ltd.

(Santosh Kumar Singh)

Head AESG Encl: as above

CC:

Member Secretary

Central Pollution Control Board Parivesh Bhavan, East Arjun Nagar Kendriya Paryavaran Bhawan

New Delhi- 110 032.

The Regional Officer

Madhya Pradesh Pollution Control Board

Bhakuar, Navgarh, Singrauli, MP-486887

Mahan Energen Ltd (Formerly Essar Power MP Ltd) Adani Corporate House Shantigram, S G Highway Ahmedabad 382 421 Gujarat, India CIN: U40100DL2005PLC201961 Tel +91 79 2555 4444 Fax +91 79 2555 7177 www.adanipower.com

Member Secretary,

Bhopal, MP

Madhya Pradesh Pollution Control Board

Paryavaran Parisar, E-5, Arera Colony,

Registered Office: Lower Ground Floor, Hotel Conclave Boutique, A-20, Kailash Colony, New Delhi 110 048, Delhi, India

SIX MONTHLY COMPLIANCE REPORT OF ENVIRONMENTAL CLEARANCE (EC)

For

1200 (2x600) MW Thermal Power Plant

At

Village Bandhaura, Tehsil Mada, District Singrauli, Madhya Pradesh

Submitted to:

Integrated Regional Office, Bhopal
Ministry of Environment & Forest & Climate Change
Central Pollution Control Board, New Delhi &
Madhya Pradesh Pollution Control Board, Bhopal

Submitted By:

Environment Management Department Mahan Energen Limited

Bandhaura Village, Mada Tehsil, Singrauli District, Madhya Pradesh-486 886

Period: October'2022 to March'2023

CONTENTS

SI. No	Title					
1	Introduction					
2	Compliance Status of Environmental Clearance (EC)					
	<u>List of Annexures</u>					
Environmental Monitoring Reports (From October' 2022 – March' 2023) • Ambient Air Quality Report • Stack Emission Report • Ground Water Quality Report • Surface Water Quality Report • Wastewater Analysis Report • Ambient Noise Level Monitoring Report						
4	Green Belt development details	Annexure-II				
5	Ash Content in Coal Report	Annexure-III				
6	Fly Ash Generation & Utilization Report	Annexure-IV				
7	CSR Progress Report	Annexure-V				
8	Acknowledged copy of submitted "Ecological Assessment and Flora & Fauna Wildlife Conservation & Management Plan" to PCCF – WL, Bhopal	Annexure-VI				
9	Acknowledged copy of submitted "Hydrogeology& Rainwater Harvesting Study Report" to CGWA, Bhopal	Annexure-VII				

Introduction:

Mahan Energen Limited is operating 2×600 MW Coal based Thermal Power Plant situated at Villages Bandhaura, Khairahi, Karsualal and Nagwa in Singrauli District of Madhya Pradesh.

The Environmental Clearance for the project with capacity 4x500 MW was accorded on 20.04.2007 and the same was amended for change in capacity & unit size (3x600 MW) on 10.02.2009. Further, an amendment to the EC for change in source of Coal from domestic to import and road transportation of coal for period of exceeding three years was accorded on 23.08.2013. An amendment in EC on 08.04.2016.

Adani Power Limited, has implemented the Approved Resolution Plan and acquired 100% of paid-up share capital and management control of EPMPL on **16.03.2022.** "Mahan Energen Limited" is wholly owned subsidiary of Adani Power Limited and incorporated under Companies (Incorporation) Rules, 2014 date 25.03.2022.

Environment Clearance is transferred from Essar Power (MP) Limited to **Mahan Energen** Limited vide F. No. J-13011/56/2006-IA-II(T) dated; 15th September' 2022

Further, a proposal for amendment in CONDITION NO. (xxxi) of granted Environment Clearance (EC) was considered in 40th EAC (Thermal Power Plant) Meeting held on 25th April'2023. The Hon'ble Committee has considered the proposal for Amendment in CONDITION NO. (xxxi) of Environment Clearance.

COMPLIANCE STATUS ON ENVIRONMENTAL CLEARANCE 1200 (2×600) MW Coal Based Thermal Power Plant

Vide letter No. J-13011/56/2006-IA.II (T) dated 20.04.2007 and its subsequent amendment dated 10.02.2009: 23.08.2013, 08.04.2016 and EC transferred from Essar Power to Mahan Energen Ltd. on 15.09.2022

Α	Specific Condition	Status
(i)	The total land requirement shall not exceed	Complied.
	700 ha for all activities/ facilities of the power	All project activities/Facilities of the Power
	project put together.	Project have been developed within 700 ha
		only.
(ii)	Forestry clearance for diversion of 70 ha	Compiled
	forest land involved in the project shall be	The forest area is optimised to 34.98 ha now.
	obtained before starting construction on the	Stage-1 FC has been obtained from MoEFCC
	forest land.	vide letter no.6-MPC 043/2008-BHO/822
		dated. 02.04.2009 and final diversion of
		land does not proceed.
		No construction activities have been taken
4		place in the forest land.
(iii)	R&R in sufficient detail shall be finalized	Complied
	before award of the project and a copy of the	As previous, R&R Benefits are being provided
	detailed R&R shall be submitted to MoEF	as per Madhya Pradesh R&R policy 2002 and
	within three months of the issue of this letter	in line with agreement executed on
	or before the award of the project whichever	18.10.2008 between Collector, Singrauli and
	is earlier.	EPMPL.
		Copy of the agreement with MP Govt. has been forwarded to MoEFCC vide our letter
		no. EPMPL/ MoEF/ 07.07.2010.
		Adani Power Limited has implemented the
		Approved Resolution Plan and acquired
		100% of paid-up share capital and
		management control of EPMPL on
		16.03.2022. "Mahan Energen Limited" is
		wholly owned subsidiary of Adani Power
		Limited
(iv)	The PAFs/ PAPs losing their homesteads, or a	Complied
	major portion of the land shall not be ousted	R&R implementation as per the agreement
	from the land till they are settled at the	dated; 05.09.2007 has been done. All
	alternate sites.	payments as per the demand received from
		the state government & local administration
		have been made, plots allotted to all the
		homesteads. Supporting documents already
		submitted with EC compliance report.
(v)	Ash and sulphur content in the coal to be used	Complied.
	in the project shall not exceed 35% and 0.5%	Ash and Sulphur content in the coal is being
	respectively.	maintained below 35% & 0.5% respectively.

		MEL Power Plant is based on Pit head TPP
		and all parameters are being achieved as per
		notification.
(vi)	Two bi-flue stacks of 275m height each shall	
(**/	be provided with continuous online	·
	monitoring equipment. Exit velocity of at least	_
	25m/sec shall be maintained	monitoring system) has been provided for
		both units. Exit velocity is maintained >
		25m/s. Stack emission monitoring Report is
		enclosed as Annexure-I .
(vii)	High efficiency electrostatic precipitators	Complied
	(ESPs) with efficiency not less than 99.9%	ESP (9 Fields) with efficiency of 99.9%
	shall be installed to ensure that particulate	installed in both the units to meet
	emission does not exceed 100 mg/Nm3.	permissible norm for particulate emissions
		less than 50 mg/Nm3. Stack Emission
		Monitoring Report has been provided as
		Annexure – I.
(viii)	Space provision shall be made for Flue Gas	·
	De-sulphurisation (FGD) unit, if required at a	· ·
	later stage.	adjacent to chimney.
		As per MoEFCC Notification dated 5 th Sep
		2022, Mahan TPP is falling under Category
		"C" Non- retiring TPPs and the timelines for compliance of SO2 emission is up to
		December'2026.
(ix)	Low NOx burners shall be provided.	Complied
(1//)	Low trok corners shall be provided.	Low NOx burners have already been provided
		in each boiler.
(x)	Adequate dust extraction system such as bag	Compiled
	filters and water spray system in dusty areas	Dust extraction systems over fly ash silo, coal
	such as coal and ash handling areas, transfer	bunkers and conveyor junction points have
	areas and other vulnerable areas shall be	been installed. Dry fog diffusion systems
	provided.	have already been provided in coal crusher
		house and conveyor transfer points. Water
		sprinkling system & Mobile Fog Cannon has
		been provided in coal yard area.
(xi)	Fly ash shall be collected in dry form and ash	·
	generated shall be used in a phased manner	MoUs / Agreements have been signed with
	as per provisions of the notification on Fly Ash	
	Utilization issued by the Ministry in	Limited Cement and M/s Birla Corporation
	September, 1999 and its amendments. By the	India Limited (BCIL) to lift the fly ash
	end of 9th year full fly ash utilization should	generated from the power plant.
	be ensured. Unutilized ash shall be disposed	We have also signed a MOU with "Ashtech
	of in the ash pond in the form of High	(India) Private Ltd." for lifting the Ash being
	Concentration Slurry.	generated from the Power Plant.

		Only you tilined Ash in bains and to Ash duly
		Only unutilized Ash is being sent to Ash dyke
		/ pond.
		Ash generation and utilization report is
		enclosed as Annexure- IV .
(xii)	Ash pond shall be lined with HDPE geo-	Complied
	synthetic membrane to avoid leaching.	HDPE lining has been provided in the ash
	Adequate safety measures shall be implanted	pond. The ash pond operates with HCSD
	to protect the ash pond bund from getting	system. Adequate safety measures such as
	breached.	proper bund slope, toe drain around the dyke,
		etc., have been taken to protect the bund.
(xiii)	A conservation plan for Schedule-1 animals	Complied
	reported in the study area of the project shall	Ecological Assessment and Flora & Fauna
	be prepared in consultation with an expert	_
	organization like Wildlife Institute of India at	
	Dehradun and duly approved by State Wildlife	, , ,
	Department of Madhya Pradesh. A copy of the	
	same shall be submitted to the ministry and	of Social Welfare & Business Management,
	Regional Office at Bhopal within six months of	
	the date of issue of this letter. The plan so	WL, Bhopal vide letter no APL/MEL/Env/
	prepared shall be implemented effectively.	PCCF/407/23 dated; 03.04.2023.
	Necessary allocation of funds for the same	The plan will be implemented with due
	ŕ	i ·
	shall be made and will be included as project	' '
())	cost.	enclosed as Annexure VI.
(xiv)	Rain water harvesting shall be practiced. A	·
	detailed scheme for rain water harvesting to	Rainwater Harvesting study carried out &
	recharge the ground water aquifer shall be	report is submitted to Regional Director,
	prepared in consultation with Central Ground	Central Ground Water Board, Bhopal &
	Water Authority/ State Ground Water Board	Member Secretary, Central Ground Water
	and a copy of the same shall be submitted	Authority, New Delhi. vide letter no.
	within 3 months to the Ministry.	APL/MEL/ENV/CGWA/404/23 dated;
		03.04.2023 . Rainwater harvesting within
		the plant premises has been constructed/
		implemented to harvest the rainwater.
		Acknowledged copy is enclosed as Annexure
		VII.
		Pond deepening work are being carried out
		in Five-Six ponds in villages falling under the
		area. More than 400 farmers availed
		benefits from pond deepening for irrigation
		in their agricultural land.
(xv)	The treated effluents conforming to the	-
()	prescribed standards only shall be discharged	·
	in the Bhalea nallah.	analysis results are well within the stipulated
	ce shores honom	MPPCB/CPCB standard by the process of
		neutralizing and treated water being used
		for gardening. We are maintaining zero
	<u> </u>	

1		discharge of treated effluent. Effluent
()		analysis results are provided as Annexure-I .
	Regular monitoring of ground water in and	Complied
	around the ash pond area shall be carried out,	Regular monitoring of ground water is being
	records maintained and periodic reports shall	carried out in and around the ash pond area.
	be furnished to the Regional Office of the	Record is maintained and enclosed as
	Ministry.	Annexure – I.
, , ,	A 100 m wide green belt shall be developed all	Complied
	around the plant area and 20 m wide green	Greenbelt is already developed over an area
	belt shall be developed all around the ash	of 109 ha. However, some casualties were
	pond and township covering a total area of	noted by the IRO. All casualty replacement
	100 ha.	will be done during Monsoon 2023.
		Greenbelt report is enclosed as Annexure- II .
	First aid and sanitation arrangements shall be	Complied
	made for the drivers and other contract	
	workers during construction phase.	
1 ' ' 1	Leq of Noise Level should be limited to 75 dBA	Complied
	and regular maintenance of equipment to be	Leq of noise level at project boundary is
	undertaken. For people working in high noise	being monitored and observed less than 75
	areas, personal protection devices should be	dB(A). People working in high noise area are
	provided.	provided with PPEs like ear- muff and ear
		plug. Monitoring report is enclosed as
		Annexure-I.
(xx)	Regular monitoring of the ambient air quality	Complied.
	shall be carried out in and around the power	Online CAAQ monitoring system for Ambient
	plant and records maintained. The location of	• • • • • • • • • • • • • • • • • • •
	•	air quality is already established.
	the monitoring stations and frequency of	Ambient Air Quality Monitoring is also being
	the monitoring stations and frequency of monitoring shall be decided in consultation	Ambient Air Quality Monitoring is also being carried out by third party consultant.
	the monitoring stations and frequency of	Ambient Air Quality Monitoring is also being
	the monitoring stations and frequency of monitoring shall be decided in consultation	Ambient Air Quality Monitoring is also being carried out by third party consultant.
	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted	Ambient Air Quality Monitoring is also being carried out by third party consultant.
	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure- I.
	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure- I. Records of the same are being maintained
	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also
	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I . Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at least two local newspapers widely circulated	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned, informing that the project	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned, informing that the project has been accorded environmental clearance	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned, informing that the project has been accorded environmental clearance and copies of clearance letters are available	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned, informing that the project has been accorded environmental clearance	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned, informing that the project has been accorded environmental clearance and copies of clearance letters are available	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.
(xxi)	the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned, informing that the project has been accorded environmental clearance and copies of clearance letters are available with the State Pollution Control Board/	Ambient Air Quality Monitoring is also being carried out by third party consultant. Monitoring reports is enclosed as Annexure-I. Records of the same are being maintained and report is being sent to the Regional Office of the MoEFCC, CPCB & MPPCB. Online ambient air quality system also connected with MPPCB & CPCB portal.

(xxii)	A separate environment monitoring cell (EMC)	Complied
(,	with suitable qualified staff should be set up	· ·
	for implementation of the stipulated	· ·
	environmental safeguards.	carry out regular surveillance for
		implementation of stipulated environmental
		safeguards
(xxiii)	A half yearly report on the status of	Complied
	implantation of the stipulated conditions and	Six monthly compliance reports is being
	environmental safeguards should be	
	submitted to this Ministry, its Regional Office	
	at Bhopal, CPCB and SPCB	submitted vide letter no. APL/EPMPL/EMD/
		EC/ MoEFCC/235/11/22 dated 29.11.2022.
(xxiv)	Regional Office of the Ministry of	l '
	Environment & Forests located at Bhopal will	·
	monitor the implementation of the stipulated	
	conditions. A complete set of documents	basis.
	including Impact Assessment Report and	
	Environment Management Plan along with	
	the additional information submitted from	
	time to time shall be forwarded to the	
	Regional Office for their use during monitoring.	
(xxv)	Separate funds should be allocated for	Complied
(^^)	implementation of environmental protection	·
	measures along with item-wise break-up. This	, ,
	cost should be included as part of the project	-
	cost. The funds earmarked for the	
	environment protection measures should not	
	be diverted for other purposes and year-wise	
	expenditure should be reported to the	
	Ministry.	
(xxvi)	Full cooperation should be extended to the	
	scientists/ officers from the Ministry/	
	Regional Office of the Ministry at Bhopal/ the	l -
	CPCB/ the SPCB who would be monitoring the	
	compliance of environmental status.	06 10 11 (T) 1-1-1 07 00 0047
(vya iii)	The assistations appears that uplead the status	
(xxvii)	The project proponent shall upload the status of compliance of the conditions stipulated in	·
	the environmental clearance issued vide	1
	this Ministry's letter of even no. dated	j .
	20.04.2007. in its website and updated	. ,
	periodically and also simultaneously send	
	the same by e-mail to the Regional Office	
	of the Ministry of Environment and Forests.	
<u> </u>		

(xxviii)	Criteria pollutants levels including NOx, RSPM	Complied.
(**************************************	(PM-10 & PM-2.5) SO2, NOx (from stack &	
	ambient air) shall be regularly monitored and	,
	results displayed in your website and also	stack & ambient air) being regularly
	at the main gate of the power plant	monitored, and results are displayed at the
	at the main gate of the power plant	
		main gate of the Power Plant & same being
		submitted to concern authorities.
		Monthly Env. Monitoring are being done by
		third party also and report is being sent to
		pollution control board on monthly basis.
		Environmental monitoring report is enclosed
		as Annexure-I .
(xxix)	Avenue plantation along the route (both	
	sides of the road) of imported coal	J
	transportation from railway siding at	·
	Mahadiya /Singrauli Railway Siding to	procured through Forward e-auction from
	Rajmilan-Bandhoura- Power Plant site, over	the nearby Coal mines of SECL/NCL.
	a distance of 63 kms shall be raised by the	
	project proponent at its own cost. The status	·
	of implementation shall be submitted to the	being done through Mahadiya Coal siding .
	Regional Office of the Ministry.	
(xxx)	It shall be ensured that only mechanized	Complied
	covered trucks are used for imported coal	The transportation by road is done through
	transportation.	mechanically covered trucks to the extent
		possible, else through tarpaulin covered
		trucks so as to prevent coal dust dispersion
		in the atmosphere.
(xxxi)	A long term study of radioactivity and heavy	· '
	metals contents on coal to be used shall be	Domestic Coal are being used for power
	carried out through a reputed institute once	generation for Mahan TPP. Periodical coal
	the power plant becomes operational.	and ash analysis are being carried out
	Thereafter mechanism for all in-built	through a reputed institute. M/s Bhabha
	continuous monitoring for radio activity	Atomic Research Centre (BARC),
	and heavy metals in coal and fly ash	Department of Atomic Energy, Govt. of India
	(including bottom ash) shall be put in	for Radioactivity and heavy metal contents
	place.	and reports is being submitted periodically
		with Six monthly EC compliance report to
		Ministry, CPCB and MPPCB.
		For provision of In-built mechanism
		continuous monitoring for radio activity and
		heavy metals in coal and fly ash (including
		bottom ash), the technology and monitoring
		instrument is not available with the suppliers
		in the country and is not feasible to monitor
		in this mechanism.
L		

		To amend the said condition in granted EC has been applied at MoEFCC portal on dated: 04.04.2023. The amendment proposal was considered in 40th EAC (Thermal Power Plant) Meeting held on 25th April'2023 for Amendment in CONDITION NO. (xxxi) of Environment Clearance (EC) The Hon'ble Committee has recommended the proposal for Amendment in CONDITION NO. (xxxi) of EC.
(xxxii)	The recommendation of the Central Electricity Authority issued vide it's letter no. 159/100ITP&I/CEA/2011, dated 01.02.2013, on the feasibility of transportation of coal from Mahadiya Railway Siding to Mahan TPP site shall be implemented.	being done through Mahadiya Railway siding. Coal is procured through e-auction from the
(xxxiii)	The project proponent shall maintain a log book of imported coal and Bill of Imports for coal to establish that the coal used for the power project are additional coal coming to the country. These documents shall be submitted to the Regional Office of the Ministry from time to time.	MEL are not using imported Coal for Power plant. We are mostly procuring the Coal through Forward e-auction from the nearby
	EC Amendment vide letter no. J-13011/56/200	06 -IA.II (T) dated 08.04.2016
(xxxiv)	The Sulphur and ash contents of domestic coal shall not exceed 0.5% and 35 % respectively. The coal shall be sourced through e-auction only in case of emergency and non-viability of imported coal. In case of variation of quality at any point of time, fresh reference shall be made to the Ministry for suitable amendments to the environmental clearance. However, for the imported coal, the ash and sulphur contents will be as specified in the earlier order.	Mahan Energen Limited currently procuring coal through domestic sources only. Ash and Sulphur and ash content in the coal is being maintained below 35% & 0.5% respectively and also being complied as per notification of Pit head based TPP.
(xxxv)	The road transportation shall be restricted to the route as approved earlier vide amendment dated 23.08.2013.	

		Schedule/timeline for installation of coal Pipe Conveyor belt from Gajara Bahara Railway Siding to TPP is already submitted.
(xxxvi)	The transportation by road shall be through mechanically covered trucks to the extent feasible, else through tarpaulin covered trucks so as to prevent coal dust dispersion in the atmosphere.	Compiled & followed. Transporting of the coal is being done through trucks covered with tarpaulin with proper sealing arrangement as per the MoEFCC and local authority direction.
(xxxvii)	Harnessing solar power within the premises of the plant particularly at available roof tops shall be carried out and status of implementation including actual generation of solar power shall be submitted along with half yearly monitoring report.	Being Complied Solar Power streetlights is under installation within the plant premises, and it will be completed by 30th September'2023. we have already installed Solar power panels in Township.
(xxxviii)	Monitoring of surface water quantity and quality shall also be regularly conducted and records maintained. The monitored data shall be submitted to the Ministry regularly. Further, monitoring points shall be located between the plant and drainage in the direction of flow of ground water and records maintained. Monitoring for heavy metals in ground water shall also be undertaken and results/findings submitted along with half yearly monitoring report.	& MPPCB on regular basis. Analysis Report of Surface Water Quality is enclosed as Annexure-I .
(xxxix)	No water bodies including natural drainage system in the area shall be disturbed due to activities associated with the setting up / operation of the power plant	Complied There is no disturbance caused to any water body including natural drainage system in the area due to operation of the plant
(xI)	CSR schemes identified based on need-based assessment shall be implemented in consultation with the village Panchayat and the District Administration starting from the development of project itself. As part of CSR prior identification of local employable youth and eventual employment in the project after imparting relevant training shall be also undertaken. Company shall provide separate budget for community development activities and income generating programs.	on the need of the community having special focus on livelihood generation, health and education. Separate budget is allocated for CSR programs. For livelihood restoration of displaced people monthly sustenance allowance (Bhatta) is being given to PAPs. Local youths are also engaged under
(xli)	For proper and periodic monitoring of CSR activities, a CSR committee or a Social Audit committee or a suitable credible external	

	agency shall be appointed. CSR activities shall	CSR activities are implemented in
	also be evaluated by an independent external	consultation and collaboration with nearby
	agency. This evaluation shall be both	community & Panchayats leader as well as
	concurrent and final.	District Administration.
		Regular community meetings are organised
		in all the villages to understand the issues of
		community. Social development activities
		have been carried out for Need Based under
		the CSR activities by Adani Foundation .
(xlii)	An Environmental Cell comprising of at least	·
(XIII)		
	one expert in environmental science/	We have established separate environmental
	engineering, ecology, occupational health and	monitoring cell with well qualified staff to
	social science, shall be created preferably at	carry out regular surveillance for
	the project site itself and shall be headed by	implementation of stipulated environmental
	an officer of appropriate superiority and	safeguards.
	qualification. It shall be ensured that the Head	
	of the Cell shall directly report to the Head of	
	the Plant who would be accountable for	
	implementation of environmental regulations	
	and social impact improvement/mitigation	
	measures.	
	EC Transferred from Essar to Mahan Energen I	Limited on dated 15 th Sentember 2022
1.	2X600 MW Mahan Super Thermal Power Project	·
	at Tehsil Mada, District- Singrauli (Madhya	14000
	Pradesh)- Transfer of environmental clearance	
	from M/s Essar Power (M.P.) Ltd. to M/s Mahan	
	Energen Limited-reg	
	This has reference to your online proposal no.	
	IA/MP/THE/269676/2022 dated 26 th April 2022	
	regarding transfer of the Environmental	
	clearance (EC) for the above said project from	
	M/s Essar Power (M.P.) Ltd to M/s Mahan	
	Energen Limited.	
2.	The ministry had earlier issued EC for 4x200 MW	Noted
	Mahan super thermal power project at tehsil	110000.
	Mada, District- Singrauli (Madhya Pradesh) in	
	favour of M/s Essar Power (M.P.) Limited vide	
	letter dated 20 th April 2007, the said EC was	
	further amended vide letter 10 th Feb 2009, 23 rd	
	August'2013 and 18 th April'2016 for reducing the	
	power generation capacity to 3 x 600 MW,	
	changing the fuel source and extending the	
	portaring the role source and extending the	
	validity of EC	
7	validity of EC.	Noted
3.	As per details submitted by the PP the M/s Essar	Noted
3.	As per details submitted by the PP the M/s Essar Power (M.P.) Limited (earlier owner) could	
3.	As per details submitted by the PP the M/s Essar	

7.	remaining unchanged. This issued with approval of the competent	Noted.
	mentioned in the initial Environmental Clearance and its further amendments shall	
	amended. The other terms and condition as	
	the vision of the EIA Notification, 2006, as	
	only after prior Environmental Clearance under	
	x600 MW Further expansion shall be taken up	
	condition that the aforesaid power plant will be operated on the power generation capacity 2	
	to M/s Mahan Energen Limited, with the	
	transferred from M/s Essar power (M.P) Limited	
	District- Singrauli, Madhya Pradesh is hereby	
	Bandhaura, Nagwa, Karsualal and Khairahi,	
	Power Project at Tehsil- Mada, Village-	
	reduced capacity) MW Mahan Super Thermal	
	February, 2009, 23 rd August, 2013 and 8 th April, 2016 to the project 4 x200 MW (3X600 MW	
	and its subsequent amendments dated 10 th	
	13011/56/2006-IA-II(T) dated 20 th April 2007	
	granted by the ministry vide letter No. J-	
	Notification 2006, the environmental clearance	_
6.	As per the relevant provision of the EIA	Noted & agreed
	name of M/s Mahan Energen Limited.	
	August 2013 and 08 th April, 2016 issued in the	Δριτι 2010.
	clearance 20 th April 2007 and its subsequent amendments dated 10 th February 2009, 23 rd	April 2016.
	conditions stipulated in the environmental	·
	and affidavit to abide by the terms and	·
5.	M/s Mahan Energen Limited has submitted	• •
	Energen Limited.	
	requisite approvals in the name of M/s Mahan	
	Ltd, and thus necessitating transfer of al	
	Management control of M/s Essar power (M.P.)	
	acquired 100% paid share capital and	
	29.09.2020 passed by National Company Law Tribunal New Delhi and M/s Adani Power Ltd has	
	Resolution process (CIRP) vide order dated	
	admitted into the corporate Insolvency	
	the unit of M/s Essar power M P Limited was	
4.	M/s Mahan Energen Limited has informed that	Noted & agreed.
	commissioned capacity i.e. 2 x 600 MW.	
	plant. Accordingly, CTO was obtained from SPCB vide letter dated 30.08.2016 from	
	3x 600 MW) by the Ministry to the aforesaid	
	against the EC generated (reduced the capacity	

Summary of Environmental Monitoring Report Period from October'2022 to March'2023

Ambient Air Quality Monitoring Results													
Lo	cation	Near Admin Building				Near Gate No. 2				Near Gate No. 3			
	0-1-	PM-10	PM-2.5	S02	NO2	PM-10	PM-2.5	S02	NO2	PM-10	PM-2.5	S02	NO2
Month	Date		Unit-µg/l	Nm3	•		Unit-µ	g/Nm3	•		Unit-µ	ıg/Nm3	j
& Year	Permissible Limit	100	60	80	80	100	60	80	80	100	60	80	80
	01.10.2022	66.7	34.0	17.8	22.5	60.1	30.9	14.8	21.6	57.7	27.5	14.6	19.9
	06.10.2022	68.9	32.2	14.3	25.6	62.3	31.2	15.2	20.6	56.4	28.1	13.5	19.1
	10.10.2022	65.8	33.6	16.8	23.8	58.5	30.5	13.8	21.3	55.5	25.2	15.3	17.7
	13.10.2022	69.8	35.9	14.5	24.3	63.2	32.1	14.2	19.3	59.1	24.8	16.3	19.8
Oct-22	17.10.2022	67.8	34.6	15.2	27.0	61.2	31.3	14.2	22.0	57.1	27.4	13.2	20.7
001-22	20.10.2022	71.2	33.6	14.7	28.3	64.6	30.5	16.9	23.3	55.0	28.1	14.0	19.9
	24.10.2022	65.8	34.5	19.6	28.8	62.6	30.5	15.2	23.8	57.1	25.9	16.8	21.3
	27.10.2022	68.5	35.2	16.5	25.4	61.9	32.1	16.3	24.6	55.1	25.2	13.6	22.7
·	Avg. Value	68.1	34.2	16.2	25.7	61.8	31.1	15.1	22.1	56.6	26.5	14.7	20.1
	01.11.2022	64.2	33.3	15.0	23.3	71.2	36.2	17.9	25.5	52.6	23.7	14.3	20.5
	04.11.2022	67.5	30.0	16.4	22.4	69.8	34.6	18.5	24.7	54.2	24.6	16.3	23.4
	07.11.2022	64.3	29.6	17.2	23.8	72.8	36.2	16.5	24.2	51.3	26.7	15.5	21.7
	10.11.2022	69.1	27.5	15.6	23.9	74.2	37.1	17.2	23.1	57.0	30.0	14.5	22.4
	14.11.2022	66.3	30.8	16.7	21.8	76.1	32.9	19.2	23.9	55.8	27.1	13.4	19.5
Nov-22	17.11.2022	64.5	27.9	14.7	22.1	74.3	35.8	16.9	25.6	54.3	28.7	17.4	22.4
	21.11.2022	62.8	32.9	14.7	20.7	68.7	33.3	16.9	24.4	50.6	24.6	16.5	26.6
	24.11.2022	61.5	33.0	17.2	24.3	72.5	37.1	16.8	28.8	54.9	28.3	14.3	23.2
	27.11.2022	63.1	32.9	16.8	23.0	70.6	31.2	17.4	23.3	51.7	29.6	15.8	21.7
	Avg. Value	64.8	30.9	16.0	22.8	72.2	34.9	17.5	24.8	53.6	27.0	15.3	22.4
	01.12.2022	61.3	29.8	13.5	24.6	73.6	33.6	18.4	24.1	49.5	21.6	10.2	19.6
	05.12.2022	69.9	31.4	14.9	23.3	74.9	34.8	17.8	20.6	48.2	24.8	13.6	21.8
	08.12.2022	65.8	34.1	18.7	25.7	68.2	32.9	20.7	23.8	52.6	26.4	14.8	23.6
	12.12.2022	68.1	32.6	12.8	26.9	64.9	31.8	17.6	26.9	57.9	27.6	10.9	24.7
D 22	15.12.2022	70.6	36.7	15.9	24.6	70.4	32.9	21.5	28.1	46.9	25.8	15.8	20.5
Dec-22	19.12.2022	66.9	34.6	16.9	21.3	64.3	36.7	15.9	25.4	46.7	22.5	13.2	17.6
	22.12.2022	62.8	28.2	14.6	26.8	72.1	34.2	17.4	23.4	43.6	26.9	12.4	19.7
	26.12.2022	63.4	30.7	15.6	22.4	73.9	30.7	18.7	25.9	52.6	28.4	11.5	16.8
	29.12.2022	67.3	33.4	16.5	20.7	66.4	36.8	15.3	27.7	55.6	23.4	15.8	19.5
	Avg. Value	66.2	32.4	15.5	24.0	69.9	33.8	18.1	25.1	50.4	25.3	13.1	20.4
	02.01.2023	65.6	35.8	16.3	25.2	74.7	39.6	20.3	26.6	55.6	30.8	13.9	22.4
	05.01.2023	74.0	38.7	14.9	23.9	77.6	41.7	19.8	23.9	53.3	27.1	15.6	24.1
Jan-23	09.01.2023	68.2	36.7	15.9	23.2	66.9	35.4	17.3	24.9	56.3	32.1	16.2	24.4
	12.01.2023	63.6	33.7	14.5	24.3	72.9	33.3	15.5	23.2	50.1	28.7	12.7	22.6
	16.01.2023	73.5	37.5	13.0	24.6	66.1	36.7	16.5	25.7	53.8	31.7	17.5	24.6

	19.01.2023	70.8	37.1	14.7	25.6	71.3	32.5	13.7	23.6	50.8	28.3	16.1	22.9
	23.01.2023	66.4	33.7	16.5	24.9	68.7	37.9	15.3	24.6	47.8	24.6	14.7	22.1
	26.01.2023	67.9	36.2	13.6	20.0	76.2	39.6	16.8	23.9	48.2	25.8	13.2	19.4
	30.01.2023	65.2	34.2	14.2	20.6	63.5	34.6	17.8	25.5	57.9	31.2	15.6	23.1
	Avg. Value	68.4	36.0	14.8	23.6	70.9	36.8	17.0	24.7	52.6	28.9	15.1	22.8
	02.02.2023	60.2	33.7	14.4	22.7	69.8	38.3	17.8	24.1	58.9	33.3	15.1	24.7
	06.02.2023	67.3	36.2	17.3	26.6	74.6	41.7	16.7	26.0	56.4	30.8	13.5	21.3
	09.02.2023	68.5	36.2	15.6	20.7	64.9	36.9	15.5	25.0	57.0	31.8	14.5	19.4
	13.02.2023	70.5	39.6	13.9	21.0	67.2	37.1	14.1	21.9	59.5	32.1	18.0	26.0
Feb-23	16.02.2023	71.9	40.0	15.0	25.5	71.0	39.2	13.7	22.7	51.4	29.2	14.1	21.7
	20.02.2023	73.1	40.5	14.3	22.4	69.9	38.3	11.8	21.7	52.7	32.2	15.3	23.3
	23.02.2023	69.5	38.7	13.3	23.0	70.2	40.8	16.1	27.2	49.7	28.7	16.0	24.7
	27.02.2023	64.6	37.9	12.4	23.1	73.3	42.1	15.1	25.5	52.5	29.6	15.5	22.7
	Avg. Value	68.2	37.9	14.5	23.1	70.1	39.3	15.1	24.3	54.8	31.0	15.3	23.0
	02.03.2023	63.9	36.7	12.6	19.6	65.7	36.6	15.1	20.9	54.7	31.7	13.7	26.1
	06.03.2023	73.7	41.7	14.5	25.6	70.1	39.2	17.1	28.1	61.4	33.3	15.2	18.7
	09.03.2023	66.7	35.4	13.9	18.1	64.9	34.6	13.1	21.0	62.9	35.0	16.2	22.7
	13.03.2023	69.1	39.6	15.9	19.1	69.5	38.7	11.9	20.4	57.1	37.4	16.7	23.8
AA 07	16.03.2023	65.8	40.8	14.1	27.6	75.5	40.4	15.4	25.9	56.6	32.1	13.1	21.6
Mar-23	20.03.2023	74.4	44.8	16.7	22.7	70.6	43.7	14.3	22.4	54.1	29.6	17.1	25.6
	23.03.2023	70.2	38.7	13.8	22.7	74.3	40.1	15.2	25.9	49.4	26.7	15.9	28.2
	27.03.2023	69.7	37.9	13.5	21.5	71.2	39.2	15.3	23.6	55.4	30.8	16.9	25.0
	30.03.2023	68.7	38.3	11.3	22.5	67.5	37.9	13.4	27.3	57.7	31.7	14.7	23.0
	Avg. Value	69.1	39.3	14.0	22.2	69.9	38.9	14.5	23.9	56.6	32.0	15.5	23.9

	Stack Emission Monitoring Results (October'2022 to March'2023)											
Lo	cation		Un	it-1		Unit-2						
	Date	PM SO2		NOx	Mercury (Hg)	PM	S02	NOx	Mercury (Hg)			
Month		Unit-mg/Nm³					Unit	-mg/Nm³				
	Permissible Limit	50**	200**	450**	0.03**	50	200**	450**	0.03**			
Oct-22	20.10.2022		Unit-Sh	utdown		28.56	734.0	288.00	BQL (0.01)			
Nov-22	26.11.2022	35.23	746.78	356.94	BQL (0.01)	38.24	782.18	318.49	BQL (0.01)			
Dec-22	17.12.2022	36.84	769.75	397.41	BQL (0.01)		Unit -	Shutdown				
Jan-23	31.01.2023	31.94	748.00	326.00	BQL (0.01)	35.50	35.50 762.0 368.0		BQL (0.01)			
Feb-22	21.02.2023	34.04	726.44	293.15	BQL (0.01)	38.33	743.60	311.60	BQL (0.01)			
Mar-23	21.03.2023	39.64	817.00	375.15	BQL (0.01)	42.56	780.78	346.45	BQL (0.01)			

Ground Water Monitoring Results (October'2022 to March'2023)

	Month			October-2022			January-2023	
	Date			15.10.2022			16.01.2023	
Sr. NO.	Parameters	Unit	Bandhaura Village	Railla Village	Karsuaraja Village	Bandhaura Village	Railla Village	Karsuaraja Village
1	pH @ 25 °C	-	7.24	7.35	7.18	7.25	7.29	7.56
2	Turbidity	NTU	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
3	Total Dissolved Solids @ 180	mg/L	485.0	499.0	688.0	612.0	506.0	589.0
4	Total Hardness as CaCO ₃	mg/L	392.0	212.0	195.0	360.0	210.0	295.0
5	Alkalinity as CaCO ₃	mg/L	318.0	282	323	290.0	250.0	292.0
6	Calcium as Ca	mg/L	122.24	62.52	63.73	106.21	56.11	68.14
7	Magnesium (Mg)	mg/L	21.14	13.61	8.75	23.09	17.01	30.38
8	Sulphate	mg/L	48.01	71.14	73.26	32.13	55.99	52.07
9	Nitrate	mg/L	3.41	4.35	2.1	2.12	1.20	1.03
10	Iron	mg/L	0.071	0.067	0.134	0.072	0.067	0.123
11	Fluoride	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
12	Sulphide	mg/L	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)
13	Zinc (Zn)	mg/L	0.102	0.121	1.044	0.113	0.121	1.028
14	Chloride	mg/L	198.94	118.96	189.94	184.94	97.47	157.45
15	Residual Chlorine	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
16	Colour	Hazen	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)
17	Odour	-	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
18	Mineral Oil	mg/L	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)
19	Ammonia	mg/L	2.8	1.68	2.2	BQL(QL=0.5)	BQL(QL=0.5)	BQL(QL=0.5)
20	Taste		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
21	Chloramines as CI2	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
22	Cyanide	mg/L	BQL(QL=0.025)	BQL(QL=0.025)	BQL(QL=0.025)	BQL(QL=0.025)	BQL(QL=0.025)	BQL(QL=0.025)
23	Aluminum (AI)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
24	Arsenic (As)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)
25	Barium as Ba	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
26	Boron (B)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
27	Cadmium (Cd)	mg/L	BQL(QL=0.002)	BQL(QL=0.002)	BQL(QL=0.002)	BQL(QL=0.002)	BQL(QL=0.002)	BQL(QL=0.002)
28	Copper (Cu)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
29	Lead (Pb)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)
30	Manganese (Mn)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
31	Mercury (Hg)	mg/L	BQL(QL=0.0005)	BQL(QL=0.0005)	BQL(QL=0.0005)	BQL(QL=0.0005)	BQL(QL=0.0005)	BQL(QL=0.0005)
32	Selenium (Se)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)
33	Molybdenum as Mo	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.00)
34	Total Chromium Cr	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)
35	Nickel as (Ni)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.02)
36	Silver (Ag)	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)
37	Anionic Detergent	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.02)
38.1	Naphthalene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.2	1-Methylnapthalene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.3	2-Methylnapthalene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.4	Acenaphthylene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.5	Acenaphthene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)

38.6	Fluorene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.7	Phenanthrene	μg/L	BQL(QL=5)	BQL(QL=5)	BQL(QL=5)	BQL(QL=5)	BQL(QL=5)	BQL(QL=5)
38.8	Anthracene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.9	Fluoranthene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.10	Pyrene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.11	Benzo(a) anthracene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.12	Chrysene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.13	Benzo (b) fluoranthene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.14	Benzo(K) fluoranthene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.15	Benzo(a)pyrene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.16	Dibenzo(a,h)anthracene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.17	Benzo (g,h,i)perylene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
38.18	Indenol(1,2,3-cd) pyrene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
39.1	PCB 1016	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
39.2	PCB 1221	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
39.3	PCB 1232	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
39.4	PCB 1242	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
39.5	PCB 1248	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
39.6	PCB 1254	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
39.7	PCB 1260	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
40.1	Bromoform	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
40.2	Dibromochloromethne	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
40.3	Bromodichloromethane	mg/L	BQL(QL=0.06)	BQL(QL=0.06)	BQL(QL=0.06)	BQL(QL=0.06)	BQL(QL=0.06)	BQL(QL=0.06)
40.4	Chloroform	mg/L	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)
41.1	o,p-DDT	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.2	p,p-DDT	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.3	o,p-DDE	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.4	p,p-DDE	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.5	o,p-DDD	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.6	p,p-DDD	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.7	Isoproturon	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
41.8	Alachlor	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
41.9	Atrazine	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
41.10	Aldrin/Dieldrin	µg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)
41.11	Gamma-HCH(Lindane)	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
41.12	Alpha HCH	μg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)
41.13	Beta HCH	μg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
41.14	Delta HCH	μg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
41.15	Endosulfan (alpha)	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.16	Endosulfan (Beta)	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.17	Endosulfan (Sulphate)	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.18	Monocrotophos	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.19	Ethoin	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
41.20	Chlorpyriphos	μg/L	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)
41.21	Phorate	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
41.22	Butachlor	μg/L	BQL(QL=20)	BQL(QL=20)	BQL(QL=20)	BQL(QL=20)	BQL(QL=20)	BQL(QL=20)
41.23	Methyl Parathion	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
41.24	Malathion	μg/L	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)
42.1	E.Coli (MPN/100 ml)	MPN/100ml	Absent	Absent	Absent	Absent	Absent	Absent
42.2	Total Coliform	MPN/100ml	Absent	Absent	Absent	Absent	Absent	Absent

Surface Water Quality Monitoring Results (October-2022 to March-2023)

	Month		October-	2022	January-	2023
	Date		15.10.2	022	16.01.	2023
Sr. NO.	Parameters	Unit	Nr. Gate No. 1	Nr. Gate No. 3	Nr. Gate No. 1	Nr. Gate No. 3
1	pH @ 25 oC	-	7.11	7.19	7.34	7.23
2	Turbidity	NTU	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
3	Total Dissolved Solids @ 180 °C	mg/L	364	279	401.0	325.0
4	Total Hardness as CaCO3	mg/L	180	127	196.0	140.0
5	Alkalinity as CaCO3	mg/L	240	212.00	192.0	156.0
6	Calcium as Ca	mg/L	53.71	37.27	59.32	38.5
7	Magnesium (Mg)	mg/L	11.18	8.26	11.66	1069.0
8	Sulphate	mg/L	12.54	21.02	18.12	23.52
9	Nitrate	mg/L	0.31	0.29	0.52	0.26
10	Iron	mg/L	0.12	0.31	0.103	0.492
11	Fluoride	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
12	Sulphide	mg/L	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)
13	Zinc (Zn)	mg/L	0.071	BQL(QL=0.02)	0.071	BQL(QL=0.02)
14	Chloride	mg/L	71.98	49.98	82.97	54.98
15	Residual Chlorine	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
16	Colour	Hazen	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)
17	Odour	=	Agreeable	Agreeable	Agreeable	Agreeable
18	Mineral Oil	mg/L	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)
19	Ammonia	mg/L	280	1.40	1.96	0.56
20	Taste	=	Agreeable	Agreeable	Agreeable	Agreeable
21	Chloramines as Cl2	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
22	Cyanide	mg/L	BQL(QL=0.025)	BQL(QL=0.025)	BQL(QL=0.025)	BQL(QL=0.025)
23	Aluminum (AI)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
24	Arsenic (As)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)
25	Barium as Ba	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
26	Boron (B)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
27	Cadmium (Cd)	mg/L	BQL(QL=0.002)	BQL(QL=0.002)	BQL(QL=0.002)	BQL(QL=0.002)
28	Copper (Cu)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
29	Lead (Pb)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)
30	Manganese (Mn)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
31	Mercury (Hg)	mg/L	BQL(QL=0.0005)	BQL(QL=0.0005)	BQL(QL=0.0005)	BQL(QL=0.0005)
32	Selenium (Se)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)
33	Molybdenum as Mo	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)
34	Total Chromium Cr	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)

35	Nickel as (Ni)	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)
36	Silver (Ag)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
37	Anionic Detergent	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
38	Naphthalene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
39	1-Methylnapthalene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
40	2-Methylnapthalene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
41	Acenaphthylene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
42	Acenaphthene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
43	Fluorene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
44	Phenanthrene	µg/L	BQL(QL=5)	BQL(QL=5)	BQL(QL=5)	BQL(QL=5)
45	Anthracene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
46	Fluoranthene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
47	Pyrene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
48	Benzo(a) anthracene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
49	Chrysene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
50	Benzo (b) fluoranthene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
51	Benzo(K) fluoranthene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
52	Benzo(a)pyrene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
53	Dibenzo(a,h)anthracene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
54	Benzo (g,h,i)perylene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
55	Indenol(1,2,3-cd)pyrene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)
56	PCB 1016	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
57	PCB 1221	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
58	PCB 1232	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
59	PCB 1242	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
60	PCB 1248	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
61	PCB 1254	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
62	PCB 1260	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)
63	Bromoform	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
64	Dibromochloromethne	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
65	Bromodichloromethane	mg/L	BQL(QL=0.06)	BQL(QL=0.06)	BQL(QL=0.06)	BQL(QL=0.06)
66	Chloroform	mg/L	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)
67	o,p-DDT	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
68	p,p-DDT	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
69	o,p-DDE	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
70	p,p-DDE	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
71	o,p-DDD	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
72	p,p-DDD	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
73	Isoproturon	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
74	Alachlor	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
75	Atrazine	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
76	Aldrin/Dieldrin	μg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)
77	Gamma-HCH(Lindane)	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
78	Alpha HCH	μg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)
79	Beta HCH	μg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)
80	Delta HCH	μg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)

81	Endosulfan (alpha)	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
82	Endosulfan (Beta)	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
83	Endosulfan (Sulphate)	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
84	Monocrotophos	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
85	Ethoin	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
86	Chlorpyriphos	µg/L	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)
87	Phorate	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)
88	Butachlor	μg/L	BQL(QL=20)	BQL(QL=20)	BQL(QL=20)	BQL(QL=20)
89	Methyl Parathion	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)
90	Malathion	μg/L	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)
91	E.Coli (MPN/100 ml)	MPN/100ml	Absent	Absent	Absent	Absent
92	Total Coliform	MPN/100ml	Absent	Absent	Absent	Absent

STP Treated Water Test Results (October'2022 to March'2023)

Location of Sewage Treatment Plant: Near Admin Building												
	Date		Parameters									
Month		рН	TSS (mg/L)	BOD (mg/L)	COD (mg/L)	Oil & Grease (mg/L)						
October-2022	15.10.2022	8.61	16	14.2	60	(QL=2)						
November-2022	10.11.2022	8.46	14	13.7	50	(QL=2)						
Decmber-2022	15.12.2022	7.90	17	11.2	45	(QL=2)						
January-2023	16.01.2023	8.06	23	13.6	50	(QL=2)						
February-2023	08.02.2023	7.66	19	11.2	40	(QL=2)						
March-2023	13.03.2023	7.83	23	12.0	55	(QL=2)						

ETP Treated Water Test Results (October-2022 to March-2023)

Location of Effluent Treatment Plant: DM plant											
				Parameter	's						
Month	Date	pH TSS (mg/L)		BOD (mg/L)	COD (mg/L)	Oil & Grease (mg/L)					
October-2022	15.10.2022	8.10	20	9.6	40	(QL=2)					
November-2022	10.11.2022	8.34	24	10.43	40	(QL=2)					
Decmber-2022	15.12.2022	8.12	27	9.78	35	(QL=2)					
January-2023	16.01.2023	7.86	33	12.8	40	(QL=2)					
February-2023	08.02.2023	7.59	28	16.8	60	(QL=2)					
March-2023	13.03.2023	7.76	35	14.0	70	(QL=2)					

	Ambient Noise Monitoring Results													
	October'2022 to March'2023													
Location Admin Gate No.1 Gate No. 2 Gate No. 3														
Month	Date	Duration	Leq	Max	Min									
Oatabas 2022	1E 10 2022	Day	63.2	69.7	49.2	71.4	73.4	65.8	67.8	71.2	55.1	65.3	70.1	51.3
October-2022	15.10.2022	Night	52.3	61.2	46.5	65.0	66.0	52.3	58.9	64.3	51.2	56.4	56.2	44.7
November-2022	15.11.2022	Day	58.4	62.5	44.1	65.8	70.3	53.4	63.1	68.4	49.9	53.3	57.8	44.1

		Night	26.2	52.1	39.7	52.8	56.1	49.7	49.1	53.1	45.8	42.8	45.6	35.7
December-2022 05.12.2022	0E 12 2022	Day	51.5	59.5	44.9	60.4	68.4	53.9	62.0	67.3	51.8	45.2	58.5	41.5
	05.12.2022	Night	48.4	53.7	39.8	58.0	61.5	45.1	59.4	62.8	45.2	40.8	51.2	37.4
January 2027	09.01.2023	Day	54.0	59.6	48.6	62.4	68.0	57.5	60.2	65.2	54.3	47.2	56.2	40.3
January-2023	09.01.2023	Night	50.4	54.6	49.7	54.8	58.6	49.1	56.5	60.1	47.4	42.1	46.2	36.1
Fobsupsy 2027	07.00.0007	Day	54.9	58.9	47.3	61.1	71.2	54.6	59.0	62.0	53.1	47.6	52.4	46.2
February-2023	23.02.2023	Night	48.7	50.9	46.5	52.8	53.8	51.7	55.3	59.2	49.2	42.2	43.9	39.6
March-2023	06.03.2023	Day	67.3	69.5	63.9	61.9	70.2	58.2	69.2	71.6	65.6	56.2	58.4	53.1
		Night	54.4	57.6	48.2	54.1	62.8	50.7	65.4	67.3	63.7	48.8	52.1	44.6

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of October 2022 On Site 24 Hourly Monitoring Results

Company Name Sample Type

Mahan Energen Limited

AMBIENT AIR QUALITY MONITORING

	Parameters	RPM (<10)	RPM (<2.5)	SO ₂	NO ₂	Mercury(Hg)							
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3							
Sr. No	Reference Method	IS 5182 part- 23		IS 5182 Part-2	IS 5182 Part-6	Method IO-							
	Norms	100	60	80	80	NS							
	Date of Monitoring	te of Monitoring											
1	03.10.2022	66.7	34.0	17.8	22.5	BQL (QL=1)							
2	06.10.2022	68.9	32.2	14.3	25.6	BQL (QL=1)							
3	10.10.2022	65.8	33.6	16.8	23.8	BQL (QL=1)							
4	13.10.2022	69.8	35.9	14.5	24.3	BQL (QL=1)							
5	17.10.2022	67.8	346	15.2	27.0	BQL (QL=1)							
6	20.10.2022	71.2	33.6	14.7	28.3	BQL (QL=1)							
7	24.10.2022	65.8	34.5	19.6	28.8	BQL (QL=1)							
8	27.10.2022	68.5	35.2	16.5	25.4	BQL (QL=1)							
	AVERAGE	68.1	34.2	16.2	25.7	BQL (QL=1)							

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qualiy Standards

Analyes By

Shight kills

Shiyal Kishor

Approved By

Pankil Patel

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of October 2022 On Site 24 Hourly Monitoring Results

Company Name Sample Type

Mahan Energen Limited

AMBIENT AIR QUALITY MONITORING

	Parameters	RPM (<10)	RPM (<2.5)	SO ₂	NO ₂	Mercury(Hg)	
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3	
Sr. No	Reference Method	IS 5182 part- 23	GGMPL/SOP/A A/60	IS 5182 Part-2	IS 5182 Part-6	Method IO-	
	Norms	100	60	80	80	NS	
	Date of Monitoring						
1	03.10.2022	60.1	30.9	14.8	21.6	BQL (QL=1)	
2	06.10.2022	62.3	31.2	15.2	20.6	BQL (QL=1)	
3	10.10.2022	58.5	30.5	13.8	21.3	BQL (QL=1)	
4	13.10.2022	63.2	32.1	14.2	19.3	BQL (QL=1)	
5	17.10.2022	61.2	31.3	14.2	22.0	BQL (QL=1)	
6	20.10.2022	64.6	30.5	16.9	23.3	BQL (QL=1)	
7	24.10.2022	62.6	30.5	15.2	23.8	BQL (QL=1)	
8	27.10.2022	61.9	32.1	16.3	24.6	BQL (QL=1)	
	AVERAGE	61.8	31.1	15.1	22.1	BQL (OL = 1)	

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qualiy Standards

Analyes By

Shitotell.

Shiyal Kishor

Approved By

R.

Pankil Patel

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of October 2022 On Site 24 Hourly Monitoring Results

Company Name Sample Type

Sample Description

Mahan Energen Limited

AMBIENT AIR QUALITY MONITORING

Near Gate No - 03

	Parameters	RPM (<10)	RPM (<2.5)	SO ₂	NO ₂	Mercury(Hg)	
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3	
Sr. No	Reference Method	IS 5182 part- 23	GGMPL/SOP/A A/60	IS 5182 Part-2	IS 5182 Part-6	Method IO- 3.4	
	Norms	100	60	80	80	NS	
	Date of Monitoring						
1	03.10.2022	57.7	27.5	14.6	19.9	BQL (QL=1)	
2	06.10.2022	56.4	28.1	13.5	19.1	BQL (QL=1)	
3	10.10.2022	55.5	25.2	15.3	17.7	BQL (QL=1)	
4	13.10.2022	59.1	24.8	16.3	19.8	BQL (QL=1)	
5	17.10.2022	57.1	27.4	13.2	20.7	BQL (QL=1)	
6	20.10.2022	55.0	28.1	14.0	19.9	BQL (QL=1)	
7	24.10.2022	57.1	25.9	16.8	21.3	BQL (QL=1)	
8	27.10.2022	55.1	25.2	13.6	22.7	BQL (QL=1)	
	AVERAGE	56.6	26.5	14.7	20.1	BQL (QL=1)	

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qualiy Standards

Analyes By

Shiyal Kishor

Approved By

#

Pankil Patel

FND

GO Green Mechanisms Pvt Ltd

Analysis Results For The Month of November-2022

Compar	ny Name	Mahan Energer	Limited											
Sample			AMBIENT AIR QUALITY MONITORING											
Sample	Description	Near Admin Bu												
	Parameters	PM (<10)	PM (<2.5)	SO ₂	NO ₂	Mercury(Hg)	03	NH3	со	Benzene	Benzo (a) Pyrene	РЬ	Ni	As
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3	μg/m³	μg/m³	mg/m³	μg/m ⁴	ng/m ⁵	μg/m ⁴	ng/m ⁵	ng/m ⁵
Sr. No	Reference Method	IS 5182 part-23	GGMPL/SOP/ AA/60	IS 5182 Part-2	IS 5182 Part-6	Method IO-3.4	IS 5182 Part-9	GGMPL/SOP/A A/62	IS 5182 Part-10	IS 5182 Part-11	IS 5182 Part-12	Method IO 3.4	Method IO 3.4	Method IO 3.4
	Norms	100	60	80	80	NS	100	400	4	5	1	1	20	6
	Date of Monitoring													
1	01.11.2022	64.2	33.3	15.0	23.3	BQL(QL=1)	14.6	12.2	0.38	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
2	04.11.2022	67.5	30.0	16.4	22.4	BQL(QL=1)	13.9	11.8	0.34	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
3	07.11.2022	64,3	29.6	17.2	23,8	BQL(QL=1)	15.1	12.6	0.30	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
4	10.11.2022	69.1	27.5	15.6	23,9	BQL(QL=1)	16.1	13.4	0.35	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
5	14.11.2022	66.3	30.8	16.7	21.8	BQL(QL=1)	14.2	11.2	0.34	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
6	17.11.2022	64.5	27.9	14.7	22.1	BQL(QL=1)	15.6	11.4	0.35	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
7	21.11.2022	62.8	32.9	14.7	20.7	BQL(QL=1)	14.8	13.6	0.33	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
8	24.11.2022	61.5	33,0	17.2	24.3	BQL(QL=1)	15.9	13.1	0.33	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
9	27.11.2022	63.1	32.9	16.8	23.0	BQL(QL=1)	16.4	12.8	0.37	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
	AVERAGE	64.8	30.9	16.0	22.8	BQL(QL=1)	15.2	12.5	0.34	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qualiy Standards

Analuse D

Shifted K.B.

BECHANIS PV

Approved By

Pankil Patel

.....END......

GO Green Mechanisms Pvt Ltd **Analysis Results For The Month of November-2022** On Site 24 Hourly Monitoring Results

Compa	ny Name	Mahan Energ	en Limited											
Sample	е Туре	AMBIENT AIR	R QUALITY MO	NITORING										
Sample	e Description	Near Gate No	- 02											
	Parameters	PM (<10)	PM (<2.5)	SO ₂	NO ₂	Mercury(Hg)	03	NH3	со	Benzene	Benzo (a) Pyrene	Pb	Ni	As
	Unit	µg/m³	µg/m³	μg/m³	μg/m³	ng/m3	μg/m³	μg/m³	mg/m³	μg/m⁴	ng/m⁵	µg/m⁴	ng/m⁵	ng/m⁵
Sr. No	Reference Method	IS 5182 part-23	GGMPL/SOP/ AA/60	IS 5182 Part-2	IS 5182 Part-6	Method IO-3,4	IS 5182 Part-9	GGMPL/SOP/A A/62	IS 5182 Part-10	IS 5182 Part-11	IS 5182 Part-12	Method IO 3.4	Method IO 3.4	Method IO 3.4
	Norms	100	60	80	80	NS	100	400	4	5	1	1	20	6
	Date of Monitoring													
1	01.11.2022	71.2	36.2	17.9	25.5	BQL (QL=1)	12.4	15.0	0.38	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
2	04.11.2022	69.8	34.6	18.5	24.7	BQL(QL=1)	10.4	13.5	0.33	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
3	07.11.2022	72.8	36.2	16.5	24.2	BQL (QL=1)	13.5	15.4	0.35	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
4	10.11.2022	74.2	37.1	17.2	23.1	BQL (QL=1)	14.6	14.2	0.38	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
5	14.11.2022	76.1	32.9	19.2	23.9	BQL (QL=1)	12.7	15.1	0.36	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
6	17.11.2022	74.3	35.8	16.9	25.6	BQL(QL=1)	13.5	14.0	0.34	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
7	21.11.2022	68.7	33.3	16.9	24.4	BQL (QL=1)	11.6	14.6	0.37	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
8	24.11.2022	72.5	37.1	16.8	28.8	BQL (QL=1)	10.9	14.1	0.36	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
9	27.11.2022	70.6	31.2	17.4	23.3	BQL (QL=1)	12.4	14.8	0.38	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
	AVERAGE	72.2	34.9	17.5	24.8	BQL(QL=1)	12.4	14.5	0.36	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qualiy Standards

Analyes By

Shifty K.B.

Approved By

Pankil Patel

GO Green Mechanisms Pvt Ltd

Analysis Results For The Month of November-2022

						On Site 24 Hou	arry Monico	ring Results						
Compai	ny Name	Mahan Energe	n Limited											
Sample	Туре	AMBIENT AIR	QUALITY MONITO	ORING										
Sample	Description	Near Gate No-)3											
	Parameters	PM (<10)	PM (<2.5)	SO ₂	NO ₂	Mercury(Hg)	03	NH3	со	Benzene	Benzo (a) Pyrene	Pb	Ni	As
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3	μg/m³	μg/m³	mg/m³	μg/m ⁴	ng/m ⁵	μg/m ⁴	ng/m ⁵	ng/m ⁵
Sr. No	Reference Method	IS 5182 part-23	GGMPL/SOP/ AA/60	IS 5182 Part-2	IS 5182 Part-6	Method IO-3.4	IS 5182 Part-9	GGMPL/SOP/A A/62	IS 5182 Part-10	IS 5182 Part-11	IS 5182 Part-12	Method IO 3.4	Method IO 3.4	Method IO 3.
	Norms	100	60	80	80	NS	100	400	4	5	1	1	20	6
	Date of Monitoring													
1	01.11.2022	52.6	23.7	14.3	20.5	BQL(QL=1)	13.4	12.8	0.41	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
2	04.11.2022	54.2	24.6	16.3	23.4	BQL(QL=1)	12.8	13.5	0.42	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
3	07.11.2022	51.3	26.7	15.5	21.7	BQL(QL=1)	12.4	14.6	0.43	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
4	10.11.2022	57.0	30.0	14.5	22.4	BQL(QL=1)	10.5	11.6	0.41	BQL(QL=2.5)	BQL(QL≃0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
5	14.11.2022	55.8	27.1	13.4	19.5	BQL(QL=1)	9.1	13.4	0.40	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
6	17.11.2022	54.3	28.7	17.4	22.4	BQL(QL=1)	10.1	11.3	0.41	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
7	21.11.2022	50.6	24.6	16.5	26.6	BQL(QL=1)	14.6	13.4	0.42	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
8	24.11.2022	54.9	28.3	14.3	23.2	BQL(QL=1)	13.4	10.4	0.42	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
9	27.11.2022	51.7	29.6	15.8	21.7	BQL(QL=1)	13.4	12.4	0.41	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
	AVERAGE	53.6	27.0	15.3	22.4	BQL(QL=1)	12.2	12.6	0.41	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qualiy Standards

Approved By

Pankil Patel

END.

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of December- 2022 On Site 24 Hourly Monitoring Results **Company Name** Mahan Energen Limited Sample Type **Ambient Air Quality Monitoring** Sample Collected By **Laboratory Representative** Sample Description **Near Admin Building Parameters** PM (<10) PM (<2.5) 502 NO2 Mercury(Hg) Unit $\mu g/m^3$ $\mu g/m^3$ $\mu g/m^3$ µg/m³ ng/m3 IS 5182 GGMPL/SOP/ Method Sr. No Reference Method IS 5182 Part-2 IS 5182 Part-6 AA/60 part-23 IO-3.4 100 Norms 60 80 80 NS **Date of Monitoring** 1 01.12.2022 61,3 29.8 13.5 24.6 BQL(QL=1) 2 05.12.2022 69.9 31.4 14.9 23.3 BQL(QL=1) 3 08.12.2022 65.8 34.1 18.7 25.7 BQL(QL=1) 4 12.12.2022 68.1 32.6 12.8 26.9 BQL(QL=1) 5 15.12.2022 70.6 36.7 15.9 24.6 BQL(QL=1) 6 19.12.2022 66.9 34.6 16.9 21.3 BQL(QL=1) 22,12,2022 7 62.8 28.2 14.6 26.8 BQL(QL=1) 8 26.12.2022 63.4 30.7 15.6 22.4 BQL(QL=1) 9 29.12.2022 67.3 33.4 16.5 20.7 BQL(QL=1) **AVERAGE** 66.2 32.4 15.5 24.0 BQL (QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified Norms- As per national Ambient Air Qualiy Standards

Analyes By
1
Shitalk-13.
Shiyal Kishor

Approved By

OB

Pankil Patel

FND		
 	***************************************	*****************************

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of December -22 On Site 24 Hourly Monitoring Results Mahan Energen Limited Ambient Air Quality Monitoring

Sample Type		Ambient Air (Ambient Air Quality Monitoring								
Sample	Collected By	Laboratory R	epresentative								
Sample	Description	Near Gate No	- 02								
	Parameters	PM (<10)	PM (<2.5)	SO ₂	NO ₂	Mercury(Hg)					
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3					
Sr. No	Reference Method	IS 5182 part-23	GGMPL/SOP/ AA/60	IS 5182 Part-2	IS 5182 Part-6	Method IO-3.4					
	Norms	100	60	80	80	NS					
	Date of Monitoring										
1	01.12.2022	73.6	33.6	18.4	24.1	BQL (QL=1)					
2	05.12.2022	74.9	34.8	17.8	20.6	BQL(QL=1)					
3	08.12.2022	68.2	32.9	20.7	23.8	BQL (QL=1)					
4	12.12.2022	64.9	31.8	17.6	26.9	BQL (QL=1)					
5	15.12.2022	70.4	32.9	21.5	28.1	BQL (QL=1)					
6	19.12.2022	64.3	36.7	15.9	25.4	BQL(QL=1)					
7	22.12.2022	72.1	34.2	17.4	23.4	BQL (QL=1)					
8	26.12.2022	73.9	30.7	18.7	25.9	BQL (QL=1)					
9	29.12.2022	66.4	36.8	15.3	27.7	BQL (QL=1)					
	AVERAGE	69.9	33.8	18.1	25.1	BQL (QL=1)					

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qualiy Standards

Analyes By	Ana	lyes	By
------------	-----	------	----

Company Name

Shixuk.B.

Shiyal Kishor

Approved By

Pankil Patel

ff.....

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of December -22 On Site 24 Hourly Monitoring Results **Company Name** Mahan Energen Limited Sample Type **Ambient Air Quality Monitoring** Sample Collected By **Laboratory Representative** Sample Description Near Gate No-03 **Parameters** PM (<10) PM (<2.5) SO2 NO₂ Mercury(Hg) Unit µg/m³ µg/m³ µg/m³ μg/m³ ng/m3 GGMPL/SOP/ IS 5182 Method Sr. No Reference Method IS 5182 Part-2 IS 5182 Part-6 AA/60 part-23 10-3.4 Norms 100 60 80 80 NS **Date of Monitoring** 1 01.12.2022 10.2 49.5 21.6 19.6 BQL(QL=1) 2 05.12.2022 48.2 24.8 13.6 21.8 BQL(QL=1) 3 08.12.2022 52.6 14.8 23.6 26.4 BQL(QL=1)4 12.12.2022 57.9 27.6 10.9 24.7 BQL(QL=1) 5 15.12.2022 46.9 25.8 15.8 20.5 BQL(QL=1)6 19.12.2022 46.7 22.5 13.2 17.6 BQL(QL=1) 7 22.12.2022 43.6 26.9 12.4 19.7 BQL(QL=1) 8 26.12.2022 52.6 28.4 11.5 16.8 BQL(QL=1) 9 29.12.2022 55.6 23.4 15.8 19.5 BQL(QL=1) AVERAGE 50.4 25.3 13.1 20.4 BQL (QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified Norms- As per national Ambient Air Qualiy Standards

Analyes By	MECHANIC	Approved By	
Shity & B.		R	
Shijuk B. Shiyal Kishor		Pankil Patel	

.....END.

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of January -2023 On Site 24 Hourly Monitoring Results **Company Name Mahan Energen Limited** Sample Type **Ambient Air Quality Monitoring** Sample Collected By **Laboratory Representative** Sample Description Near Gate No-03 **Parameters** PM (<10) PM (<2.5) SO, NO2 Mercury(Hg) Unit μg/m³ µg/m³ μg/m³ $\mu g/m^3$ ng/m3 IS 5182 GGMPL/SOP/ Method Sr. No Reference Method IS 5182 Part-2 IS 5182 Part-6 part-23 AA/60 10-3.4 Norms 100 60 80 80 NS **Date of Monitoring** 02-01-2023 1 55.6 30.8 22.4 BQL(QL=1)13.9 2 05-01-2023 53.3 27.1 15.6 24.1 BQL(QL=1)3 09-01-2023 56.3 32.1 16.2 24.4 BQL(QL=1) 4 12-01-2023 50.1 28.7 12.7 22.6 BQL(QL=1)5 16-01-2023 53.8 31.7 17.5 24.6 BQL(QL=1)6 19-01-2023 50.8 28.3 16.1 22.9 BQL(QL=1)7 23-01-2023 47.8 24.6 14.7 22.1 BQL(QL=1)8 26-01-2023 48.2 25.8 13.2 19.4 BQL(QL=1) 9 30-01-2023 57.9 31.2 15.6 23.1 BQL(QL=1) **AVERAGE** 52.6 28.9 15.0 22.8 BQL (QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified Norms- As per national Ambient Air Qualiy Standards

1	Analye	es By	
Shi	Jul Shiyal	₩, Kishor	B.

Approved By

8

Pankil Patel

FND	***************************************

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of January -2023 On Site 24 Hourly Monitoring Results

		On Sit	e 24 Hourly Monit	oring Results				
Company Name Sample Type Sample Collected By		Mahan Energen Limited						
		Ambient Air Quality Monitoring						
		Laboratory Representative						
Sample	Description	Near Gate No	0 - 02					
	Parameters	PM (<10)	PM (<2.5)	SO ₂	NO ₂	Mercury(Hg		
Sr. No	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3		
	Reference Method	IS 5182 part-23	GGMPL/SOP/ AA/60	IS 5182 Part-2	IS 5182 Part-6	Method IO-3.4		
	Norms	100	60	80	80	NS		
	Date of Monitoring							
1	02-01-2023	74.7	39.6	20.3	26.6	BQL (QL=1)		
2	05-01-2023	77.6	41.7	19.8	23.9	BQL(QL=1)		
3	09-01-2023	66.9	35.4	17.3	24.9	BQL (QL=1)		
4	12-01-2023	72.9	33.3	15.5	23.2	BQL (QL=1)		
5	16-01-2023	66.1	36.7	16.5	25.7	BQL (QL=1)		
6	19-01-2023	71.3	32.5	13.7	23.6	BQL (QL=1)		
7	23-01-2023	68.7	37.9	15.3	24.6	BQL (QL=1)		
8	26-01-2023	76.2	39.6	16.8	23.9	BQL (QL=1)		
9	30-01-2023	63.5	34.6	17.8	25.5	BQL (QL=1)		
AVERAGE		70.9	36.8	17.0	24.7	BQL (QL=1)		

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified Norms- As per national Ambient Air Qualiy Standards

Analyes By		Approved By	
Brital K. B.	IN I	L.	
Shiyal Kishor	100	Pankil Patel	

END......

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of January - 2023 On Site 24 Hourly Monitoring Results Company Name Mahan Energen Limited Sample Type **Ambient Air Quality Monitoring** Sample Collected By Laboratory Representative Sample Description Near Admin Building **Parameters** PM (<10) PM (<2.5) SO₂ NO₂ Mercury(Hg) Unit µg/m³ $\mu g/m^3$ μg/m³ µg/m³ ng/m3 IS 5182 GGMPL/SOP/ Sr. No Method Reference Method IS 5182 Part-2 IS 5182 Part-6 part-23 AA/60 IO-3.4 Norms 100 60 80 80 NS **Date of Monitoring** 1 02-01-2023 65.55 35.83 16.28 25.18 BQL(QL=1) 2 05-01-2023 73.97 38.74 14.88 23.88 BQL(QL=1) 3 09-01-2023 68.16 36.66 15.86 23.22 BQL(QL=1) 4 12-01-2023 63.59 33.74 14.50 24.34 BQL(QL=1) 5 16-01-2023 73.52 37.49 13.00 24.62 BQL(QL=1) 6 19-01-2023 70.82 37.08 14.66 25.62 BQL(QL=1) 7 23-01-2023 66.38 33.74 16.50 24.89 BQL(QL=1) 8 26-01-2023 67.94 36.24 13.57 20.04 BQL(QL=1) 9 30-01-2023 65.24 34.16 14.16 20.59 BQL(QL=1) **AVERAGE** 68.4 36.0 14.8 23.6 BQL (QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified Norms- As per national Ambient Air Qualiy Standards

	EGHAN		
Analyes By		Approved By	
Angul K. B. Shiyal Kishor	S S S S S S S S S S S S S S S S S S S	Pankil Patel	
	(* C)		

END.....

GO Green Mechanisms Pvt Ltd

Analysis Results For The Month of February -2023

Compar	ny Name	Mahan Energer	Limited									***************************************		
Sample Type		AMBIENT AIR	AMBIENT AIR QUALITY MONITORING											
Sample	Description	Near Admin Bu	ilding		and the second s		************		*****			***************************************		-
	Parameters	PM (<10)	PM (<2.5)	SO ₂	NO ₂	Mercury(Hg)	03	NH3	со	Benzene	Benzo (a) Pyrene	Pb	Ni	As
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3	µg/m³	µg/m³	mg/m³	μg/m3	ng/m3	µg/m3	ng/m3	ng/m3
Sr. No	Reference Method	IS 5182 part-23	GGMPL/SOP/ AA/60	IS 5182 Part-2	IS 5182 Part-6	Method IO-3.4	IS 5182 Part-9	GGMPL/SOP/A A/62	IS 5182 Part-10	IS 5182 Part-11	IS 5182 Part-12	Method IO 3.4	Method IO 3,4	Method IO 3.4
	Norms	100	60	80	80	NS	100	400	4	5	1	1	20	6
	Date of Monitoring													
1	02-02-2023	60.2	33,7	14.4	22.7	BQL(QL=1)	13.8	11,1	0.36	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
2	06-02-2023	67.3	36.2	17.3	26.6	BQL(QL=1)	12.6	10.2	0.35	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0,001)	BQL(QL=5)	BQL(QL=1)
3	09-02-2023	68,5	36.2	15.6	20.7	BQL(QL=1)	11.6	11.1	0.34	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
4	13-02-2023	70.5	39,6	13.9	21.0	BQL(QL=1)	14.2	12.6	0.29	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
5	16-02-2023	71,9	40,0	15.0	25.5	BQL(QL=1)	15.8	13.9	0.32	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
6	20-02-2023	73.1	40.5	14.3	22.4	BQL(QL=1)	13.9	12.9	0.33	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	EQL(QL=1)
7	23-02-2023	69,5	38,7	13.3	23.0	BQL(QL=1)	13.6	13.2	0.28	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
8	27-02-2023	6457	37.9	12,4	23.1	BQL(QL=1)	14.5	13.5	0.31	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	EQL(QL=1)
	AVERAGE	68.7	37.9	14.5	23.1	BQL(QL=1)	13.8	12.3	0.32	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qually Standards

Approved By

R.

						GO Green N s Results For In Site 24 Hou	The Mon	th of Februa		3		90 - November 1980		
Compa	any Name	Mahan Energ	en Limited			The state of the s					//			
Sampl	е Туре	AMBIENT AI	R QUALITY MC	NITORING										
Sampl	e Description	Near Gate No	0 - 02			Value of the same								
	Parameters	PM (<10)	PM (<2.5)	SO ₂	NO ₂	Mercury(Hg)	03	NH3	СО	Benzene	Benzo (a) Pyrene	Pb	Ni	As
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3	µg/m³	µg/m³	mg/m³	µg/m3	ng/m3	µg/m3	ng/m3	ng/m3
Sr. No	Reference Method	IS 5182 part-23	GGMPL/SOP/ AA/60	IS 5182 Part-2	IS 5182 Part-6	Method IO-3,4	IS 5182 Part-9	GGMPL/SOP/A A/62	IS 5182 Part-10	IS 5182 Part-11	IS 5182 Part-12	Method IO 3.4		Method IO 3.
	Norms	100	60	80	80	NS	100	400	4	5	1	1	20	6
	Date of Monitoring	9												
1	02-02-2023	69.8	38.3	17.8	24.1	BQL (QL=1)	13.1	14.3	0.36	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
2	06-02-2023	74.6	41.7	16.7	26.0	BQL (QL=1)	11.0	12.2	0.31	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
3	09-02-2023	64.9	36.9	15.5	25.0	BQL(QL=1)	11.6	11.5	0.32	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
4	13-02-2023	67.2	37.1	14.1	21.9	BQL (QL=1)	12.7	14.9	0.33	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
5	16-02-2023	71.0	39.2	13.7	22.7	BQL (QL=1)	13.2	13.2	0.37	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
6	20-02-2023	69,9	38.3	11.8	21.7	BQL (QL=1)	13.9	12.4	0.36	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	
7	23-02-2023	70.2	40.8	16.1	27.2	BQL (QL=1)	12.3	11.8	0.39	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
8	27-02-2023	73.3	42.1	15.1	25,5	BQL (QL=1)	15.5	12.4	0.35	BQL(QL=2,5)	BQL(QL=0.5)	BQL(QL=0.001)		BQL(QL=1)
	AVERAGE	70.1	39.3	15.1	24.3	BQL(QL=1)	12.9	12.8	0.35	BQL(QL=2.5)		BQL(QL=0.001)	BQL(QL=5) BQL(QL=5)	BQL(QL=1) BQL(QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qualiy Standards

Show & Brands & Brand

Approved By
Pankil Patel

GO Green Mechanisms Pvt Ltd

Analysis Results For The Month of February-2023

On Site 24 Hourly Monitoring Results

Compai	ny Name	Mahan Energe	n Limited											
Sample	Туре	AMBIENT AIR	QUALITY MONITO	ORING								· · · · · · · · · · · · · · · · · · ·		
Sample	Description	Near Gate No-	03						-		******			*****************
	Parameters	PM (<10)	PM (<2.5)	502	NO ₂	Mercury(Hg)	03	NH3	со	Benzene	Benzo (a) Pyrene	Pb	Ni	As
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3	μg/m³	µg/m³	mg/m³	µg/m3	ng/m3	µg/m3	ng/m3	ng/m3
Sr. No	Reference Method	IS 5182 GGMPL/SOP part-23 AA/60	GGMPL/SOP/ AA/60	P/ IS 5182 Part-2	IS 5182 Part-6	Method IO-3.4	IS 5182 Part-9	GGMPL/SOP/A A/62	IS 5182 Part-10	IS 5182 Part-11	IS 5182 Part-12	Method IO 3.4	Method IO 3.4	
	Norms	100	60	80	80	NS	100	400	4	5	1	1	20	6
	Date of Monitoring												A Transmission of the transmission	handlert dame manageria
1	02-02-2023	58.9	33.3	15.1	24.7	BQL(QL=1)	12.4	13.4	0.39	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL≔5)	BQL(QL=1)
2	06-02-2023	56.4	30.8	13,5	21.3	BQL(QL=1)	12.0	12.7	0.38	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)
3	09-02-2023	57.0	31.8	14.5	19.4	BQL(QL=1)	10.3	11.5	0.33	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
4	13-02-2023	59.5	32.1	18.0	26.0	BQL(QL=1)	12.1	13.4	0.40	BQL(QL=2.5)	BQL(QL≃0.5)	BQL(QL=0.001)	BQL(QL≈5)	BQL(QL≈1)
5	16-02-2023	51.4	29.2	14.1	21.7	BQL(QL=1)	10.2	11.2	0.37	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
6	20-02-2023	52.7	32.2	15.3	23.3	BQL(QL=1)	12.3	10,1	0.34	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL≃5)	BQL(QL=1)
7	23-02-2023	49.7	28.7	16.0	24.7	BQL(QL=1)	12.6	14.2	0.32	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL≃5)	BQL(QL=1)
8	27-02-2023	52.5	29.6	15.5	22.7	BQL(QL=1)	13.6	11.8	0.34	BQL(QL=2.5)	BQL(QL≈0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL≈1)
	AVERAGE	54.8	31.0	15.2	23.0	BQL(QL≃1)	11.9	12.3	0.36	BQL(QL=2.5)	BQL(QL=0.5)	BQL(QL=0.001)	BQL(QL=5)	BQL(QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified

Norms- As per national Ambient Air Qualiy Standards

Analyes By
Shiyolk B,
Shiyal Kishor

Approved By

Pankil Patel

......END.....

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of March-2023 On Site 24 Hourly Monitoring Results Mahan Energen Limited

company Name	manan Energe	ii Liiiiteu					
Sample	Туре	AMBIENT AIR	QUALITY MONITOR	RING			
Sample	Description	Near Admin Bu	ilding				
	Parameters	PM (<10)	PM (<2.5)	SO ₂	NO ₂	Mercury(Hg)	
	Unit	μg/m³	μg/m³	μg/m³	μg/m³	ng/m3	
Sr. No	Reference Method	IS 5182 part-23	GGMPL/SOP/ AA/60	IS 5182 Part-2	IS 5182 Part-6	Method IO-3.4	
	Norms	100	60	80	80	NS	
	Date of Monitoring						
1	02-03-2023	63.9	36.7	12.6	19.6	BQL(QL=1)	
2	06-03-2023	73.7	41.7	14.5	25.6	BQL(QL=1)	
3	09-03-2023	66.7	35.4	13.9	18.1	BQL(QL=1)	
4	13-03-2023	69.1	39.6	15.9	19.2	BQL(QL=1)	
5	16-03-2023	65.8	40.8	14.1	27.6	BQL(QL=1)	
6	20-03-2023	74.4	44.8	16.7	22.7	BQL(QL=1)	
7	23-03-2023	70.2	38.7	13.8	22.7	BQL(QL=1)	
8	27-03-2023	69.7	37.9	13.5	21.5	BQL(QL=1)	
9	30-03-2023	68.7	38.3	11.3	22.5	BQL(QL=1)	
	AVERAGE	69.1	39.3	14.0	22.2	BQL (QL=:	

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified Norms- As per national Ambient Air Qualiy Standards

Company Name

Analyes By		Approved By	
Shiyuk 13.	S PI	2	
Shiyuk B Shiyal Kishor		Pankil Patel	

.....END.

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of March-2023 On Site 24 Hourly Monitoring Results Mahan Energen Limited AMBIENT AIR QUALITY MONITORING Near Gate No - 02 PM (<10) SO₂ NO2 Mercury(Hg) PM (<2.5) µg/m³ ng/m3 µg/m³ µg/m³ µg/m³ GGMPL/SOP/ IS 5182 Method Reference Method IS 5182 Part-2 IS 5182 Part-6 10-3.4 part-23 AA/60 NS 100 60 80 80 Date of Monitoring 02-03-2023 65.7 36.6 15.1 20.9 BQL (QL=1) 06-03-2023 70.1 39.2 17.1 28.1 BQL (QL=1) 09-03-2023 64.9 34.6 13.1 21.0 BQL(QL=1)13-03-2023 69.5 38.7 11.9 20.4 BQL(QL=1) 16-03-2023 75.5 40.4 15.4 25.9 BQL(QL=1)20-03-2023 70.6 43.7 14.3 22.4 BQL(QL=1)

15.2

15.3

13.4

14.5

25.9

23.6

27.3

23.9

BQL(QL=1)

BQL (QL=1)

BQL (QL=1)

BOL

(QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified Norms- As per national Ambient Air Qualiy Standards

74.3

71.2

67.5

69.9

Company Name

Sample Description

Unit

Norms

Parameters

Sample Type

Sr. No

1

2

3

4

5

6

7

8

9

23-03-2023

27-03-2023

30-03-2023

AVERAGE

Analyes By	Approved By	
Shiyulk:B. Shiyal Kishor	f.	
Shiyal Kishor	Pankil Patel	

40.1

39.2

37.9

38.9

GO Green Mechanisms Pvt Ltd Analysis Results For The Month of March-2023 On Site 24 Hourly Monitoring Results **Company Name Mahan Energen Limited** Sample Type AMBIENT AIR QUALITY MONITORING Sample Description Near Gate No-03 **Parameters** PM (<10) SO, PM (<2.5) NO2 Mercury(Hg) Unit µg/m³ $\mu g/m^3$ $\mu g/m^3$ $\mu g/m^3$ ng/m3 IS 5182 GGMPL/SOP/ Method Sr. No Reference Method IS 5182 Part-2 IS 5182 Part-6 part-23 AA/60 IO-3.4 Norms 100 60 80 80 NS **Date of Monitoring** 1 02-03-2023 54.7 31.7 13.7 26.1 BQL(QL=1)2 06-03-2023 61.4 33.3 15.2 18.7 BQL(QL=1) 3 09-03-2023 62.9 35.0 16.2 22.7 BQL(QL=1) 4 13-03-2023 57.1 37.4 16.7 23.8 BQL(QL=1) 5 16-03-2023 56.6 32.1 13.1 21.6 BQL(QL=1) 6 20-03-2023 54.1 29.6 17.1 25.6 BQL(QL=1) 7 23-03-2023 49.4 26.7 15.9 28.2 BQL(QL=1) 8 27-03-2023 55.4 30.8 16.9 25.0 BQL(QL=1) 9 30-03-2023 57.7 31.7 14.7 23.0 BQL(QL=1)

BQL - Below Quantification Limit; Avg. - Average; NS- Not Specified Norms- As per national Ambient Air Qualiy Standards

56.6

AVERAGE

	ECHO.
Analyes By	
Shiyu K.B.	(N)
Shiyal Kishor	(3)
	The second secon

Approved By

23.9

BQL(QL=1)

f.

15.5

Pankil Patel

END	

32.0

		G	O Green Mechanism	ns Pvt Ltd												
		Analysis I	Result for the Mont	h of October 2	2022											
Company Name Sample Type Stack Attached To Stack Hihgt & Dia (m)		Mahan Energen Limited Stack Emission Boiler 275 & 6.9														
										Date of	Sampling		20.10.2022		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
										Sr. No.	Parameters	Result (Unit1)	Results (Unit2)	Unit	Reference Method	Limit (mg/Nm3)
										1	Flue Gas Temperature	-	122.0	°C	IS 11255 Part-3	-
2	Barometric Pressure	-	749.0	mmHg	GGMPL/SOP/MP/01	-										
3	Velocity		18.72	m/s	IS 11255 Part-3	-										
4	Volumetric Flow Rate	-	699.64	Nm3/s	IS 11255 Part-3	-										
5	Particulate Matter (PM)	-	28.56	mg/Nm³	IS 11255 Part-1	50										
6	Sulphur Dioxide (SO ₂)	-	734.0	mg/Nm³	GGMPL/SOP/SEA/68	-										
7	Oxides of Nitrogen(NOx)	-	288.00	mg/Nm³	GGMPL/SOP/SEA/68	450										
8	Mercury as Hg	-	BQL(QL=0.01)	mg/Nm³	EPA Method 21	0.03										

ECHAN

BQL=	Below	Quantification	Limit	

Limit as per Thermal Power Plant MoEF Gazzate 2015.

Analysed By

Shiyay K.B. Shiyal Kishor

Approved By

SP.

		G	O Green Mechanism	s Pvt Ltd						
		Analysis R	esult for the Month o	f November -202	22					
Company Name Sample Type Stack Attached To Stack Hihgt & Dia (m)		Mahan Energen Limited Stack Emission								
										Boiler
		275 & 6.9								
		Date of Sampling		26.11.2022	08.11.2022					
Sr. No.	Parameters	Result (Unit1)	Results (Unit2)	Unit	Reference Method	Limit (mg/Nm3)				
1	Flue Gas Temperature	118.00	129.00	°C	IS 11255 Part-3	-				
2	Barometric Pressure	745.00	749.00	mmHg	GGMPL/SOP/MP/01	- 4				
3	Velocity	25.35	26.12	m/s	IS 11255 Part-3	-				
4	Volumetric Flow Rate	947.43	976.20	Nm3/s	IS 11255 Part-3	-				
5	Particulate Matter (PM)	35.23	38.24	mg/Nm ³	IS 11255 Part-1	100				
6	Sulphur Dioxide (SO ₂)	746.78	782.18	mg/Nm ³	GGMPL/SOP/SEA/68	200				
7	Oxides of Nitrogen(NOx)	356.94	381.49	mg/Nm ³	GGMPL/SOP/SEA/68	600				
8	Mercury as Hg	BQL(QL=0.01)	BQL(QL=0.01)	mg/Nm ³	EPA Method 21	0.03				

BQL= Below	Quantification	Limit
-------------------	----------------	-------

Limit as per Thermal Power Plant Gazzate 2015

Analysed By

Shiyal K-B.

Approved By

of.

		G	O Green Mechanis	ms Pvt Ltd		
		Analysis Re	sult for the Month	of December- 20	22	
Company	y Name	Mahan Energen Lin	nited			
Sample 7	Гуре	Stack Emission				
Stack At	tached To	Boiler				
Stack Hil	hgt & Dia (m)	275 & 6.9				
Monitori	ng Platform	105 mtr				
Area of S	Stack	37.37 m2				
Date of S	Sampling	17.12.2022				
Sample C	Collected By	Laboratory Represe	entative			
Sr. No.	Parameters	Result (Unit1)	Results (Unit2)	Unit	Reference Method	Limit (mg/Nm3
1	Stack Temperature	129.0	-	°C	IS 11255 Part-3	1-
2	Barometric Pressure	745.0	-	mmHg	GGMPL/SOP/MP/01	
3	Velocity	25.25	-	m/s	IS 11255 Part-3	1-3
4	Volumetric Flow Rate	943.69	i è	Nm3/s	IS 11255 Part-3	-
5	Particulate Matter (PM)	36.84	-	mg/Nm³	IS 11255 Part-1	50
6	Sulphur Dioxide (SO ₂)	769.75	4	mg/Nm³	GGMPL/SOP/SEA/68	200
7	Oxides of Nitrogen(NOx)	397.41	6	mg/Nm³	GGMPL/SOP/SEA/68	450
8	Mercury as Hg	BQL(QL=0.01)		mg/Nm ³	EPA Method 21	0.03

BQL= Below Quantification Lin	nit
-------------------------------	-----

Limit as per Thermal Power Plant Gazzate 2015

Analysed By

Shiftee k B. Shiyal Kishor

Approved By

Pankil Patel

END

			GO Green Mechanism	s Pvt Ltd		
		Analysis	Result for the Month	of January- 2023	3	
Company	y Name	Mahan Energen Li	mited			
Sample 1	Гуре	Stack Emission				
Stack Attached To		Boiler				
Stack Hil	ngt & Dia (m)	275 & 6.9				
Monitoring Platform		105 mtr				
Area of S	tack	37.37 m2				
Date of S	Sampling	31.01.2023				
Sample C	Collected By	Laboratory Repres	entative			
Sr. No.	Parameters	Result (Unit1)	Results (Unit2)	Unit	Reference Method	Limit (mg/Nm3)
1	Stack Temperature	127.4	124.7	°C	IS 11255 Part-3	
2	Barometric Pressure	752.0	753.0	mmHg	GGMPL/SOP/MP/01	-0
3	Velocity	25.9	26.5	m/s	IS 11255 Part-3	
4	Volumetric Flow Rate	967.98	990,41	Nm3/s	IS 11255 Part-3	141
5	Particulate Matter (PM)	31.94	35.50	mg/Nm³	IS 11255 Part-1	50
6	Sulphur Dioxide (SO ₂)	748.00	762.0	mg/Nm ³	GGMPL/SOP/SEA/68	200
7	Oxides of Nitrogen(NOx)	326.00	368.0	mg/Nm³	GGMPL/SOP/SEA/68	450
8	Mercury as Hg	BQL(QL=0.01)	BQL(QL=0.01)	mg/Nm³	EPA Method 21	0.03

BQL= B	elow Qua	ntification	Limit
--------	----------	-------------	-------

Limit as per Thermal Power Plant Gazzate 2015

Analysed By

Shival Kishor

Approved By

8

Pankil Patel

			60 Green Mechanism	s Pvt Ltd						
		Analysis F	Result for the Month	of February- 202	3					
Company	Name	Mahan Energen Lis	mited							
Sample T	уре	Stack Emission								
Stack Att	tached To	Boiler								
Stack Hil	ngt & Dia (m)	275 & 6.9	275 & 6.9							
Monitoring Platform		105 mtr	105 mtr							
Area of S	tack	37.37 m2								
Date of S	Sampling	21.02.2023								
Sample C	Collected By	Laboratory Repres	entative							
Sr. No.	Parameters	Result (Unit1)	Results (Unit2)	Unit	Reference Method	Limit (mg/Nm3				
1	Stack Temperature	130.15	128.43	°C	IS 11255 Part-3					
2	Barometric Pressure	765.00	764.00	mmHg	GGMPL/SOP/MP/01	-				
3	Velocity	25.38	25.78	m/s	IS 11255 Part-3	1.5				
4	Volumetric Flow Rate	948.55	963.50	Nm3/s	IS 11255 Part-3	-				
5	Particulate Matter (PM)	34.04	38.33	mg/Nm ³	IS 11255 Part-1	50				
6	Sulphur Dioxide (SO ₂)	726.44	743.60	mg/Nm ³	GGMPL/SOP/SEA/68	200				
7	Oxides of Nitrogen(NOx)	293.15	311.60	mg/Nm³	GGMPL/SOP/SEA/68	450				
8	Mercury as Hg	BQL(QL=0.01)	BQL(QL=0.01)	mg/Nm³	EPA Method 21	0.03				

BQL= Below Quantification Limit

Limit as per Thermal Power Plant Gazzate 2015

Analysed By

Shiyu K-B.

Shiyal Kishor

Approved By

A.

Pankil Patel

......END.

			GO Green Mechanism	s Pvt Ltd						
		Analysis	Result for the Monti	n of March- 2023						
Company	y Name	Mahan Energen Li	mited							
Company Name Sample Type Stack Attached To Stack Hihgt & Dia (m) Monitoring Platform Area of Stack Date of Sampling Sample Collected By Sr. No. Parameters 1 Stack Temperature 2 Barometric Pressure 3 Velocity 4 Volumetric Flow Rate	Stack Emission									
Stack Atl	tached To	Boiler 275 & 6.9								
Stack Hil	hgt & Dia (m)									
Monitorii	ng Platform	105 mtr								
Area of S	itack	37.37 m2								
Date of S	Sampling	21.03.2023								
Sample C	Collected By	Laboratory Repres	entative							
Sr. No.	Parameters	Result (Unit1)	Results (Unit2)	Unit	Reference Method	Limit (mg/Nm3)				
1	Stack Temperature	125.65	129.32	°C	IS 11255 Part-3	-				
2	Barometric Pressure	765.00	765.00	mmHg	GGMPL/SOP/MP/01	÷				
3	Velocity	26.49	24.97	m/s	IS 11255 Part-3	-				
4	Volumetric Flow Rate	990.03	933.23	Nm3/s	IS 11255 Part-3					
5	Particulate Matter (PM)	39.64	42.56	mg/Nm³	IS 11255 Part-1	50				
6	Sulphur Dioxide (SO ₂)	817.00	780.78	mg/Nm³	GGMPL/SOP/SEA/68	200				
7	Oxides of Nitrogen(NOx)	375.15	346.45	mg/Nm³	GGMPL/SOP/SEA/68	450				
8	Mercury as Hg	BQL(QL=0.01)	BQL(QL=0.01)	mg/Nm ³	EPA Method 21	0.03				

BQL= Below Quantification Limit

Limit as per Thermal Power Plant Gazzate 2015

Analysed By

Shiyay k.B.

Approved By

g.

Pankil Patel

END.....END....

GO Green Mechnisms Pvt Ltd

Analysis Results for the Month of October 2022

mpany Name	Mahan Energen Limited.	
Sample Type	Ground Water	
mple Quantity	8L	
Date of Sampling	15.10.2022	
Analysis Period	18.10.2022 - 29.10.2022	

SL. No.	DADAMETER			Location			As per	IS:10500
JL. NO.	PARAMETER	UNIT	Bandhaura Village	Railla Village	Karsuaraja Village	Reference Method	AL	PL
1	pH @ 25 °C		7.24	7.35	7.18	IS 3025-Part 11	6.5-8.5	No relaxatio
2	Turbidity	NTU	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	APHA 23rd Edition (2130 B)	1	5
3	Total Dissolved Solids @ 180 °	mg/L	485	499	628	APHA 23rd Edition (2540 C)	500	2000
4	Total Hardness as CaCO ₃	mg/L	392	212	195	APHA 23rd Edition (2340 C)	200	600
5	Alkalinity as CaCO₃	mg/L	318	282	323	APHA 23rd Edition (2320 B)	200	600
6	Calcium as Ca	mg/L	122.24	62,52	63,73	APHA 23rd Edition (3120 B)	75	200
7	Magnesium (Mg)	mg/L	21.14	13,61	8.75	APHA 23rd Edition (3120 B)	30	10
8	Sulphate	mg/L	48.01	71.14	73,26	APHA 23rd Edition (4500 SO4 E)	200	400
9	Nitrate	mg/L	3.41	4.35	2.1	IS 3025 (Part 34)	45	No relaxatio
10	Iron	mg/L	0,071	0.067	0.134	APHA 23rd Edition (3120 B)	0.3	No relaxation
11	Fluoride	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	APHA 23rd Edition (4500 F D)	1	1.5
12	Sulphide	mg/L	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	APHA 23rd Edition (4500 S2 F)	0.05	No relaxation
13	Zinc (Zn)	mg/L	0.102	0.121	1.044	APHA 23rd Edition (3120 B)	5	15
14	Chloride	mg/L	198.94	118.96	189.94	IS 3025-Part 32	250	1000
15	Residual Chlorine	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (4500 CI B)	0.2	1
16	Colour	Hazen	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	IS 3025 part 4	5	15
17	Odour	-	Agreeable	Agreeable	Agreeable	IS 3025 part 5	Agreeable	Agreeable
18	Mineral Oil	mg/L	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	IS 3025 part 39	0.5	No relaxation
19	Ammonia	mg/L	2.8	1,68	2.2	APHA 23rd Edition (4500 NH3 C)	0.5	No relaxation
20	Taste		Agreeable	Agreeable	Agreeable	IS 3025 Part-7	Agreeable	Agreeable
21	Chloramines as Cl2	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	IS 3025 (Pt 26)	4	No relaxation
22	Cyanide	mg/L	BQL(QL=0.025)	BQL(QL=0.025)	BQL(QL=0.025)	GGMPL/SOP/W/43	0.05	No relaxation
23	Aluminum (Al)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	0.03	0.2
24	Arsenic (As)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	APHA 23rd Edition (3120 B)	0.01	0.05
25	Barium as Ba	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	0.7	No relaxation
26	Boron (B)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (3120 B)	0.5	1
27	Cadmium (Cd)	mg/L	BQL(QL=0.002)	BQL(QL=0.002)	BQL(QL=0.002)	APHA 23rd Edition (3120 B)	0.003	No relaxation
28	Copper (Cu)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	0.05	1.5
29	Lead (Pb)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0,005)	APHA 23rd Edition (3120 B)	0.01	No relaxation
30	Manganese (Mn)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (3120 B)	0.1	0.3
31	Mercury (Hg)	mg/L	BQL(QL=0.0005)	BQL(QL=0.0005)	BQL(QL=0.0005)	APHA 23rd Edition (3120 B)	0.001	No relaxation
32	Selenium (Se)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	APHA 23rd Edition (3120 B)	0.01	No relaxation
33	Molybdenum as Mo	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	APHA 23rd Edition (3120 B)	0.07	No relaxation
34	Total Chromium Cr	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	0.05	No relaxation
35	Nickel as (Ni)	mg/L	BQL(QL=0,01)	BQL(QL=0.01)	BQL(QL=0.01)	APHA 23rd Edition (3120 B)	0.2	No relaxation
36	Silver (Ag)	mg/L	BQL(QL=0,02)	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	0.1	No relaxation
187	Anionic Detergent	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	IS 13428 (Annex K) : 2018	0.2	1

38.1 Naphthalene 38.2 1-Methylnapthalene 38.3 2-Methylnapthalene 38.4 Acenaphthylene 38.5 Acenaphthene 38.6 Fluorene 38.7 Phenanthrene 38.8 Anthracene 38.9 Fluoranthene 38.10 Pyrene 38.11 Benzo(a) anthracene 38.12 Chrysene 38.12 Chrysene 38.13 Benzo (b) fluoranthene 38.14 Benzo(k) fluoranthene 38.16 Dibenzo(a,h)anthracene 38.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 J9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethne 40.3 Bromodichloromethane 40.1 Chloroform 41 Pesticides 41.1 O,p-DDT 41.2 p,p-DDT 41.3 O,p-DDE 41.5 O,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/l						
38.3 2-Methylnapthalene 38.4 Acenaphthylene 38.5 Acenaphthene 38.6 Fluorene 38.7 Phenanthrene 38.8 Anthracene 38.9 Fluoranthene 38.10 Pyrene 38.11 Benzo(a) anthracene 38.12 Chrysene 38.13 Benzo (b) fluoranthene 38.14 Benzo(a)pyrene 38.16 Dibenzo(a,h)anthracene 38.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.5 o,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 1.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)		BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-	
38.4 Acenaphthylene 38.5 Acenaphthene 38.6 Fluorene 38.7 Phenanthrene 38.8 Anthracene 38.9 Fluoranthene 38.10 Pyrene 38.11 Benzo(a) anthracene 38.12 Chrysene 38.12 Chrysene 38.13 Benzo (b) fluoranthene 38.14 Benzo(K) fluoranthene 38.15 Benzo(a)pyrene 38.16 Dibenzo(a,h)anthracene 38.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1222 9.3 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethne 40.3 Bromodichloromethane 0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	1-3/-	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		9
38.5 Acenaphthene 38.6 Fluorene 38.7 Phenanthrene 38.8 Anthracene 38.9 Fluoranthene 38.10 Pyrene 38.11 Benzo(a) anthracene 38.12 Chrysene 38.13 Benzo (b) fluoranthene 38.14 Benzo(K) fluoranthene 38.15 Benzo (a)pyrene 38.16 Dibenzo (a,h) anthracene 38.17 Benzo (g,h,i)perylene 38.18 Indenol (1,2,3-cd) pyrene 38.18 Indenol (1,2,3-cd) pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 41.7 Isoproturon 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfan (Beta) 41.17 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	F-37 -	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-	-
38.6 Fluorene 38.7 Phenanthrene 38.8 Anthracene 38.9 Fluoranthene 38.10 Pyrene 38.11 Benzo(a) anthracene 38.12 Chrysene 38.13 Benzo (b) fluoranthene 38.14 Benzo(k) fluoranthene 38.15 Benzo(a)pyrene 38.16 Dibenzo(a,h)anthracene 38.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.5 o,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfan (Beta) 41.17 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	F3/-	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		
38.7 Phenanthrene 38.8 Anthracene 38.9 Fluoranthene 38.10 Pyrene 38.11 Benzo(a) anthracene 38.12 Chrysene 78.13 Benzo (b) fluoranthene 38.14 Benzo(x) fluoranthene 38.16 Dibenzo(a,h)anthracene 38.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1242 9.5 PCB 1254 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 1.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		
38.8 Anthracene 38.9 Fluoranthene 38.10 Pyrene 38.11 Benzo(a) anthracene 38.12 Chrysene 38.12 Chrysene 38.13 Benzo (b) fluoranthene 38.14 Benzo(a)pyrene 38.16 Dibenzo(a,h)anthracene 38.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 J9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethne 40.3 Bromodichloromethane 0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.5 o,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 1.7 Isoproturon 1.8 Alachlor 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		1
38.9 Fluoranthene 38.10 Pyrene 38.11 Benzo(a) anthracene 38.12 Chrysene 38.13 Benzo (b) fluoranthene 38.14 Benzo(K) fluoranthene 38.15 Benzo(a)pyrene 38.16 Dibenzo(a,h)anthracene 38.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	μg/L	BQL(QL=5)	BQL(QL=5)	BQL(QL=5)	APHA 6440 B		
38.10 Pyrene 38.11 Benzo(a) anthracene 38.12 Chrysene *8.13 Benzo (b) fluoranthene 38.14 Benzo(a)pyrene 38.16 Dibenzo(a,h)anthracene 38.16 Dibenzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDD 41.4 p,p-DDD 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoproturon **1.8 Alachl	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		1
38.12 Chrysene 38.13 Benzo (b) fluoranthene 38.14 Benzo (c) fluoranthene 38.16 Dibenzo (a,h)anthracene 38.16 Dibenzo (a,h)anthracene 38.17 Benzo (g,h,i)perylene 38.18 Indenol (1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1222 9.3 PCB 1242 9.5 PCB 1242 9.5 PCB 1254 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethne 40.3 Bromodichloromethane 0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.5 o,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 1.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-	-
38.12 Chrysene '8.13 Benzo (b) fluoranthene 38.14 Benzo(K) fluoranthene 38.16 Dibenzo(a,h)anthracene 38.16 Dibenzo(a,h)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.5 o,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 1.8 Alachlor 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-	-
78.13 Benzo (b) fluoranthene 38.14 Benzo(K) fluoranthene 38.15 Benzo(a)pyrene 38.16 Dibenzo(a,h)anthracene 8.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethane 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoproturon *1.8 Alachlor 41.10 Aldrin/Dieldrin *1.11	racene µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		
38.14 Benzo(K) fluoranthene 3.15 Benzo(a)pyrene 38.16 Dibenzo(a,h)anthracene 38.18 Indenol(1,2,3-cd)pyrene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (Beta) 41.17 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		
3.15 Benzo(a)pyrene 38.16 Dibenzo(a,h)anthracene .8.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 .9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane .0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.5 o,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 1.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	pranthene µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-	-
38.16 Dibenzo(a,h)anthracene	anthene µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		
8.17 Benzo (g,h,i)perylene 38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 J9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (Beta) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	ie µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	1 2	-
38.18 Indenol(1,2,3-cd)pyrene 39 Polychlorinated bipheny 39.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (Beta) 41.17 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	nthracene µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		
99.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1222 39.4 PCB 1242 39.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (Beta) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	erylene µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		
99.1 PCB 1016 39.2 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 J9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (Beta) 41.16 Endosulfan (Sulphate)	cd)pyrene µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		
9.3 PCB 1221 9.3 PCB 1232 39.4 PCB 1242 9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethane 40.3 Bromodichloromethane 40.4 Chloroform 41 Pesticides 41.1 0,p-DDT 41.2 p,p-DDT 41.3 0,p-DDE 1.4 p,p-DDE 1.5 0,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 1.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (Beta) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	ted biphenyles		1		23.713.07.00	0.0005	No relaxation
9.3 PCB 1232 39.4 PCB 1242 99.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane .0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (Beta) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	0.0000	140 Telaxadi
39.4 PCB 1242 J9.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane .0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508		-
39.5 PCB 1248 39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethane 40.3 Bromodichloromethane 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.1 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (Beta) 41.16 Endosulfan (Sulphate)	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508		-
39.6 PCB 1254 39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane 0.4 Chloroform 41 Pesticides 41.1 0,p-DDT 41.2 p,p-DDT 41.3 0,p-DDE 1.4 p,p-DDE 1.5 0,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (Beta) 41.16 Endosulfan (Sulphate)	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508		1
39.7 PCB 1260 40 Trihalomethanes 40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane .0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.4 p,p-DDD 1.6 p,p-DDD 41.7 Isoproturon •1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin •1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (Beta) 41.16 Endosulfan (Sulphate)	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508		+
40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethne 40.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.5 o,p-DDD 1.6 p,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	1	
40.1 Bromoform 0.2 Dibromochloromethne 40.3 Bromodichloromethane .0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	-	- 5
0.2 Dibromochloromethne 40.3 Bromodichloromethane .0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 1.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (Beta) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)		242(42 0.05)	542(42-0.03)	DQL(QL=0.03)	OSEPA SUB		
40.3 Bromodichloromethane .0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon **1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin **1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH .1.13 Beta HCH 41.14 Delta HCH .1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	APHA 6232	0.1	No relaxation
.0.4 Chloroform 41 Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)		BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	APHA 6232	0.1	-
41. Pesticides 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)		BQL(QL=0,06)	BQL(QL=0.06)	BQL(QL=0.06)	APHA 6232		No relaxatio
41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	mg/L	BQL(QL=0,2)				0.06	No relaxation
41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	nig/L	bQL(QL=0,2)	BQL(QL=0.2)	BQL(QL=0,2)	APHA 6232	0.2	No relaxation
41.2 p,p-DDT 41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.05)	POL(OL=0.0E)	POL(OL 0.05)	LICEDA FOO	Limits as	Per 15:1050
41.3 o,p-DDE 1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	V240.00 V V2.00	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	-	
1.4 p,p-DDE 41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)		BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	-	
41.5 o,p-DDD 1.6 p,p-DDD 41.7 Isoproturon 71.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508		
1.6 p,p-DDD 41.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508		1
41.7 Isoproturon 1.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	-	
Alachlor 41.9 Atrazine 41.10 Aldrin/Dieldrin 1.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508		
41.9 Atrazine 41.10 Aldrin/Dieldrin 41.11 Gamma-HCH(Lindane) 41.12 Alpha HCH 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 532		
41.10 Aldrin/Dieldrin '.11 Gamma-HCH(Lindane) 41.12 Alpha HCH .1.13 Beta HCH 41.14 Delta HCH .1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 525.2		20
41.12 Alpha HCH 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0,1)	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 8141A		2
41.12 Alpha HCH 1.13 Beta HCH 41.14 Delta HCH 1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	USEPA 508		0.03
1.13 Beta HCH 1.14 Delta HCH 1.15 Endosulfan (alpha) 1.16 Endosulfan (Beta) 1.17 Endosulfan (Sulphate)	1.2	BQL(QL=0,1)	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 508		2
41.14 Delta HCH .1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	μg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0,005)	USEPA 508		0.01
1.15 Endosulfan (alpha) 41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	USEPA 508		0.04
41.16 Endosulfan (Beta) 41.17 Endosulfan (Sulphate)	µg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	USEPA 508		0.04
+1.17 Endosulfan (Sulphate)	ha) μg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508		
	ta) µg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508		0.4
1 10 Managadanhan	phate) µg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508		
1.18 Monocrotophos	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 8141A	1000	1
41.19 Ethoin	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	UEPA 1657A	EUTON	3
.20 Chlorpyriphos	µg/L	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	USEPA 8141A	10	30
1.21 Phorate	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 8141AC		2

42.2	Total Coliform	MPN/100ml	Absent	Absent	Absent	IS 1622	Absent
12.1	E.Coli (MPN/100 ml)	MPN/100ml	Absent	Absent	Absent	IS 1622	Absent
42	Microbiological						Requirments as pe IS:10500
41.24	Malathion	μg/L	BQL(QL=0.25)	BQL(QL=0.25)	BQL(QL=0.25)	USEPA 8141A	190
1.23	Methyl Parathion	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0,05)	USEPA 8141A	0.3
41,22	Butachlor	µg/L	BQL(QL=20)	BQL(QL=20)	BQL(QL=20)	USEPA 8141A	125

Bul =Below Quantification Limit; NA = Not Applicable

Analysed By:

Shight Kishor

Approved By: Parel Potel

..... C

GO Green Mechanisms Pvt Ltd

Analysis Results for the Month of January-2023

Company Name	Makes Funes 11 to 1	
Samula Time	Mahan Energen Limited.	
Sample Type	Ground Water	
Sample Quantity	81.	
Sample Collected By	Laboratory Representative	
Date of Sampling		
	16.01.2023	
Analysis Period	21.01.2023 to 28.01.2023	

				Location			Anne	er IS:10500	
SL. No	PARAMETER	UNIT	Bandhaura Village	Railla Village	Karsuaraja Village	Reference Method	AL AL	PL	
1	pH @ 25 °C	- 6	7.25	7.29	7.56	IS 3025-Part 11	6.5-8.5	No make and	
2	Turbidity	NTU	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	APHA 23rd Edition (2130 B)	100000000000000000000000000000000000000	No relaxati	
3	Total Dissolved Solids @ 180 0	mg/L	612.0	506.0	589	APHA 23rd Edition (2540 C)	1 500	5	
4	Total Hardness as CaCO ₃	mg/L	360.0	210.0	295.0	APHA 23rd Edition (2340 C)	500	2000	
5	Alkalinity as CaCO ₃	mg/L	290.0	250,0	292.00	APHA 23rd Edition (2320 B)	200	600	
6	Calcium as Ca	mg/L	106.21	56.11	68.14	APHA 23rd Edition (3120 B)	200	600	
7	Magnesium (Mg)	mg/L	23.09	17.01	30.38	APHA 23rd Edition (3120 B)	75	200	
8	Sulphate	mg/L	32.13	55.99	52.07	APHA 23rd Edition (4500 SQ4 E)	30	10	
9	Nitrate	mg/L	2.12	1.20	1,03	IS 3025 (Part 34)	200	400	
10	Iron	mg/L	0.072	0.067	0.123	APHA 23rd Edition (3120 B)	45	No relaxation	
11	Fluoride	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	BQL(QL=0.1)	APHA 23rd Edition (4500 F D)	0.3	No relaxatio	
12	Sulphide	mg/L	BQL(QL=0.2)	BQL(QL=0.2)	BQL(QL=0.2)	APHA 23rd Edition (4500 S2 F)	1 0.05	1.5	
13	Zinc (Zn)	mg/L	0.113	0.121	1.028	APHA 23rd Edition (3120 B)	0.05	No relaxatio	
14	Chloride	mg/L	184.94	97.47	157.45	IS 3025-Part 32	5	15	
15	Residual Chlorine	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)		250	1000	
16	Colour	Hazen	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	APHA 23rd Edition (4500 CI B) IS 3025 part 4	0.2	1	
17	Odour		Agreeable	Agreeable	Agreeable		5	15	
18	Mineral Oil	mg/L	BQL(QL=1)	BQL(QL=1)	BQL(QL=1)	IS 3025 part 5	Agreeable	Agreeable	
19	Ammonia	mg/L	BQL(QL=0.5)	BQL(QL=0.5)	- A.C	IS 3025 part 39	0.5	No relaxation	
20	Taste		Agreeable	Agreeable	BQL(QL=0.5) Agreeable	APHA 23rd Edition (4500 NH3 C)	0.5	No relaxation	
21	Chloramines as Cl2	mg/L	BQL(QL=0.05)	BQL(QL=0.05)		IS 3025 Part-7	Agreeable	Agreeable	
22	Cyanide	mg/L	BQL(QL=0.025)	BQL(QL=0.025)	BQL(QL=0.05)	IS 3025 (Pt 26)	4	No relaxation	
23	Aluminum (Al)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.025)	ARMA 32-4 Edition (2)20 P	0.05	No relaxation	
24	Arsenic (As)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.02) BQL(QL=0.005)	APHA 23rd Edition (3120 B)	0.03	0.2	
25	Barium as Ba	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	0.01	0.05	
26	Boron (B)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (3120 B)	0.7	No relaxation	
27	Cadmium (Cd)	mg/L	BQL(QL=0.002)	BQL(QL=0.002)	BQL(QL=0.002)	APHA 23rd Edition (3120 B)	0.5	1	
28	Copper (Cu)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.002)	APHA 23rd Edition (3120 B)	0.003	No relaxation	
29	Lead (Pb)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.005)	APHA 23rd Edition (3120 B)	0.05	1,5	
30	Manganese (Mn)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)		APHA 23rd Edition (3120 B)	0.01	No relaxation	
31	Mercury (Hg)	mg/L	BQL(QL=0.0005)	BQL(QL=0.0005)	BQL(QL=0.05)	APHA 23rd Edition (3120 B)	0.1	0.3	
32	Selenium (Se)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	BQL(QL=0.0005)	APHA 23rd Edition (3120 B)	0.001	No relaxation	
33	Molybdenum as Mo	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.005) BQL(QL=0.01)	APHA 23rd Edition (3120 B)	0.01	No relaxation	
34	Total Chromium Cr	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	0.07	No relaxation	
	Nickel as (Ni)	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	BQL(QL=0.01)	APHA 23rd Edition (3120 B)	0.05	No relaxation	
36	Silver (Ag)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	BQL(QL=0.01)	APHA 23rd Edition (3120 B)	0.2	No relaxation	
37	Anionic Detergent	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	432.30.4112	APHA 23rd Edition (3120 B)	0.1	No relaxation	
38	PAH	3,-	2 42 45 - 0.03)	500000	BQL(QL=0.05)	IS 13428 (Annex K) : 2018	0,2	1	
38.1	Naphthalene	µg/L	BQL(QL=10)	BQL(QL=10)	PO! (O! -10)	ADUA CAAD D	0.0001	No relaxation	
38.2	1-Methylnapthalene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10) BQL(QL=10)	APHA 6440 B	-	-	
38.3	2-Methylnapthalene	µg/L	BQL(QL=10)	- 00.6 - 70.100 H		APHA 6440 B		•	
38.4	Acenaphthylene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		•	
38.5	Acenaphthene	µg/L		BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-	*	
	Fluorene	µg/L	BQL(QL=10) BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		*	
	Phenanthrene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-	-	
	Anthracene	µg/L	BQL(QL=10)	BQL(QL=5)	BQL(QL=5)	APHA 6440 B	-	-	
-	Fluoranthene	µg/L		8QL(QL=10)	BQL(QL=10)	APHA 6440 B	-		
- 10	Pyrene	µg/L	BQL(QL=10) BQL(QL=10)	BQL(QL=10) BQL(QL=10)	BQU(QL=10)	APHA 6440 B	- *	•	

40.3 Bromodic 40.4 Chlorofol 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDD 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Gamma-l 41.11 Gamma-l 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa	eldrin HCH(Lindane) HH H an (alpha) an (Sulphate) ophos phos rathion logical	mg/L mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	BQL(QL=0.03) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	BQL(QL=0.03) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	BQL(QL=0.03) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.02) BQL(QL=0.02) BQL(QL=0.05) BQL(QL=0.05)	APHA 6232 APHA 6232 USEPA 508 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508 USEPA 8141A UEPA 1657A USEPA 8141A USEPA 8141A USEPA 8141A USEPA 8141A USEPA 8141A USEPA 8141A	Requirm	No relaxation No relaxation Per IS:10500 1 20 2 2.0.03 2 0.001 0.04 1 3 300 2 2.225 0.3 190 ents as per 1.0500 sent
40.2 Dibromo 40.3 Bromodic 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDD 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Die 41.11 Gamma-1 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa 41.17 Endosulfa 41.19 Ethoin 41.19 Ethoin 41.20 Chlorpyrip 41.21 Phorate 41.22 Butachlor 41.23 Methyl Par 41.24 Malathion 42 Microbiol	ichloromethane irm ides irm id	mg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	USEPA 508 USEPA 522 USEPA 525.2 USEPA 525.2 USEPA 508	0.2 Limits as	No relaxation Per IS:10500 1 20 2 3.03 2 0.01 0.04 0.04 1 3 30 2 2.25 0.3 90 ents as per
40.2 Dibromo 40.3 Bromodic 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.19 Altrazine 41.10 Aldrin/Die 41.11 Gamma-1 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa 41.17 Endosulfa 41.19 Ethoin 41.20 Chlorpyrip 41.21 Phorate 41.22 Butachlor 41.23 Methyl Par 41.24 Malathion	ichloromethane irm ides irm id	mg/L µg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	USEPA 508 USEPA 522 USEPA 525.2 USEPA 525.2 USEPA 508	0.2 Limits as	No relaxation Per IS:10500 1 20 2 3.03 2 0.01 0.04 0.04 1 3 30 2 2.25 0.3 90
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Die 41.11 Gamma-l 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa 41.17 Endosulfa 41.18 Monocrote 41.19 Ethoin 41.20 Chlorpyrip 41.21 Phorate 41.22 Butachlor 41.23 Methyl Par	ichloromethane irm ides irm id	mg/L µg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	USEPA 508 USEPA 522 USEPA 525.2 USEPA 525.2 USEPA 508	0.2 Limits as	No relaxatio Per IS:1050 1 20 2 3.03 2 0.01 0.04 1 3 30 2 2.25 0.3
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.11 Gamma-1 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa 41.17 Endosulfa 41.19 Ethoin 41.20 Chlorpyrip 41.21 Phorate 41.22 Butachlor	ichloromethane irm ides ides ides ides ides ides ides ides	mg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	USEPA 508 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508	0.2 Limits as	No relaxatio Per IS:1050 1 20 2 3.03 2 0.01 0.04 0.04 1 3 30 2 22 25
40.2 Dibromo 40.3 Bromodic 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.19 Altrazine 41.10 Aldrin/Die 41.11 Gamma-1 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa 41.17 Endosulfa 41.19 Ethoin 41.20 Chlorpyrip 41.21 Phorate	ichloromethane irm ides irm id	### ##################################	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	USEPA 508 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508	0.2 Limits as	No relaxation Per IS:1050 1 20 2 0.03 2 0.04 0.04 1 3 30
40.2 Dibromo 40.3 Bromodic 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Die 41.11 Gamma-1 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa 41.17 Endosulfa 41.18 Monocrotx 41.19 Ethoin 41.20 Chlorpyrip	ichloromethane irm ides irm id	mg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	USEPA 508 USEPA 532 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508	0.2 Limits as	No relaxation Per IS:1050 1 20 2 0.03 2 0.01 0.04 0.04
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.19 Altrazine 41.10 Aldrin/Die 41.11 Gamma-l 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa 41.17 Endosulfa 41.18 Monocroto 41.19 Ethoin	ichloromethane irm ides irm id	mg/L pg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.05)	USEPA 508 USEPA 532 USEPA 525.2 USEPA 525.2 USEPA 508	0.2 Limits as	No relaxation Per IS:1050 1 20 2 3.03 2 3.01 3.04 3.04 3.04
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Die 41.11 Gamma-l 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa 41.17 Endosulfa 41.18 Monocrotx	ichloromethane irm ides irm id	mg/L pg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.02) BQL(QL=0.02) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	USEPA 508 USEPA 522 USEPA 525.2 USEPA 525.2 USEPA 508	0.2 Limits as	No relaxation Per IS:1050 1 20 2 3.03 2 0.01 0.04 0.04
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.11 Gamma-h 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.17 Endosulfa	ichloromethane irm ides irm id	mg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.02) BQL(QL=0.02) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.005) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	USEPA 508 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508	0.2 Limits as	No relaxation Per IS:1050
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Gamma-h 41.11 Gamma-h 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCH 41.15 Endosulfa 41.16 Endosulfa	ichloromethane irm ides irm id	mg/L μg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.005) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	USEPA 508 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508	0.2 Limits as	No relaxati Per IS:1056 1 20 2 3.03 2 0.01 0.04
40.2 Dibromo 40.3 Bromodic 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Die 41.11 Gamma-F 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCF 41.15 Endosulfa	ichloromethane irm ides irm id	mg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	USEPA 508 USEPA 532 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508	0.2 Limits as	No relaxati Per IS:1056 1 20 2 3.03 2 3.01 3.04
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Die 41.11 Gamma-1 41.12 Alpha HCI 41.13 Beta HCH 41.14 Delta HCF	ichloromethane irm ides irm ron eldrin HCH(Lindane) ith	mg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.02)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.02)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01)	USEPA 508 USEPA 532 USEPA 525.2 USEPA 541A USEPA 508 USEPA 508 USEPA 508 USEPA 508 USEPA 508	0.2 Limits as	No relaxation Per IS:1050 1 20 2 3.003 2 3.001
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Die 41.11 Gamma-l 41.12 Alpha HCI 41.13 Beta HCH	ichloromethane irm ides irm iron iron iron iron iron iron iron iron	mg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05) BQL(QL=0.01) BQL(QL=0.01)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01)	USEPA 508 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508 USEPA 508 USEPA 508 USEPA 508	0.2 Limits as	No relaxati Per IS:1056 1 20 2 3.03 2 0.01
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.11 Gamma-F 41.11 Alpha HCI	ichloromethane irm ides irm iron eldrin HCH(Lindane)	mg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.01) BQL(QL=0.01) BQL(QL=0.01)	USEPA 508 USEPA 520 USEPA 522 USEPA 525.2 USEPA 8141A USEPA 508 USEPA 508	0.2 Limits as	No relaxati Per IS:1050
40.2 Dibromo 40.3 Bromodia 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Die 41.11 Gamma-h	ichloromethane rm des	mg/L μg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.11) BQL(QL=0.11) BQL(QL=0.11) BQL(QL=0.11)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1)	USEPA 508 USEPA 502 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508	0.2 Limits as	No relaxati Per IS:1050
40.2 Dibromo 40.3 Bromodia 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine 41.10 Aldrin/Die	ichloromethane rm des	mg/L μg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1) BQL(QL=0.1)	USEPA 508 USEPA 502 USEPA 532 USEPA 525.2 USEPA 8141A USEPA 508	0.2 Limits as	No relaxati Per IS:1050
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor 41.9 Atrazine	ichloromethane irm ides .	mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.11) BQL(QL=0.1)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.11) BQL(QL=0.11)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1) BQL(QL=0.1)	USEPA 508	0.2	No relaxation Per IS:1050
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur 41.8 Alachlor	ichloromethane irm des	mg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	USEPA 508	0.2	No relaxation Per IS:1050
40.2 Dibromo 40.3 Bromodia 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD 41.7 Isoprotur	ichloromethane irm des	mg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.1)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	USEPA 508	0.2	No relaxation
40.2 Dibromo 40.3 Bromodic 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD 41.6 p,p-DDD	ichloromethane irm des	mg/L μg/L μg/L μg/L μg/L μg/L μg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	USEPA 508 USEPA 508 USEPA 508 USEPA 508 USEPA 508 USEPA 508	0.2	No relaxation
40.2 Dibromo 40.3 Bromodia 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE 41.5 o,p-DDD	ichloromethane rm des	mg/L µg/L µg/L µg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	USEPA 508 USEPA 508 USEPA 508 USEPA 508 USEPA 508	0.2	No relaxation
40.2 Dibromo 40.3 Bromodic 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE 41.4 p,p-DDE	ichloromethane rm des	mg/L µg/L µg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	USEPA 508 USEPA 508 USEPA 508	0.2	No relaxati
40.2 Dibromo 40.3 Bromodi 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT 41.3 o,p-DDE	ichloromethane irm des	mg/L µg/L µg/L	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05) BQL(QL=0.05)	APHA 6232 USEPA 508 USEPA 508	0.2	No relaxati
40.2 Dibromo 40.3 Bromodic 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT 41.2 p,p-DDT	ichloromethane irm des	mg/L µg/L	BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05)	BQL(QL=0.05) BQL(QL=0.05)	APHA 6232 USEPA 508	0.2	No relaxati
40.2 Dibromo 40.3 Bromodio 40.4 Chlorofor 41 Pesticid 41.1 o,p-DDT	ichloromethane rm des	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	APHA 6232	0.2	No relaxati
40.2 Dibromo 40.3 Bromodic 40.4 Chlorofor 41 Pesticid	ichloromethane rm des	1	Tuesda organis	5 E E E E E E E E E E E E	1	20.000	0.2	No relaxation
40.2 Dibromo 40.3 Bromodio 40.4 Chlorofor	ichloromethane	1	Tuesda organis	5 E E E E E E E E E E E E	1	20.000		San Carlotta
40.2 Dibromo 40.3 Bromodio	ichloromethane	mg/L	BQL(QL=0.03)	DQL(QL=0.03)	BQL(QL=0.03)	APHA 6232	0.06	INO TELAKAU
40.2 Dibromo		1		POL (OL 0 00)		ADUL COOR		No relaxati
		mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0.05)	APHA 6232	0,1	No relaxati
W		mg/L	BQL(QL=0.05)	BQL(QL=0.05)	BQL(QL=0,05)	APHA 6232	0.1	No relaxati
40 Trihalos	methanes							
39.7 PCB 126		µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	-	
39.6 PCB 125		µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	-	- 1-
39.5 PCB 124		µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508		4
39.4 PCB 124	42	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508		
39.3 PCB 123	32	µg/L	BQL(QL=0,03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508		- 0
39.2 PCB 122	21	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508		-
39.1 PCB 101	16	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508		No relaxat
39 Polych	lorinated biphenyle	es					0.0005	No relaxat
38.18 Indenol	I(1,2,3-cd)pyrene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		-
38.17 Benzo ((g,h,i)perylene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		
38.16 Dibenzo	o(a,h)anthracene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	1	-
38.15 Benzo(a	a)pyrene	μg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		-
38.14 Benzo(1	K) fluoranthene	µg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B		-
38.13 Benzo ((b) fluoranthene	pg/L	BQL(QL=10)	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-	-
38.12 Chrysei	ene	µg/L	BQL(QL=10)	BQL(QL=10) BQL(QL=10)	BQL(QL=10) BQL(QL=10)	APHA 6440 B APHA 6440 B		-

L =Below Qua	antification Limit; NA = Not Applicable
A	Analysed By:
N	MITALL W. D.

Approved By: Pankil Patel

-

Compan	y Name		Mahan Energen L	imited.		
mple			Surface Water			
	Sample Quantity		8L			
	Sampling		15.10.2022			-
	Period		18.10.2022 - 29.1	IN 2022		
	T			ation	The same and the	
SL. No.	PARAMETER	UNIT	Nr. Gate No. 1	Nr. Gate No. 3	Reference Method	Norm
1	pH @ 25 ℃	-	7.11	7.19	IS 3025-Part 11	8.5
2	Turbidity	NTU	BQL(QL=0.1)	BQL(QL=0.1)	APHA 23rd Edition (2130 B)	-
3	Total Dissolved Solids @ 180 °C	mg/L	364	279	APHA 23rd Edition (2540 C)	1500
4	Total Hardness as CaCO ₃	mg/L	180	127	APHA 23rd Edition (2340 C)	
5	Alkalinity as CaCO ₃	mg/L	240	212.00	APHA 23rd Edition (2320 B)	200
6	Calcium as Ca	mg/L	53.71	37.27	APHA 23rd Edition (3120 B)	75.00
7	Magnesium (Mg)	mg/L	11.18	8.26	APHA 23rd Edition (3120 B)	4
8	Sulphate	mg/L	12.54	21.02	APHA 23rd Edition (4500 SO4 E)	400.00
9	Nitrate	mg/L	0.31	0.29	IS 3025 (Part 34)	50.00
10	Iron	mg/L	0.12	0.31	APHA 23rd Edition (3120 B)	50
11	Fluoride	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	APHA 23rd Edition (4500 F D)	1.5
12	Sulphide	mg/L	BQL(QL=0.2)	BQL(QL=0.2)	APHA 23rd Edition (4500 S2 F)	-
13	Zinc (Zn)	mg/L	0.071	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	15
14	Chloride	mg/L	71.98	49.98	IS 3025-Part 32	600.00
15	Residual Chlorine	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (4500 Cl B)	
16	Colour	Hazen	BQL(QL=1)	BQL(QL=1)	IS 3025 part 4	300
17	Odour	-	Agreeable	Agreeable	IS 3025 part 5	2
18	Mineral Oil	mg/L	BQL(QL=1)	BQL(QL=1)	IS 3025 part 39	- 2
19	Ammonia	mg/L	2.80	1.40	APHA 23rd Edition (4500 NH3 C)	-
20	Taste	(4)	Agreeable	Agreeable	IS 3025 Part-7	_
21	Chloramines as Cl2	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	IS 3025 (Pt 26)	NS
22	Cyanide	mg/L	BQL(QL=0.025)	BQL(QL=0.025)	GGMPL/SOP/W/43	0.05
23	Aluminum (Al)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	NS
24	Arsenic (As)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	APHA 23rd Edition (3120 B)	0.2
25	Barium as Ba	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	
26	Boron (B)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (3120 B)	2
27	Cadmium (Cd)	mg/L	BQL(QL=0.002)	BQL(QL=0.002)	APHA 23rd Edition (3120 B)	0.01
28	Copper (Cu)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	1.5
29	Lead (Pb)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	APHA 23rd Edition (3120 B)	0.1
30	Manganese (Mn)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (3120 B)	*
31	Mercury (Hg)	mg/L	BQL(QL=0.0005)	BQL(QL=0.0005)	APHA 23rd Edition (3120 B)	- 8
32	Selenium (Se)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	APHA 23rd Edition (3120 B)	0.05
33	Molybdenum as Mo	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	APHA 23rd Edition (3120 B)	NS
34	Total Chromium Cr	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	0.05
35	Nickel as (Ni)	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	APHA 23rd Edition (3120 B)	NS

36	Silver (Ag)	mg/L	BQL(QL=0.02)	BQL(QL=0,02)	APHA 23rd Edition (3120 B)	
37	Anionic Detergent	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	IS 13428 (Annex K) : 2018	1
38	PAH				1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
38.1	Naphthalene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	
38.2	1-Methylnapthalene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.3	2-Methylnapthalene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.4	Acenaphthylene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.5	Acenaphthene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.6	Fluorene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	1.0
38.7	Phenanthrene	μg/L	BQL(QL=5)	BQL(QL=5)	APHA 6440 B	
38.8	Anthracene	μg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	
38.9	Fluoranthene	μg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	
38.10	Pyrene	μg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	- /-
38.11	Benzo(a) anthracene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	- 6
38.12	Chrysene	μg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	4
38.13	Benzo (b) fluoranthene	μg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	
38.14	Benzo(K) fluoranthene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.15	Benzo(a)pyrene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.16	Dibenzo(a,h)anthracene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.17	Benzo (g,h,i)perylene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	14
38.18	Indenol(1,2,3-cd)pyrene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
39	Polychlorinated biphenyles					
39.1	PCB 1016	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.2	PCB 1221	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.3	PCB 1232	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.4	PCB 1242	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.5	PCB 1248	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.6	PCB 1254	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.7	PCB 1260	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
40	Trihalomethanes					
40.1	Bromoform	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	APHA 6232	NS
40.2	Dibromochloromethne	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	APHA 6232	NS
40.3	Bromodichloromethane	mg/L	BQL(QL=0.06)	BQL(QL=0.06)	APHA 6232	NS
40.4	Chloroform	mg/L	BQL(QL=0.2)	BQL(QL=0.2)	APHA 6232	NS

41	Pesticides					
41.1	o,p-DDT	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	1
41.2	p,p-DDT	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	
41.3	o,p-DDE	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	1
41.4	p,p-DDE	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	
41.5	o,p-DDD	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	1
41.6	p,p-DDD	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	-
41.7	Isoproturon	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 532	-
41.8	Alachlor	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 525.2	-
41.9	Atrazine	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 8141A	-
41.10	Aldrin/Dieldrin	μg/L	BQL(QL=0.01)	BQL(QL=0.01)	USEPA 508	-
41.11	Gamma-HCH(Lindane)	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 508	-
41.12	Alpha HCH	μg/L	BQL(QL=0.005)	BQL(QL=0.005)	USEPA 508	-
41.13	Beta HCH	µg/L	BQL(QL=0.02)	BQL(QL=0,02)	USEPA 508	1
41.14	Delta HCH	µg/L	BQL(QL=0.02)	BQL(QL=0.02)	USEPA 508	-
41.15	Endosulfan (alpha)	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	-
41.16	Endosulfan (Beta)	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	-
41.17	Endosulfan (Sulphate)	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	
41.18	Monocrotophos	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 8141A	
41.19	Ethoin	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	UEPA 1657A	-
41.20	Chlorpyriphos	µg/L	BQL(QL=0.25)	BQL(QL=0.25)	USEPA 8141A	-
41.21	Phorate	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 8141A	
41.22	Butachlor	µg/L	BQL(QL=20)	BQL(QL=20)	USEPA 8141A	-
41,23	Methyl Parathion	рд/∟	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 8141A	-
41.24	Malathion	µg/L	BQL(QL=0.25)	BQL(QL=0.25)	USEPA 8141A	
42	Microbiological					
42.1	E.Coli (MPN/100 ml)	MPN/100ml	Absent	Absent	IS 1622	NS
42.2	Total Coliform	MPN/100ml	Absent	Absent	IS 1622	5000

is as per IS: 2296; Class C

Analysed By:
Sty bulk B'
Shiyal Kishor

Approved By: Pankil Patel

KECHAN

Comm	iny Name			Month of January				
Sample			Mahan Energer					
			Surface Water					
	Quantity		8L					
	Collected By		Laboratory Rep	resentative		-		
-	f Sampling		16.01.2023			-		
anaiys	is Period		22.01.2023 to 2	28.01.2023				
SL. No	. PARAMETER	UNIT		ocation	Reference Method			
1	pH @ 25 °C		Nr. Gate No. 1	Nr. Gate No. 3	Kererence Method	Norm		
2	Turbidity	NTU	7.34	7.23	IS 3025-Part 11	8.5		
3	Total Dissolved Solids @ 180 °C	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	APHA 23rd Edition (2130 B)	-		
4	Total Hardness as CaCO ₃	mg/L	401.0	325.0	APHA 23rd Edition (2540 C)	1500		
5	Alkalinity as CaCO ₃	200	196.0	140.0	APHA 23rd Edition (2340 C)	-		
6	Calcium as Ca	mg/L	192.0	186.0	APHA 23rd Edition (2320 B)	200		
7	Magnesium (Mg)	mg/L	59.32	38.48	APHA 23rd Edition (3120 B)	75.00		
8	Sulphate	mg/L	11.66	10.69	APHA 23rd Edition (3120 B)			
9	Nitrate	mg/L	18.12	23.52	APHA 23rd Edition (4500 SO4 E)	400,00		
10	Iron	mg/L	0.52	0.26	IS 3025 (Part 34)	50.00		
11	Fluoride	mg/L	0.103	0,492	APHA 23rd Edition (3120 B)	50		
12	Sulphide	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	APHA 23rd Edition (4500 F D)	1.5		
13		mg/L	BQL(QL=0.2)	BQL(QL=0.2)	APHA 23rd Edition (4500 S2 F)	-6.		
14	Zinc (Zn)	mg/L	0.071	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	15		
15	Chloride	mg/L	82.97	54.98	IS 3025-Part 32	600.00		
16	Residual Chlorine	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (4500 CI B)	10		
7.0	Colour	Hazen	BQL(QL=1)	BQL(QL=1)	IS 3025 part 4	300		
17	Odour	•	Agreeable	Agreeable	IS 3025 part 5			
18	Mineral Oil	mg/L	BQL(QL=1)	BQL(QL=1)	IS 3025 part 39	1+0		
19	Ammonia	mg/L	1.96	0.56	APHA 23rd Edition (4500 NH3 C)	-		
20	Taste		Agreeable	Agreeable	IS 3025 Part-7	6		
21	Chloramines as CI2	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	IS 3025 (Pt 26)	NS		
22	Cyanide	mg/L	BQL(QL=0.025)	BQL(QL=0.025)	GGMPL/SOP/W/43	0.05		
23	Aluminum (Al)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120-B)	NS		
24	Arsenic (As)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	APHA 23rd Edition (3120 B)	0.2		
25	Barium as Ba	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	1.		
26	Boron (B)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (3120 B)	2		
27	Cadmium (Cd)	mg/L	BQL(QL=0.002)	BQL(QL=0.002)	APHA 23rd Edition (3120 B)	0.01		
28	Copper (Cu)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	1.5		
29	Lead (Pb)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	APHA 23rd Edition (3120 B)	0.1		
30	Manganese (Mn)	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (3120 B)	0.1		
31	Mercury (Hg)	mg/L	BQL(QL=0.0005)	BQL(QL=0.0005)	APHA 23rd Edition (3120 B)			
32	Selenium (Se)	mg/L	BQL(QL=0.005)	BQL(QL=0.005)	APHA 23rd Edition (3120 B)	n ne		
33	Molybdenum as Mo	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	APHA 23rd Edition (3120 B)	0.05		
34	Total Chromium Cr	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	APHA 23rd Edition (3120 B)	NS 0.05		
35	Nickel as (Ni)	mg/L	BQL(QL=0.01)	BQL(QL=0.01)	APHA 23rd Edition (3120 B)	0.05		
36	Silver (Ag)	mg/L	BQL(QL=0.02)	BQL(QL=0.02)	AND THE PERSON NAMED IN COLUMN TO SERVICE AND THE PERSON NAMED IN COLUMN	NS		
37	Anionic Detergent	mg/L	BQL(QL=0.05)	BQL(QL=0.05)	APHA 23rd Edition (3120 B)			
38	PAH		2.15- 3.50/	- (-(4-0.00)	IS 13428 (Annex K) : 2018	1		
38.1	Naphthalene	µg/L	BQL(QL=10)	BQL(QL=10)	ADUA SAAN N			
38.2	1-Methylnapthalene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B			
38.3	2-Methylnapthalene	µg/L	BQL(QL=10)	100000 - 000	APHA 6440 B			
38.4	Acenaphthylene	pg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B			
	Acenaphthene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-		
	Fluorene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B			
38.7	Phenanthrene	µg/L	BQL(QL=5)	BQL(QL=10)	APHA 6440 B			
5 4 1	Anthracene	μg/L	BQL(QL=10)	BQL(QL=5)	APHA 6440 B	-		
	Tuoranthene	pg/L pg/L	BQL(QL=10)	BQL(QL=10) BQL(QL=10)	APHA 6440 B	- 4		

20.40	10		1	1		
38.10	Pyrene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.11	Benzo(a) anthracene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.12	Chrysene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.13	Benzo (b) fluoranthene	μg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.14	Benzo(K) fluoranthene	μg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	1
38.15	Benzo(a)pyrene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	
38.16	Dibenzo(a,h)anthracene	µg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
38.17	Benzo (g,h,i)perylene	μg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	100
38.18	Indenol(1,2,3-cd)pyrene	μg/L	BQL(QL=10)	BQL(QL=10)	APHA 6440 B	-
39	Polychlorinated biphenyles			*		
39.1	PCB 1016	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.2	PCB 1221	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.3	PCB 1232	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.4	PCB 1242	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.5	PCB 1248	µg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
39.6	PCB 1254	µg/L	BQL(QL=0,03)	BQL(QL=0.03)	USEPA 508	NS
39.7	PCB 1260	μg/L	BQL(QL=0.03)	BQL(QL=0.03)	USEPA 508	NS
40	Trihalomethanes					-
40.1	Bromoform	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	APHA 6232	NS
40.2	Dibromochloromethne	mg/L	BQL(QL=0.1)	BQL(QL=0.1)	APHA 6232	NS
40.3	Bromodichloromethane	mg/L	BQL(QL=0.06)	BQL(QL=0.06)	APHA-6232	NS
40.4	Chloroform	mg/L	BQL(QL=0.2)	BQL(QL=0.2)	APHA 6232	NS
41	Pesticides					1
41.1	o,p-DDT	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	-
41.2	p,p-DDT	µg/L	BQL(QL=0,05)	BQL(QL=0.05)	USEPA 508	
41.3	o,p-DDE	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	-
41.4	p,p-DDE	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	
41,5	o,p-DDD	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	-
41.6	p,p-DDD	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	
41.7	Isoproturon	μg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 532	
41.8	Alachlor	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 525,2	-
41.9	Atrazine	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 8141A	
41.10	Aldrin/Dieldrin	µg/L	BQL(QL=0.01)	BQL(QL=0.01)	USEPA 508	
41.11	Gamma-HCH(Lindane)	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 508	
41.12	Alpha HCH	µg/L	BQL(QL=0.005)	BQL(QL=0.005)	USEPA 508	
41.13	Beta HCH	µg/L	BQL(QL=0.02)	BQL(QL=0.02)	USEPA 508	- A
41.14	Delta HCH	µg/L	BQL(QL=0.02)	BQL(QL=0.02)	USEPA 508	
41.15	Endosulfan (alpha)	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	
41.16	Endosulfan (Beta)	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	1
41.17	Endosulfan (Sulphate)	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 508	
41.18	Monocrotophos	µg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 8141A	
41.19	Ethoin	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	UEPA 1657A	181
11.20	Chlorpyriphos	μg/L	BQL(QL=0.25)	BQL(QL=0.25)	USEPA 8141A	
1.21	Phorate	µg/L	BQL(QL=0.1)	BQL(QL=0.1)	USEPA 8141A	-
11.22	Butachlor	μg/L	BQL(QL=20)	BQL(QL=20)	USEPA 8141A	-
41.23	Methyl Parathion	μg/L	BQL(QL=0.05)	BQL(QL=0.05)	USEPA 8141A	
11.24	Malathion	μg/L	BQL(QL=0.25)	BQL(QL=0.05)		
42	Microbiological	1-31-		265/65-0.52)	USEPA 8141A	
	E.Coli (MPN/100 ml)	MPN/100ml	Absent	Absent	IC 1632	110
	The second control of		A MARKET IL	AUSCIE	IS 1622	NS

BQL =Below Quantification Limit; NA = Not Applicable Norms as per IS: 2296;Class C

Analysed By: B. Shiyal Kishor

Approved By:

			GO Green Mechnisms Pvt	: Ltd	
		Analysis	Results for the Month of	October 2022	
Compan	y Name		Mahan Energen Limited.		
Sample	Туре		Waste Water		
Sample	Quantity		2L		
Date of	Sampling		15.10.2022		
Analysis	Period		18.10.2022-29.10.2022		
SL. No.	DADAMETER	PARAMETER UNIT	Location		Norms
SL. NO.	PARAMETER		ETP Outlet	Reference Method	
1	pH @ 25 ℃		8.10	IS 3025-Part 11	6.5-9.0
2	Total Suspended Solids	mg/L	20.00	APHA 23rd Edition (2540 D)	100
3	BOD at 27°C – 3 Days	mg/L	9.60	IS 3025-Part 44	30
4	Chemical Oxygen Demand	mg/L	40.00	APHA 23rd Edition(5220 B)	250
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10
6	Chloride	mg/L	110.00	IS 3025- Part 32	1000
7	Total Dissolved Solids	mg/L	586.00	APHA 23rd Edn 2540 C	2100

BQL =Below Quantification Limit; NA = Not Applicable Norms as per CTE.

Analysed By:

Shiyuk'B.

Approved By:

Pankil PateL

_____END

GREE

	A	Analysis F	GO Green Mechnisms Pvt Results for the Month of No		
Compan	y Name		Mahan Energen Limited.		
Sample	Туре		Waste Water		
Sample	Quantity		2L		
Date of	Sampling		10.11.2022		
Analysis	Period		19.11.2022 to 25.11.2022		
			Location		
SL. No.	PARAMETER	UNIT	ETP Outlet	Reference Method	Norms
1	pH @ 25 ℃	-	8.34	IS 3025-Part 11	6.5-9.0
2	Total Suspended Solids	mg/L	24.00	APHA 23rd Edition (2540 D)	100
3	BOD at 27°C – 3 Days	mg/L	10.43	IS 3025-Part 44	30
4	Chemical Oxygen Demand	mg/L	40.00	APHA 23rd Edition(5220 B)	250
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10
6	Chloride	mg/L	113.00	IS 3025- Part 32	1000
7	Total Dissolved Solids	mg/L	567,00	APHA 23rd Edn 2540 C	2100

Norms as per CTE.

Analysed By:
Shiyaki3,
Shiyak Kishor

.....

Approved By:

			GO Green Mechanisms Pvt Ltd		
			Analysis Results for the Month of December	er -2022	
Company N	lame		Mahan Energen Limited.		
Sample Typ	ne .		Waste Water		
Sample Qua	antity		2L		
Sample Col	lected By		Laboratory Representative		
Date of San	npling		15.12.2022		
Analysis Pe	riod		22.12.2022 to 28.12.2022		
CI N			Location		
SL. No.	PARAMETER	UNIT	ETP Outlet	Reference Method	Norms
1	pH @ 25 °C	-	8.12	IS 3025-Part 11	6.5-9.0
2	Total Suspended Solids	mg/L	27.00	APHA 23rd Edition (2540 D)	100
3	BOD at 27°C - 3 Days	mg/L	9.78	IS 3025-Part 44	30
4	Chemical Oxygen Demand	mg/L	35.00	APHA 23rd Edition(5220 B)	250
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10
6	Chloride	mg/L	98.00	IS 3025- Part 32	1000
7	Total Dissolved Solids	mg/L	603.00	APHA 23rd Edn 2540 C	2100

Norms as per CTE.

Analysed By:

Shifty k B. ShiyaL Kishor

Approved By:
Pankil PateL

END.

EGHAN

			GO Green Mechanisms Pvt Ltd		
			Analysis Results for the Month of January	-2023	
Company N	ame		Mahan Energen Limited.		
Sample Typ	ie		Waste Water		
Sample Qua	ntity		2L		
Sample Coll	lected By		Laboratory Representative		
Date of San	npling		16.01.2023		
Analysis Per	riod		22.01.2023 to 28.01.2023		
		7	Location		
SL. No.	PARAMETER	UNIT	ETP Outlet	Reference Method	Norms
1	pH @ 25 °C	-	7.86	IS 3025-Part 11	6.5-9.0
2	Total Suspended Solids	mg/L	33.00	APHA 23rd Edition (2540 D)	100
3	BOD at 27°C - 3 Days	mg/L	12.80	IS 3025-Part 44	30
4	Chemical Oxygen Demand	mg/L	40.00	APHA 23rd Edition(5220 B)	250
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10
6	Chloride	mg/L	102.98	IS 3025- Part 32	1000
7	Total Dissolved Solids	mg/L	621.00	APHA 23rd Edn 2540 C	2100

Norms as per CTE.

Analysed By:

Talk K. B.

ShiyaL Kishor

Approved By:

Pankil PateL

END.

			GO Green Mechanisms Pvt Ltd		
			Analysis Results for the Month of February	y -2023	
Company N	ame		Mahan Energen Limited.		
Sample Typ	ie		Waste Water		
Sample Qua	entity		2L		
Sample Coll	lected By		Laboratory Representative		
Date of San	npling		08.02.2023		
Analysis Per	riod		15.02.2023 to 20.02.2023		
		Location	Location		
SL No.	PARAMETER	UNIT	ETP Outlet	Reference Method	Norms
1	pH @ 25 °C	-	7.59	IS 3025-Part 11	6.5-9.0
2	Total Suspended Solids	mg/L	28.00	APHA 23rd Edition (2540 D)	100
3	BOD at 27°C – 3 Days	mg/L	16.80	IS 3025-Part 44	30
4	Chemical Oxygen Demand	mg/L	60.00	APHA 23rd Edition(5220 B)	250
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10
6	Chloride	mg/L	92.97	IS 3025- Part 32	1000
7	Total Dissolved Solids	mg/L	644.00	APHA 23rd Edn 2540 C	2100

BQL =Below Quantification Limit; NA = Not Applicable	
Norms as per CTE.	
Analysed By:	Approved By:
Signt B.	2
ShiyaL Kishor	Pankii PateL

_____END

			GO Green Mechanisms Pvt Ltd					
			Analysis Results for the Month of March	-2023				
Company N	lame		Mahan Energen Limited.					
Sample Typ	ne e		Waste Water	Waste Water				
Sample Qua	antity		2L					
Sample Col	lected By		Laboratory Representative					
Date of Sampling 13.03.2023								
Analysis Period			20.03.2023 to 25.03.2023					
			Location					
SL No.	PARAMETER	UNIT	ETP Outlet	Reference Method	Norms			
1	pH @ 25 °C	-	7.76	IS 3025-Part 11	6.5-9.0			
2	Total Suspended Solids	mg/L	35.00	APHA 23rd Edition (2540 D)	100			
3	BOD at 27°C – 3 Days	mg/L	14	IS 3025-Part 44	30			
4	Chemical Oxygen Demand	mg/L	70,00	APHA 23rd Edition(5220 B)	250			
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10			
6	Chloride	mg/L	96,97	IS 3025- Part 32	1000			
7	Total Dissolved Solids	mg/L	654.00	APHA 23rd Edn 2540 C	2100			

.....END.....

BQL =Below Quantification Limit; NA = Not Applicable

Norms as per CTE.

Analysed By:
ShigukB
ShiyaL Kishor

Approved By:

Pankil Patel

NECHAN

			GO Green Mechnisms Pvt	Ltd				
		Analysis	Results for the Month of (October 2022				
Compan	y Name		Mahan Energen Limited.					
Sample Type			Waste Water					
Sample Quantity			2L					
Date of Sampling			15.10.2022					
Analysis Period		18.10.2022-29.10.2022						
			Location		Norms			
SL. No.	PARAMETER	UNIT	STP Outlet	Reference Method				
1	pH @ 25 °C	-	8.61	IS 3025-Part 11	6.5-9.0			
2	Total Suspended Solids	mg/L	16.00	APHA 23rd Edition (2540 D)	100			
3	BOD at 27°C – 3 Days	mg/L	14.20	IS 3025-Part 44	30			
4	Chemical Oxygen Demand	mg/L	60,00	APHA 23rd Edition(5220 B)	250			
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10			
6	Faecal Coliform	MPN/100ML	Absent	IS 1622	<1000			

Analysed By	•	MEGI	1000	Approve	d By:	
stigued K.B.	Shitul kish	or 1121	1881	2	Puntil	PHOL
		E E	0		, , , , , , , , , , , , , , , , , , , ,	1-1-

			GO Green Mechnisms Pvt esults for the Month of No				
Compan	y Name		Mahan Energen Limited.				
Sample	Туре		Waste Water				
Sample Quantity		2L					
Date of	Sampling		10.11.2022				
Analysis	Period	19.11.2022 to 25.11.2022					
	D. PARAMETER UN	PARAMETER UNIT	Location				
SL. No.			STP Outlet	Reference Method	Norms		
1	pH @ 25 °C	-	8.46	IS 3025-Part 11	6.5-9.0		
2	Total Suspended Solids	mg/L	14.00	APHA 23rd Edition (2540 D)	100		
3	BOD at 27°C – 3 Days	mg/L	13.71	IS 3025-Part 44	30		
4	Chemical Oxygen Demand	mg/L	50.00	APHA 23rd Edition(5220 B)	250		
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10		
6	Faecal Coliform	MPN/100ML	Absent	IS 1622	<1000		

Norms as per CTE.

Analysed By:

Shituk-13,

Approved By:

8.

			GO Green Mechanisms Pvt Ltd				
			Analysis Results for the Month of Decemb	er -2022			
Company P	Vame		Mahan Energen Limited.				
Sample Type			Waste Water				
Sample Col	llected By		Laboratory Representative				
Sample Quantity			2L				
Date of Sar	e of Sampling 15.12.2022						
Analysis Period			22.12.2022 to 28.12.2022				
			Location	Location		-	
SL. No.	PARAMETER	UNIT	STP Outlet	Reference Method	Norms		
1	pH @ 25 °C	-	7.90	IS 3025-Part 11	6.5-9.0		
2	Total Suspended Solids	mg/L	17.00	APHA 23rd Edition (2540 D)	100		
3	BOD at 27°C – 3 Days	mg/L	11.20	IS 3025-Part 44	30		
4	Chemical Oxygen Demand	mg/L	45.00	APHA 23rd Edition(5220 B)	250		
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10		
6	Faecal Coliform	MPN/100ML	Absent	IS 1622	<1000		

Norms as per CTE.

Analysed By:

Shigu K 13. Shiyal Kishor

Approved By:

Pankil Patel

END

EGHAN

			GO Green Mechanisms Pvt Ltd				
			Analysis Results for the Month of January	-2023			
Company N	lame		Mahan Energen Limited,				
Sample Typ	oe .	Zijeji i i	Waste Water				
Sample Col	lected By		Laboratory Representative				
Sample Qua	antity		2L				
Date of San	Sampling 16.01.2023						
Analysis Period			22.01.2023 to 28.01.2023				
			Location		Norms		
SL. No.	PARAMETER	UNIT	STP Outlet	Reference Method			
1	pH @ 25 ℃	-	8.06	IS 3025-Part 11	6.5-9,0		
2	Total Suspended Solids	mg/L	23.00	APHA 23rd Edition (2540 D)	100		
3	BOD at 27°C - 3 Days	mg/L	13.60	IS 3025-Part 44	30		
4	Chemical Oxygen Demand	mg/L	50.00	APHA 23rd Edition(5220 B)	250		
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10		
6	Faecal Coliform	MPN/100ML	Absent	IS 1622	<1000		

END.

BQL =Below Quantification Limit; NA = Not Applicable

Norms as per CTE.

Analysed By: K. B

Shiyal Kishor

Approved By:

2.

			GO Green Mechanisms Pvt Ltd				
			Analysis Results for the Month of february	-2023			
Company N	ame		Mahan Energen Limited.				
Sample Typ	ie		Waste Water				
Sample Coll	lected By		Laboratory Representative				
Sample Quantity			2L				
Date of Sampling			08.02.2023				
Analysis Period			15.02.2023 to 20.02.2023				
		Location UNIT STP Outlet					
SL. No.	PARAMETER		STP Outlet	Reference Method	Norms		
1	pH @ 25 °C	-	7.66	IS 3025-Part 11	6.5-9.0		
2	Total Suspended Solids	mg/L	19,00	APHA 23rd Edition (2540 D)	100		
3	BOD at 27°C - 3 Days	mg/L	11.20	IS 3025-Part 44	30		
4	Chemical Oxygen Demand	mg/L	40.00	APHA 23rd Edition(5220 B)	250		
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10		
6	Faecal Coliform	MPN/100ML	Absent	IS 1622	<1000		

BQL =Below Quantification Limit; NA = Not Applicable				
Norms as per CTE.				
Analysed By:	Approved By:			
Shiyu K.B. Shiyal Kishor	L			
Shiyal Kishor	Pankil Patel			

END.

			GO Green Mechanisms Pvt Ltd				
			Analysis Results for the Month of March	-2023			
Company N	lame		Mahan Energen Limited.				
Sample Typ	ne		Waste Water				
Sample Col	lected By		Laboratory Representative				
Sample Qua	antity		2L				
Date of San	npling		13-03-2023				
Analysis Pe	riod		20-03-2023 To 25-03-2023				
		Location					
SL. No.	PARAMETER	UNIT	STP Outlet	Reference Method	Norms		
1	pH @ 25 °C	-	7.83	IS 3025-Part 11	6.5-9.0		
2	Total Suspended Solids	mg/L	23,00	APHA 23rd Edition (2540 D)	100		
3	BOD at 27°C – 3 Days	mg/L	12.00	IS 3025-Part 44	30		
4	Chemical Oxygen Demand	mg/L	55.00	APHA 23rd Edition(5220 B)	250		
5	Oil & Grease	mg/L	BQL(QL=2)	IS 3025-Part 39	10		
6	Faecal Coliform	MPN/100ML	Absent	IS 1622	<1000		

Norms as per CTE.

Analysed By:

Shight 10 B.
Shiyal Kishor

Approved By:

GO Green Mechnisms Pvt Ltd

Analysis Results For The Month of October 2022

On Site 24 Hourly Monitoring Results

Company Name			Mahan Energen Limited.					
Sample	Туре		Ambient Noise Monitoring					
Sr No	Sampling Date	Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pm to 06:00 Am)	Norms (Night Time)	
			Leq:	67.8		58.9		
1	19.10.2022	Nr. Gate No. 2	Max:	71.2	75.0	64.3	70.0	
			Min:	55.1		51.2		
		Nr. Admin Building	Leq:	63.2	75.0	52.3	70.0	
2	2 15.10.2022		Max:	69.7		61.2		
			Min:	49.2		46.5		
			Leq:	71.4		65.0		
3	15.10.2022	Nr. Gate No. 1	Max:	73.4	75.0	66.0	70.0	
			Min:	65.8		52.3		
			Leq:	65.3		56.4		
4	19.10.2022	Nr. Gate No. 3	Max:	70.1	75.0	56.2	70.0	
			Min:	51.3		44.7		

Analyesd By	MEDINA OF	Approved By	
ShiturB.	West Services	£.	
Shiyal Kishor		Pankil Patel	

- THB

GO Green Mechnisms Pvt Ltd

Ambient Noise Monitoring For The Month of November -2022

On Site 24 Hourly Monitoring Results

Company Name

Mahan Energen Limited.

Sample Type

Ambient Noise Monitoring

Sr No	Sampling Date	Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pm to 06:00 Am)	Norms (Night Time)
1	15.11.2022	Nr. Gate No. 2	Leq:	63.1	75.0	49.1	70.0
			Max:	68.4		53.1	
			Min:	49.9		45.8	
2	15.11.2022	Nr. Admin Building	Leq:	58.4	75.0	46.2	70.0
			Max:	62.5		52.1	
			Min:	44.1		39.7	
3	14.11.2022	Nr. Gate No. 1	Leq:	65.8	75.0	52.9	70.0
			Max:	70.3		56.1	
			Min:	53.4		49.7	
4	16.11.2022	Nr. Gate No. 3	Leq:	53.3	75.0	42.8	70.0
			Max:	57.8		45.6	
			Min:	44.1		35.7	

Analyesd By	MECHANIO	Approved By	
Shitty K.B.	SE SE	8	
Shiyal Kishor	E 2	Pankil Patel	

Ambient Noise Monitoring For The Month of December -2022

On Site 24 Hourly Monitoring Results

Company N	lame	Mahan Energen Limite	ed.						
Sample Collected By Lab		Laboratory Represent	Laboratory Representative						
Sample Typ	e	Ambient Noise Monitoring							
Sr. No.		Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pmto 06:00 Am)	Norms (Night Time)		
			Leq:	62.0		59.4			
1	08.12.2022	Nr. Gate No. 2	Max:	67.3	75.0	62.8	70.0		
			Min:	51.8		45.2			
			Leq:	51.5		48.4			
2	05.12.2022	Nr. Admin Building	Max:	59.5	75.0	53.7	70.0		
			Min:	44.9		39.8			
			Leq:	60,4		58.0			
3	05.12.2022	Nr. Gate No. 1	Max:	68.4	75.0	61.5	70.0		
			Min:	53.9		45.1			
			Leq:	45.2		40.8			
4	08.12.2022	Nr. Gate No. 3	Max:	58.5	75,0	51.2	70.0		
			Min:	41.5		37.4			

NORMS AS PER NOISE POLLUTION (REGULATION A	ND CONTROL) RULES, 2000	(Industrial Area)	
Analyesd By	MECHANIC	Approved By	
Shijouk.B.		₽	
Shiyal Kishor		Pankil Patel	

END

Ambient Noise Monitoring For The Month of January -2023

On Site 24 Hourly Monitoring Results

Company Name		Mahan Energen Limite	Mahan Energen Limited.								
Sample Col	lected By	Laboratory Representa	Laboratory Representative								
Sample Typ	e	Ambient Noise Monitoring									
Sr. No.		Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pmto 06:00 Am)	Norms (Night Time)				
			Leq:	62.4		54.8					
1	09.01.2023	Nr. Gate No. 1	Max:	68.0	75.0	58.6	70.0				
			Min:	n: 57.5		49.1					
			Leq:	54.0		50.4					
2	09.01.2023	Nr. Admin Building	Max:	59.6	75.0	54.6	70.0				
			Min:	48.6		49.7					
			Leq:	60.2		56.5					
3	12.01.2023	Nr. Gate No. 2	Max:	65.2	75.0	60.1	70.0				
			Min:	54.3		47.4					
			Leq:	47.2		42.1					
4	12.01.2023	Nr. Gate No. 3	Max:	56.2	75.0	46.2	70.0				
			Min:	40.3		36.1					

NORMS AS PER NOISE POLLUTION (REGULATION AN	CONTROL) RUL	5/2000 (Industrial Area))	
Analyesd By	(EE)	No.	Approved By	
MJ Shiyal Kishor B.	000		Pankil Patel	

END....

Ambient Noise Monitoring For The Month of February -2023

On Site 24 Hourly Monitoring Results

Company N	ame	Mahan Energen Limited	1.					
Sample Coll	ected By	Laboratory Representa	tive					
Sample Typ	e	Ambient Noise Monitoring						
Sr. No.		Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pmto 06:00 Am)	Norms (Night Time)	
			Leq:	54.9		48.7		
1	23.02.2023	Nr. Admin Building	Max:	58.9	75.0	50.9	70.0	
			Min:	47.3		46.5		
			Leq:	59.0		55.3		
2	24.02.2023	Nr. Gate No. 2	Max:	62	75.0	59.2	70.0	
	-		Min:	53.1		49.2		
			Leq:	61.1		52.8		
3	25.02.2023	Nr. Gate No. 1	Max:	71.2	75.0	53.8	70.0	
			Min:	54.6		51.7		
			Leq:	47.6		42.2		
4	27.02.2023	Nr. Gate No. 3	Max:	52.4	75.0	43.9	70.0	
			Min:	46.2		39.6		

NORMS AS PER NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000 (Industrial Area)						
Analyesd By	Approved By					
Shituite	f.					
Shiyal Kishor	Pankil Patel					

.....END.....

Analysis Results For The Month of October 2022

On Site 24 Hourly Monitoring Results

Compa	Company Name		Mahan Energen Limited.					
Sample	Туре		Ambient Noise Monitoring					
Sr No	Sampling Date	Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pm to 06:00 Am)	Norms (Night Time)	
			Leq:	67.8		58.9		
1	19.10.2022	Nr. Gate No. 2	Max:	71.2	75.0	64.3	70.0	
			Min:	55.1		51.2		
				52.3				
2	15.10.2022 Nr. Admin Building	Max:	69.7	75.0	61.2	70.0		
			Min:	49.2		46.5		
			Leq:	71.4		65.0		
3	15.10.2022	Nr. Gate No. 1	Max:	73.4	75.0	66.0	70.0	
			Min:	65.8		52.3		
			Leq:	65.3		56.4		
4	19.10.2022	Nr. Gate No. 3	Max:	70.1	75.0	56.2	70.0	
			Min:	51.3		44.7		

Analyesd By	MEDINA OF	Approved By	
ShiturB.	TO VISI	£.	
Shiyal Kishor		Pankil Patel	

- THB

Ambient Noise Monitoring For The Month of November -2022

On Site 24 Hourly Monitoring Results

Company Name

Mahan Energen Limited.

Sample Type

Ambient Noise Monitoring

Sr No	Sampling Date	Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pm to 06:00 Am)	Norms (Night Time)
			Leq:	63.1		49.1	
1	15.11.2022 Nr	11.2022 Nr. Gate No. 2	Max:	68.4	75.0	53.1	70.0
			Min:	49.9		45.8	
			Leq:	58.4		46.2	
2	15.11.2022	Nr. Admin Building	Max:	62.5	75.0	52.1	70.0
		Zununig	Min:	44.1		39.7	
			Leq:	65.8	75.0	52.9	
3	14.11.2022	Nr. Gate No. 1	Max:	70.3		56.1	70.0
			Min:	53.4		49.7	
			Leq:	53.3		42.8	
4	16.11.2022	Nr. Gate No. 3	Max:	57.8	75.0	45.6	70.0
			Min:	44.1		35.7	

Analyesd By	MECHANIO	Approved By	
Shitter K.B.		2	
Shiyal Kishor	0	Pankil Patel	

Ambient Noise Monitoring For The Month of December -2022

On Site 24 Hourly Monitoring Results

Company N	lame	Mahan Energen Limite	ed.						
Sample Collected By Lab		Laboratory Represent	Laboratory Representative						
Sample Typ	e	Ambient Noise Monitoring							
Sr. No.		Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pmto 06:00 Am)	Norms (Night Time)		
			Leq:	62.0		59.4			
1	08.12.2022	Nr. Gate No. 2	Max:	67.3	75.0	62.8	70.0		
			Min:	51.8		45.2			
			Leq:	51.5		48.4			
2	05.12.2022	Nr. Admin Building	Max:	59.5	75.0	53.7	70.0		
			Min:	44.9		39.8			
			Leq:	60,4		58.0			
3	05.12.2022	Nr. Gate No. 1	Max:	68.4	75.0	61.5	70.0		
			Min:	53.9		45.1			
			Leq:	45.2		40.8			
4	08.12.2022	Nr. Gate No. 3	Max:	58.5	75,0	51.2	70.0		
			Min:	41.5		37.4			

NORMS AS PER NOISE POLLUTION (REGULATION A	ND CONTROL) RULES, 2000	(Industrial Area)	
Analyesd By	MECHANIC	Approved By	
Shijouk.B.		₽	
Shiyal Kishor		Pankil Patel	

END

Ambient Noise Monitoring For The Month of January -2023

On Site 24 Hourly Monitoring Results

Company Name		Mahan Energen Limited.									
Sample Col	lected By	Laboratory Representative									
Sample Typ	e	Ambient Noise Monitoring									
Sr. No.		Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pmto 06:00 Am)	Norms (Night Time)				
			Leq:	62.4		54.8					
1	09.01.2023	Nr. Gate No. 1	Max:	68.0	75.0	58.6	70.0				
			Min:	57.5		49.1					
			Leq:	54.0		50.4					
2	09.01.2023	Nr. Admin Building	Max:	59.6	75.0	54.6	70.0				
			Min:	48.6		49.7					
			Leq:	60.2		56.5					
3	12.01.2023	Nr. Gate No. 2	Max:	65.2	75.0	60.1	70.0				
			Min:	54.3		47.4					
			Leq:	47.2		42.1					
4	12.01.2023	Nr. Gate No. 3	Max:	56.2	75.0	46.2	70.0				
			Min:	40.3		36.1					

NORMS AS PER NOISE POLLUTION (REGULATION AN	CONTROL) RUL	5/2000 (Industrial Area))	
Analyesd By	(EE)	No.	Approved By	
MJ Shiyal Kishor B.	000		Pankil Patel	

END....

Ambient Noise Monitoring For The Month of February -2023

On Site 24 Hourly Monitoring Results

Company Name Sample Collected By		Mahan Energen Limited	Mahan Energen Limited.									
		Laboratory Representative										
Sample Typ	e	Ambient Noise Monitor	ing									
Sr. No.		Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pmto 06:00 Am)	Norms (Night Time)					
			Leq:	54.9		48.7						
1	23.02.2023	Nr. Admin Building	Max:	58.9	75.0	50.9	70.0					
			Min:	47.3		46.5						
			Leq:	59.0		55.3						
2	24.02.2023	Nr. Gate No. 2	Max:	62	75.0	59.2	70.0					
	-		Min:	53.1		49.2						
			Leq:	61.1		52.8						
3	25.02.2023	Nr. Gate No. 1	Max:	71.2	75.0	53.8	70.0					
			Min:	54.6		51.7						
			Leq:	47.6		42.2						
4	27.02.2023	Nr. Gate No. 3	Max:	52.4	75.0	43.9	70.0					
			Min:	46.2		39.6						

NORMS AS PER NOISE POLLUTION (REGULATION AND CONTROL) RUI	LES, 2000 (Industrial Area)	
Analyesd By	Approved By	
Shituite	f.	
Shiyal Kishor	Pankil Patel	

.....END.....

Ambient Noise Monitoring For The Month of March -2023

On Site 24 Hourly Monitoring Results

Company Name Sample Collected By		Mahan Energen Limited.								
		Laboratory Representative								
Sample Typ	e	Ambient Noise Monitoring								
Sr. No.		Location		Day Time in dB (A) leq (6:00 Am to 10:00 Pm)	Norms (Day Time)	Night Time in dB (A) leq (10:00 Pmto 06:00 Am)	Norms (Night Time)			
			Leq:	67.3		54.4				
1	06.03.2023	Nr. Admin Building	Max:	69.5	75.0	57.6	70.0			
			Min:	63.9		48.2				
			Leq:	61.9		54.1				
2	06.03.2023	Nr. Gate No. 1	Max:	70.2	75.0	62.8	70.0			
			Min:	58.2		50.7				
			Leq:	69.2		65,4				
3	09.03.2023	Nr. Gate No. 2	Max:	71.6	75.0	67.3	70.0			
			Min :	65.6		63,7				
			Leq:	56.2		48.8				
4	10.03.2023	Nr. Gate No. 3	Max:	58.4	75.0	52.1	70.0			
			Min :	53.1		44.6				

NORMS AS PER NOISE POLLUTION (REGULATION AND CONTROL) RU	LES, 2000 (Industrial Area)
Analyesd By	Approved By
Shiguk B.	R
Shiyal Kishor	Pankil Patel

INECHANISCE SECTION OF THE PROPERTY OF THE PRO

Mahan Energen Limited

Annexure-II

Greenbelt Details:

Year	Total Plantation	Area Covered in Ha	Plantation Survival Rate
FY- 2022-2023	5161	7.0	Mass than 00 %
Total Plantation	108446	116.0	More than 90 %

PLANTED SPECIES IN AND AROUND PLANT PREMISES

Sr. No.	Scientific Name	Common Name		
Trees		·		
1.	Peltophorum pterocarpum	Yellow Gulmohar		
2.	Azadirachta indica	Neem		
3.	Madhuca longifolia	Mahua		
4.	Vachellia nilotica	Babool		
5.	Tectona grandis	Saghwan		
6.	Ficus benjamina	Ficus		
7.	Millettia pinnata	Karanj		
8.	Albizia saman	Rain Tree		
9.	Delonix regia	Gulmohar		
10.	Senna siamea	Kasod		
11.	Syzygium cumini	Jamun		
12.	Mangifera indica	Mango		
13.	Psidium guajava	Guava		
14.	Manilkara zapota	Chiku		
15.	Phyllanthus emblica	Amla		
16.	Artocarpus heterophyllus	Jack Fruit		
17.	Gmelina arborea	Gumhar		
18.	Saraca asoca	Ashoka		
19.	Cassia fistula	Amaltaas		
20.	Mimusops elengi	Molshree		
21.	Terminalia arjuna	Arjun		
22.	Dalbergia sissoo	Sisham		
23.	Bombax ceiba	Simal		
24.	Juniperus	Hapusa		
25.	Thuja	Thuja		
26.	Moringa oleifera	Drumstick		
27.	Brahea	Palm		
28.	Lagerstroemia speciosa	Zarul		
29.	Aegle marmelos	Bel		
Shrubs		-		
30.	Callistemon	Bottle Brush		
31.	Codiaeum variegatum	Croton		
32.	Rosa	Rose		
33.	Bougainvillea	Bougainvillea		
34.	Hibiscus	China rose		
35.	Mussaenda erythrophylla	Mussaenda		
36.	Plumeria Spp	White Frangipani		
37.	ixora coccinea	ixora		
38.	Tabernaemontana divaricata	Pinwheel flower		
39.	Cycas revoluta	Cycas		
40.	Lantana camara	Lantana		
41.	Berberis thunbergii	Hedge		

ASH PERCENTAGE IN COAL

(October'2022 to March'2023)

Month	Coal Consumption (MT)	Ash Content in Coal (%)
October'2022	103595	27.44
November'2022	123894	26.67
December'2022	194660	29.38
January'2023	149287	29.54
February'2023	326560	29.98
March'2023	330943	33.97
Average		29.49

MT-Metric Tone

• Mahan Energen Limited is based on <u>Pit head</u> Thermal Power Plant

Mahan Energen Limited

Annexure-IV

Month	Total Ash Generation (MT)	For Cement Industry (MT)	For Brick Plant (MT)	Inside the plant premises/ boundary for area development/ Construction purpose (MT)	Pond Ash utilized Inside the plant premises/ boundary for area development (MT)	Pond Ash utilized for inside Ramp & approach road of dyke formation (MT)	Total ash Utilized (MT)	Ash Utilized %
October'22	28427	21074	0	5685	0	0	26759	94.13%
November'22	33046	15541	0	17505	0	0	33046	100.0%
December'22	57192	50629	0	11438	0	4869	66937	117.0%
January'23	44110	32486	0	11625	0	44452	88563	200.8%
February'23	97917	69460	0	28455	72343	30000	200259	204.55%
March'23	112432	72977	0	39453	172598	14973	300001	266.83%
Total	373124	262168	0	114163	244941	94294	715565	191.78%

2022-23

Annual Progress Report - Singrauli

Table of Contents

Preface		2
Messag	e from Business Head	3
Demogr	aphic Profile	4
Executi	ve Summary (max two pages)	5
Main se	ection (maximum 4 pages for each vertical)	7
1.1	Education	7-9
1.2	Community Health	9
1.3	Sustainable Livelihood Development	11-15
1.4	Community Infrastructure Development	16
1.5	Community Engagement Program	17
1.6	Case stories (max 3 stories - indicating outcome /impact of intervention)	18-20
1.7	Media coverage (selected news clippings, social media)	21
1.8	Employee Volunteer Engagement	212
1.9	Appreciation letter from stakeholder(s)	23
1.10	Beneficiaries count	244
Δdani	Foundation team	25

Preface

Adani Foundation's Singrauli chapter started its CSR activities for Adani Power in 2022 in 10 villages – 4 core and 6 peripheral villages. AF's journey at Singrauli can be divided into two parts: Phase I establishing AF in the area through entry point activities and Phase II – implementation of project-base interventions with community contribution.

In initial phase, Community need based structures were constructed of core village Nagwa – approach road repair, community hall, Anganbadi, pond deepening, Drainage cleaning (10 kms), renovation of shiv temple, overhead tanks, Ashes Dam boundary wall, classrooms, smart classrooms, drinking water facilities of schools and materials support to schools – books, bags with kits on Praveshotsav.

In FY 2022 – 23 Under Educastion sector in association with Vidhya Bharathi, Jabalpur (M.P) was launched in school with focus on remedial education to primary students lagging in reading, writing & numeracy.

To cater health needs of the Community Health Care Unit started with partner Mishra Poly clinic, Waidhan, Singrauli (M.P) (2022 – 2023) to provide immediate basic health care, counseling to the patients, with referral facilities at beneficiaries' doorsteps.

Women Entrepreneurship chapter started in Dec. 2022 with formation of **USHA KIRAN WOMEN ENTERPRISES FEDRATION** under Sustainable Livelihood Development. Under this federation 03 SHGs are running entrepreneur activity like domestic cleaning material packaging unit at Karsualal, Dhoop-Batti making group at Khairahi and Organic product like Vermi-compost, compost manure, Natural pesticide & bio-meal for plant preparing work is doing at Suhira village. Due to this total employment created for 18 families. Adani Annapurna Project initiated in 2022 – 23 supporting farmers of 6 peripheral villages to keep alive their traditional occupation through organic agricultural practices with a focus on natural farming.

Under Community Engagement, total 19 sports events have been organized by AF in the last 6 months. In which cricket tournament -02 (Nagwa & Raila), Football game - 07 (Khairahi, Bandhaura, Hardi, Raila, Nagwa) Volleyball - 02 (Karsualal, Nagwa) Kabaddi -01 has been organized. AF provided football sports kit to 32 player of MP state Santosh trophy player. Under Cultural activities Women's Day Celebrated at Nagwa, celebrate Madhya Pradesh Foundation Day on 1st Nov. at Nagwa, Bandhaura, Jute bag distribution against polythene ban at Nagwa village etc. Contribution/support in District Administration's campaigns programs shows our commitment as a responsible organization like wash day, TB day, Cancer Day. In this total 22 program 2819 people got benefited. FY 2022 - 23 CSR's journey of reaching unreached touched 02 tribal villages (Nagwa & Khairahi) of Singrauli district.

Message from Business Head

Message from Business Head It gives us great pleasure to present the Annual Report of Adani Foundation – Singrauli for FY 2022-23. As a responsible corporate citizen, we always believe in creating long term values for our stakeholders with the motto of "Growth with Goodness". We are committed to building a sustainable future by driving positive changes in the areas of Education, Healthcare, Sustainable livelihood Development and Community Infrastructure Development. Over

the past year, we have continued to focus on our core values of integrity, teamwork, excellence, and customer focus. Our efforts have resulted in significant progress in achieving our strategic goals and a positive on the communities we serve. We are proud to report that our initiatives have touched the lives of thousands of people directly or indirectly across the intervention area. Our education programs have provided quality education to underprivileged children, our Healthcare interventions have brought medical facility close to the communities, and our Sustainable Livelihood Programs have empowered many people with skills and resource to become self-reliant. We have launched a unique program "Science Exhibition" for the children in our intervention villages, which aims to introduce the learning education system. This program will enable the underprivileged students with 21st century skills and give them access to digital learning. Our efforts will give them access to health, sustainable livelihoods, access to quality education which will eventually upgrade their standard of living. We would like to take this opportunity to thank our employees, partners and stakeholders for their unwavering support and commitment towards our shared vision of a better tomorrow. We remain steadfast in our commitments to creating positive impact and contributing to the sustainable development of the communities we serve. We hope you find this report informative and insightful, and we look forward to your continued support as we embark on another year of Growth with Goodness.

Mr. Pravat Sundaray, Station Head – Operations, Mahan Energen Limited, Adani Power, Bandhaura, Singrauli (M.P)

Demographic Profile

Business Unit

The Mahan Energen Limited is a 2 X 600 MW Sub-critical domestic coalfired power plant, situated in the village of Bandhaura, Singrauli District Eastern part of Madhya Pradesh.

The 1st Unit of 600 MW at MEL was successfully commissioned, and commercial production commenced in April, 2013. The 2nd Unit of 600 MW was successfully commissioned, and commercial production was commenced in October 2018.

Mahan Energen Limited supplies its 95% of the power in open access and rest 5% to the state of Madhya Pradesh.

The Power generated is evacuated by double circuit 400 kV Mahan-Sipat Transmission lines cover the distance of 336 KM, which has the capacity to transmit 2000 MW.

The requirement of coal for these units is met through domestic coal from various sources viz., NCL, CCL & APMDC.

A railway siding 16 km away from the plant facilitates seamless supply of coal and other raw material. Nearest Railway Siding: Gajra behra; 16 KM from plant.

Adani Foundation

Adani Foundation's outreach in 1 blocks name Waidhan. Total 10 villages of 8 Gram Panchayats; 6224 households; Population; 27503-

SL.No.	Gram Panchayat	Village	Families	Population
1	Amiliya	अमिलिया	784	3546
2	Bandhora	सेमुआ	106	464
3	Bandhora	वंधौरा	403	1727
4	Karsualal	करसुआलाल	644	2628
5	Karsuaraja	करसुआराजा	783	3220
6	Khairahi		462	1979
7	Raila	रैला	547	2883
8	Nagama	चुरवाही	160	668
9	Nagama	नगवा	1340	5442
10	Suhira	सुहिरा	1015	4946
			6244	27503

Block information							
Block Name	No. of No. of No. of No. of having Town Panchayat Villages transport		es				
	Town	Palicilayat	Villages		0-499	500-999	1000+
Waidhan	1	104	265	237	56	86	137

Population Detail of Waidhan Block -					
Block	Total Population	Male Population	Female Population		
Waidhan	417721	219194	198527		

Socio-Demographic Details of block									
Disale	Population		Sex Ratio				Fami	ilies	
Block	Male	Femal	e Ov	/erall	0-6 age gr	oup	ВР	L	APL
Waidhan	219194	1 19852	7 9	906	949		267	68	21891
Socio-Den	nograp	hic Detai	ls of b	lock					
Block		eracy ate %		Caste popula		_	irth ate	De	eath Rate
	Male	Female	ST %	SC%	Other %				
Waidhan	72%	38.2%	19 %	14 %	59.99 %	3.	5 %		11 %

Core villages of the project area are rural area, so all core villages are surrounded by high rocks of stone, forest and local rivers & water streams. Major source of livelihood: is agriculture, NTFP collection, very small shops & business, of allied product of agriculture and animal husbandry (peripheral villages) Caste: Jaiswal, Shah, Saket, Sharma (OBC), SC & ST have a total population of nearly 25 thousands with 52% of male and 48% female population. Agriculture is the main source of livelihood in this area. Nearly 40% of the population comes from the Schedule caste in Gond and Saket on blocks. Young generation engaged in labor work in nearby industrial areas.

Executive Summary

Adani Foundation's Singrauli started from June 2022 for CSR activity of Mahan Energen limited in 4 core villages which are Nagwa, Kharahi, Karsualal, Bandhura and there are 6 other villages are situated near plant Suhira, Semua, Raila, Karsuraja, Betariya, Amilia. Adani Foundation is working on the below listed sectors

- Sustainable Livelihood Development
- Education
- Health
- Capacity building, Training & Awareness program
- Support to sports & cultural activity
- Community Structure Development

Key Highlights

Sustainable Livelihood Development

Promotion of organic vegetable cultivation-

Adani foundation is promoting to farmers for pesticide free agriculture practices-

i. Adani foundation run awareness camps and programs like Poshan Vatika, Kitchen Garden and Ganga Maa models program at village level. For promoting these activity 20 Women farmers has been selected from every target village. AF team regularly monitoring it for successfully making the programs.

> Organic Manure & pesticide preparations-

Adani foundation is promoting to organic cultivation in the project affected villages. AF is preparing vermi-wash, vermi-compost, compost manure, Natural pesticides, and bio-meal for plants with the support of Goushala at Suhira village. Linked this program to the vegetable production program so vegetable farmers would be compulsory to use this product.

> Capacity Building & training-

AF is providing technical support to farmers for promoting organic cultivation. In this context AF provided conducting Training awareness camp & on-field training programs with help of Krishi Vigyan Kendra Scientists. In the last six months total 10 training & awareness programme has been organized in 5 villages.

Livelihood through Skill development

> Training program by Union-RSETI

Adani foundation liaison with the Union bank's training institute named Union-RSETI (Rural Self Employment Training Institute) situated at Waidhan, Singrauli. Total 5 training batches has been completed of various trade such as Jute bag making- 2 batch, Motor winding & repairing – 01 batch, soft toys making- 01 batch and Artificial jewelry making – 1 batch. Total 49 candidates got benefited of this training program.

> Training program by Adani Foundation

Adani foundation organized total 4 batches of self-employment program of Mushroom Production- 2 batches, Self-employed tailor- 1 batch, Dhoop-Batti- 1 batch. Total 86 candidates got benefited of this training program. In which 05 were male and 81 were female candidates.

Health

> Hospital Facility in R & R colony-

Adani Foundation renovates the hospital for health facility in R & R (Resettlement & Rehabilitation) colony at Nagwa village. Total OPD CASES -14300 patients got benefited from this hospital. In which Pregnancy cases- 57, Lab tested- 935, Ambulance facility – 322 and so on.

> Specialized Health Camps-

AF has been organized 50 Specialized Health Camps in the plant affected areas. Organized camp was related to Eye, Gynecological, Pediatric, orthopedic, dental health and community medicine related. Total 3044 candidates got benefited from these camps.

> Theme based health awareness activities-

On the occasions of various theme-based program/day Adani foundation organized total 22 awareness program like wash day, TB Day, Cancer Day. In this total 22 program 2819 beneficiary got benefited.

Education

> R & R school support-

For providing best education facility to R & R affected family near plant AF tie- up with Vidya Bharati's Saraswati Shishu Mandir School. At present 1203 candidates are studying in school at different levels from std. nursery to 12th. In the school there are total no. of teaching staff is 38 and supporting staff in 08.

> Teaching & learning material-

AF supports to the candidate by providing books, copy, bags etc. and for physical growth of students, provided sports material like football, badminton, cricket game material to school.

> Support to other Govt. Schools-

Adani foundation has been supported to other govt. schools like in Bandhaura Middle school-245 students, Semua Primary School-55, Chirihwan tola Primary School-70 students, Karsua Lal middle school-85 students, Potki tola primary school-50 students, Naveen Primary school (Harijan Basti)-50 students.

Supports & Cultural Activity-

> Sports events-

AF supported to village youths by providing sports activity material on gram panchayat level. Total 19 sports events have been organized by AF in the last 6 months. In which cricket tournament -02, Football game - 07, Volleyball - 02, Kabaddi -01 has been organized. AF provided football sports kit to 32 player of MP state Santosh Trophy players.

> Cultural Activity-

On the occasion of various cultural days AF organized events & activity like Madhya Pradesh Foundation Day, Jute bag distribution against polythene ban, Women Day Calibration etc.

Community Infrastructure Development

Drainage cleaning-

In the R & R colony Nagwa drainage cleaning works done on the request of villagers. The total distance of drainage is appx. 10 km. By this activity total 720 household got benefited.

- Refurbishment of Anganbadi Centre-
- > Temple Renovation-
- ► <u>Hospital Renovation</u>-

Main section

1.1 Education

Free Education Program for R&R Family

The adani Foundation's provide Free education to all R&R family village Nagwa, children encourage underprivileged students with promising academic records to complete school and pursue higher education. Children, especially girls, being raised by single mothers and womenheaded families find special mention within this framework. So far, more than 12,00 students have benefited, with this program. In certain cases, the Foundation also facilitates sponsorships for deserving students pursuing higher education.

School improvement program

The adani Foundation began the program with the objective of establishing schools in strategic locations, where government and private schools are absent or inadequate. The Foundation ensures that this schools have modern classrooms, libraries, laboratories, playgrounds, residential quarters.

The project also improves the amenities and infrastructure at Saraswati Shishu mandir schools within the area.

Teachers' training program

Teachers are crucial to ensuring that the education imparted at school is up to established standards. The adani Foundations training program aims to make educational activities more fulfilling for teachers, who in turn make learning a meaningful experience for children.

To enhance the quality of teachers, adani foundation conducts motivational workshops and IT skills development courses. These activities have been conducted in the states of Madhya Pradesh and targeting more than 35 teachers of SSM School.

Creative methods of education

The adani Foundation promotes the use of methods such as storytelling, theater, and activity-based learning to make the learning experience more enriching for students. The education program provides IT equipment and modern educational material.

In addition, buildings and open spaces have been converted into learning aids. For instance, steps inside schools have numbers painted on them; and the various angles to which classroom doors open are painted on the floor, thus making the learning process interesting and continuous.

Annual Investment on Building Bright Future of Children

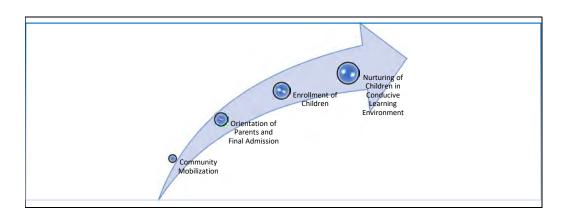
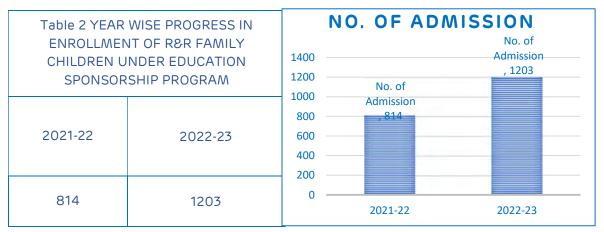

The annual expenses on each child are borne by Adani Foundation. The unit cost of each child ranges from Ten Thousand per Year. investment of During the financial year 2022-23, total One Crore Twenty Two Lakh for 1203 R&R Family children was supported by Adani Foundation.

Table 1 Financial Investment on Education of Children				
Year Enrolled Students Expenses per month/ward Total			Total Expenditure (in Cr)	
2022-23	1203	10000	1.22 CR	

Triggers of Adani Foundation

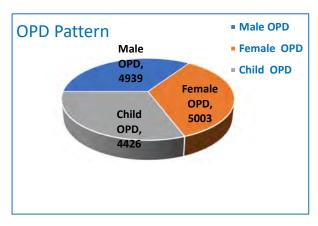
I. Community Mobilization: The families were approached to inform, educate, and sensitize on provisions and importance of education under this programme. The community were mobilized with support of SSM School Teachers, Village Resource Person, Community Leaders, and active persons which helped disseminate knowledge regarding the services.


II. <u>Orientation of Parents and Final Admission</u>: Most parents think that enrolling their kids in the top school is good enough. However, this is not the reality. The school alone isn't

responsible for the all-round development of the kid. Your input as a parent is quite crucial. And this is where parents' orientation programs come into the picture.

The parents of all the students are invited and are given a walkthrough of all the school processes. This way parents can understand what their kid goes through each day. Parent orientation programs also help parents voice their opinions. For example, you can share what you feel about the school, the system, teachers, etc. Also, parent orientation programs help parents know about something new that has been introduced in the school for their kids.

III. <u>Enrolment:</u> On June 2022, the parents of R&R Colony were convinced in each family to enroll their children in educational institutions. Total 1203 Students enroll in academic year 2022-23. it was challenging to retain the enrolled students and attend regular classes, AF team & School Teachers put dire efforts to stabilize and continue the regular course.



Above graph is showing that the no of admissions increased by 387 (32%) it shows that parents are aware about education.

1.2 Community Health

Hospital Facility in R & R colony-

Adani Foundation renovates the hospital for health facility in R & R (Resettlement & Rehabilitation) colony at Nagwa village. Total OPD CASES -14300 patients got benefited from this hospital. In which Pregnancy cases- 57, Lab tested- 935, Ambulance facility – 322 and so on. The hospital is serving not only to plant affected area's beneficiary but surrounding 5-6 village patients receiving the benefits of this hospital.

2 Specialized Health Camps-

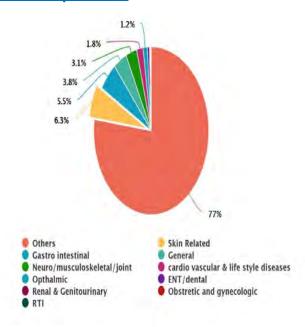
AF has been organized 50 Specialized Health Camps in the plant affected areas. Organized camp was related to Gynecological, Pediatric, orthopedic, dental health and community

medicine related. Total 3044 candidates got

benefited from these camps.

No of Footfall / Diagnose				
Child	Male	Female	Total Footfall (Child + Male + Female)	
601	870	1573	3044	

Theme based health awareness activities-


On the occasions of various theme-based program/day Adani foundation organized total 22 awareness program like wash day, TB Day, Cancer Day. In this total 22 program 2819 beneficiary got benefited.

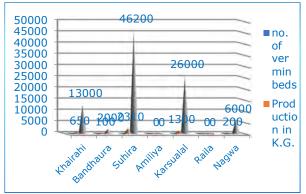
Participants Details in Health Awareness Meeting					
Child	Male	Female	Total		
287	149	2383	2819		

Disease pattern

Ambulance facility

Increase in medical ailments has led to the rise in hospitals and emergency medical services assisting patients who require emergency medical assistance at critical moments helping them to reach the hospital on time thus saving their life. 24x7 hrs Ambulance Facility dedicated to Community for better health facility & Doorstep Health camp for quick facility for health service.

2.2 <u>Sustainable Livelihood Development</u>

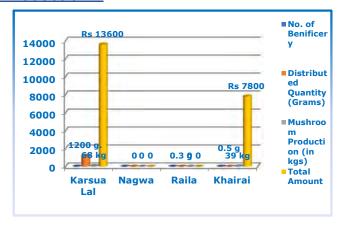

Objective is to promote inclusive growth and progress through livelihood security of all sections of society. At Singrauli site sustainable livelihood interventions are

1. Organic Manure Production -

Organic manure provides all the nutrients that are required by plants but in limited quantities. It helps in maintaining Carbon & nitrogen ratio in the soil and also increases the fertility and productivity of the soil. Apart from this there are 5 other reasons i.e. it improves airy soil structure, healthier soil and more fertile, longer period available for crops than chemical fertilizers, environmentally friendly, easy to use.

> Summary data of Organic Manure Production with Graph representation -

SNo	Village	No. of vermin beds	Production (KG)	Appx. Value
1	Khairahi	7	650	13000
2	Bandhaura	1	100	2000
3	Suhira	31	2310	46200
4	Amiliya	2	0	0
5	Karsualal	12	1300	26000
6	Raila	2	0	0
7	Nagwa	2	200	6000
	Total	57	4560	91200


Above data shows total 57 beds have been prepared in the 7 villages. In which 31 has been prepared in the Suhira Goushala in the three phases. Normally the size of bed is 12 feet long 3 feet broad with 2'1/2 feet height of cow dang & agri. waste. Till March 23 Usha Kiran Women group, Suhira (Goushala) and other individuals had been ready the 4.5 tons of compost and this material is being selling in the market. Those farmers used this manure they gave remarkable feedbacks that production increased twice, and soil is being more fertile. Farmers are selling organic vegetables on increased rate then normally produced vegetables.

2. Oyster Mushroom Spawn Distribution and Production -

The reason behind promotion and seed distribution of Oyster Mushroom, it is high in various vitamins, including biotin, riboflavin, and pantothenic acid, as well as folate, vitamin B6 and B1. Aside from these, it contains a trace amount of selenium, zinc, iron, and phosphorus, which can help to build immunity and improve general health. Below data shows that individuals/villagers are using mushroom in their food. This will fulfill the nutrition & other supplements adequacy in their body.


Summery Detail of Oyster Mushroom Production —

Villages	No. of Beneficiary	Distributed Quantity (Grams)	Mushroom Production (in kgs)	Total Amount
Karsualal	12	12 kg	68	13600
Nagwa	3	0.40 g	13	2600
Raila	3	0.30 g	0	0
Khairai	5	0.50 g	39	7800
Total	23	13.20	120	24000

Above data shows in total 23 Mushroom production unit started in the individual household in the 4 villages. Before starting the spawn distribution AF provided training in two stages of preparation of bags & harvesting process. In which 12 kg spawn distributed at Karsualal village. Total production of mushroom is 107 kgs in the last five months. Villagers are using mushroom as essential meal. Apart from this rest mushroom they are selling into the nearby market. Total quantity of 48 kgs has been sold into the market worth rs. 9600.

3. Natural Bio-meal Pesticide preparation-

S.N o.	Village	Prepared Quantity (In Itrs.)	Trial & Test	Result & Impact
01	Suhira (Goushala)	150 Litter	 It took 15 days for being ready by natural process. It was prepared by SHG under the guidance of Adani Foundation. For trial, natural pesticide applied with 20 farmers' farm in 5 different villages on 10 various vegetables. Pesticide applied on affected plants twice in a week and for two weeks under the trial period. 	 It has phenomenal results. It took hardly 3-4 days to revive the affected plant. It works as plant bio-food or tonic too. Effectively increases conditioning of soil also. Farmers are happy and demanding training for making it on their home. Due to increasing demand SHG is try to packaging & sell at small level under the guidance of Adani Foundation.

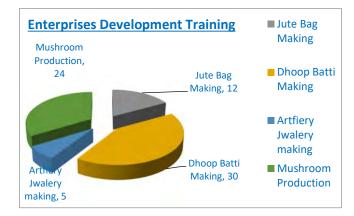
4. Vegetable Seed Distribution and Production-

Summary report of seed distribution & production-

Seed Name	Seed Distributed(g)	Production (KG)	Selling Price (Rs)
Spinach	1.46	951	12310
Radish	1.46	4743	47430
Maithi	13.1	115.27	11575
Cauliflower	2.66	3440	68800
Beetroot	0.73	400.01	6001.5
Carrot	0.64	408	6470
Tomato	1.07	3965	35170
Pea	14.06	1497	44910
Cabbage	58	2118	42360
Red Sag	1.46	1085.5	17565
Chilli	0.49	3	300
Coriander	1.72	171.5	17150
Total	96.85	18897	310042

Vegetable Seed distributed by Adani foundation in the villages is 96.85 kG of different variety. Adani foundation is promoting to farmers for pesticide free agriculture practices. Adani foundation run awareness camps and programs like Poshan Vatika, Kitchen Garden and Ganga Maa models programme at village level. For promoting these activity 20 Women farmers has been selected from every target village. Adani foundation supported by giving them tested & treated seeds, bio fertilizer, green net for fencing, training on organic vegetable production and field preparation. After giving seed AF team regularly monitoring it for successfully making the programs.

5. <u>Skill Development and Capacity building & Training Program-</u>


Adani Foundation (MEL) is working on livelihood though skill development program. There are many candidates who had left the education after Higher Secondary due to financial crisis in the family and looking for support to earn. Adani foundation team liaised with the govt. institution Union bank RSETI (Rural self-employment & Training Institute) and enrolled 47 candidates for residential training of Motor winding and repairing, Jute Bag Making and Artificial Jewelry making for different time. In the field AF arranged the EDP trainings related to Dhoop Batti Making, Self Employed Tailor, Mushroom Production for total no. of 84 candidates. Below given list shows the trade and the list of candidates-

1. Skill Development Trainings					
no.	Trade	No. of Candidate			
1	Self Employed Tailor	30			
2	Motor Windings & Repairing	22			
	Total	52			

Skill Development		■ Self
		Employed Tailor
Motor Windlags & Repairing, 22	Self Employed Tailor, 30	Motor Windings & Repairing

2. Enterprises development training				
Sno.	Trade	No. of Candidate		
1	Jute Bag Making	12		
2	Dhoop Batti Making	30		
3	Artificial Jewelry making	5		
4	Mushroom Production	24		
	Total	71		

Environment Protection program (Hariyali Yajna)

To create awareness and spread the message of saving our planet- 'Protecting our environment is the need of the hour. ' - To help nature and mother earth to get its natural beauty and components back.

The purpose of the drive was to educate school students about the importance sof growing trees.

Benefits from this program to clean air across the Society near plant area & Controlled temperatures.

Trees help in reducing heat produced by industries. Thus, they maintain the temperature of the place. also provide a clean environment as they take in carbon dioxide and give out oxygen.

The program aimed to plant about 2000 saplings in the school and all around as well. & in this vision we successful to complete the target.

2.3 Community Infrastructure Development

R & R colony Hospital Renovation

Nagwa is situated total 40 KM far from district hospital. AF supported to complete refurbishment and renovation work oh hospitals at Nagwa village at present two doctors (Male-1 & Female-1) attends OPD every day. There is total 5 beds in the hospital.

Refurbishment of Anganbadi Centre-

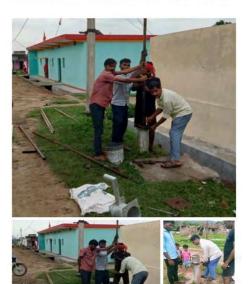
Adani foundation Renovate the Anganbadi center of Nagwa village on the request of Panchayat elected people. Now after completion of Anganbadi center total 32 beneficiaries receiving the benefits of it at present.

Temple Renovation-

adani foundation supported to the villagers on the religious ground by renovating the Shiv temple.

Drainage cleaning-

In the R & R colony Nagwa drainage cleaning works done on the request of villagers. The total distance of drainage is appx. 10 km. By this activity total 720 household got benefited.



Safe Drinking Water (Handpumps & Water tanker)

- Handpumps are the only source of drinking water in Nagwa village, on which the lives of the villagers depend.
- There is a total of 50 handpumps in the rural area, out of which 27 handpumps were defective for a long time, which was repaired by Adani and helped the villagers.

Sports Activity for Youths

For the overall Development of Youths and positive relation with Community, AF Singraulli team conducted, 8 no's Football Tournaments, 5 Nos cricket tournament, 02 nos. Volleyball tournament, 2 nos Kabaddi Tournament, o2 Nos Athletic tournaments

2.4 Case stories (max 3 stories - indicating outcome /impact of intervention)

First story -

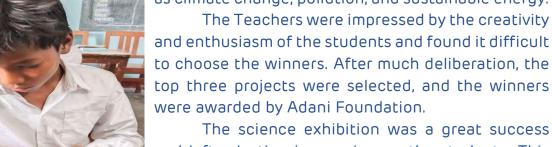
Sitawati Jaiswal, Poshan Vatika

Sitawati Jaiswal, w/o Anand Prasad Jaiwal age 40 is living at karsualal village near Adani plant (Mahan Energy Limited) at Singrauli district. She is a housewife, and her husband is a farmer and She lost his agriculture land in plant establishment. The total land she lost is 1 acre of land. Land was the only source of surviving her family. Her family does not have any livelihood sources other than lost land. He worked as labourer on others farm. She has 2 kids- one boys & one girl. Her husband doesn't earn as much as so he can support to his family at village. In oct. 2022-month Satkumari, village coordinator of Adani Foundation visited to Sitawati's house and

explained the benefits of organic Poshan Vatika (vegetable production) and then her family agreed to do organic vegetable production, and then officer of Adani Foundation visited to his house and explained complete process of organic vegetable production at home. AF provided her to vegetable seeds and material required for vermin bed preparation like black & thick polythene, earth warms and training to preparing the vermin beds. Then sitawati and her husband prepared one vermi-bed and did make the poshan vatika structure. Adani Foundation facilitated to her by giving training and all the technical aspects i.e., preparation of basal dose of land before sowing the seeds, use of agriculture wastages & cow dang, size of polythene, quantity of earth warm and quantity of vermi-compost use in the field. After one-month poshan vatika production was started and the rate of selling vegetable was high then the normally produced vegetables. She got production from Poshan vatika is spinach-5 kg, Raddish- 10 kg, Cauliflower-20 kg, Beetroot – 5 kg, Carrot- 8 kg, Tomatto-8 kg, Pea- 8 kg, Red Spinach- 12 kg. etc. The total cost of these vegetable is rs. 5200. Some quantity she sold and some she had used for self. She felt happy when she checked the market value of organic products. Sitawati is also using vegetable in their meal for getting better health. Now she has start promoting to the other women and explaining the importance of organic vegetable production and feeling happy to get another sustainable livelihood source

2nd Story-

Science Exhibition in SSM School


Adani Foundation decided to organize a science exhibition for the first time at Saraswati Shishu Mandir School in a village named Nagwa in Singrauli district. The Foundation believed that this would provide a platform to the students to showcase their innovative ideas and creative thinking. This created an atmosphere of excitement in the school as the students were

preparing for the exhibition. Due to this activity student are spending long hours in the school laboratory for brainstorming ideas and experiment. Each student was determined to make their project stand out and impress the instructor. On the day of the exhibition, there were crowed of in the school ground of parents, teachers, and prominent members of the community. The exhibition set up was in the school hall, and the students proudly presented their projects to the visitors.

There were variety of models on display, including working models of wind turbines, solar panels, and water filtration systems. Demonstrations were also held on topics such

The science exhibition was a great success and left a lasting impression on the students. This inspired him to pursue his interest in science and technology and work towards finding solutions to some of the world's most pressing problems.

The Adani Foundation was thrilled with the success of the exhibition and promised to hold more

such events in the future. He hoped that this would encourage more students to take interest in science and technology and help them become innovators and problem solvers of the future.

3rd Story-

Pritam's Joyful Delivery

Pritam Sharma W/O- Pradeep Kumar Sharma is a young woman living in Khairahi village area of Singrauli district, India. She was pregnant with her first child and very excited but nervous about the upcoming delivery. She knew that giving birth to a child could be difficult and dangerous, especially without proper medical care.

Fortunately, the Adani Foundation, a non-profit organization that supports community development projects, recently launched a program to provide medical assistance to pregnant women

in the area. Under this program, he arranged for a new ambulance to be delivered to the village where Pratim lived. When Pritam went into labor, her family immediately called the Adani Foundation's ambulance. Within minutes an ambulance arrived and trained medical staff on board immediately assessed Pritam's condition. They determined that she needed to be taken to the nearest hospital for delivery.

Adani Foundation's ambulance was equipped with all necessary medical equipment and supplies to ensure a safe journey to the hospital. The ambulance staff carefully loaded Pritam onto a stretcher and made sure she was comfortable for the journey. On the way to the hospital, ambulance crews monitored Pritam's vital signs and gave her pain relief. He reassured her that everything would be fine and that she was in good hands.

Thanks to the ambulance service of Adani Foundation, Shanti reached the hospital safely and gave birth to a healthy baby girl. The Adani Foundation continued to provide post-delivery care and support to Pritam and her family.

Pritam was grateful for the help and support of the Adani Foundation during such a crucial moment in her life. She knew that without their assistance, her delivery could have been much more difficult and dangerous. She felt fortunate to have such excellent medical care, and her baby girl was a testament to the value of the work of the Adani Foundation.

Media coverage (selected news clippings, social media)

अदाणी फाउंडेशन ने शुरू की निःशल्क एम्बुलेंस सुविधा, मरीजों को समय से मिलेगा इलाज

ही प्रवासी विराग्येणी - मंगियों को स्थाप में बेलार इल्टब्स शिवामें की उद्देशन में वरिवास को अहानी पार्टेशन में मान्य हरेगी शिविटेंट अं अहानी पार्टेशन में मान्य हरेगी शिविटेंट अं इन्हर्टना की है। यह वासकी अन्तरीय गणां गंदा पार्ट्ट्डीय अन्तरात्रकार वार्ट्डीयों के शिवटेंट किए 24 भटे उस्तरकार होगी जिस्सान विराह्म पार्ट्डियों के शिवटेंट किए 24 भटे उस्तरकार होगी जिस्सान विराह्म पार्ट्डियों के शिवटेंट किए उद्देश अहान की स्थाप होगी की स्थाप मान्य पार्ट्डियों के स्थाप में भीता अहान की स्थाप होगी की दिख्यात पार्ट्डियों के स्थाप के स्थाप अहान अहान हों की दिख्यात पार्ट्डियों का पार्ट्डियों के स्थाप के स्थाप अहान अहान हों के उपयोग्धित पार्ट्डियों का पार्ट्डियों के स्थाप मान्य अहान अहान हों की उपयोग्धित पार्ट्डियों के स्थाप मान्य अहान की स्थाप अहान की स्थाप में नाणा विष्य पुरस्ति के स्थापन की स्थापन की स्थापन स्थापनी में अहान की पार्ट्डियों के स्थापन की स्थ

अंदर्गणे फाउंड्रहरू म्ह्राम्स्य सूचियाओं की जन-तम कर राष्ट्रवारी में लिए प्रिल्या है और इस दिया में नमस्त्रा से साम मिल्या के है इस मोके पर माझ्य इसकी लिएडेड को स्टीप्त के इस्त्रा मोके स्ट्राम के स्टीप्त अपनी माम मामाने के इस्त्रा मोके स्ट्रास के हिंद- अपनी माम मामाने प्रतिकार से स्ट्रास के हिंद- अपनी माम मामाने प्रतिकार में स्ट्रास के हिंद- अपनी माम मामाने प्रतिकार के स्ट्रास के हिंद- अपनी किस के स्टीप्त के स्ट्राम से स्ट्रास के हिंद- के मामाने माम से स्ट्रामन से पित्रालिया संस्थितियों का महत्राहरी सेशान करा पर्वे हैं इस के मामाने में मिल्या के स्ट्रामन से पर्वे हैं इस के मामाने में मिल्या के स्ट्रामन स्ट्रामन के प्राप्त में बाद स्ट्राम के मिल्या के जन्मा के इस्त्रा मामाने हैं है जिस से मिल्या के जन्मा के स्ट्राम के प्राप्त में मामाने के मामाने से अस्त्रालिया के स्ट्राम के प्राप्त के स्ट्राम मामाने हैं है नगाम मिल्या के स्ट्राम के प्राप्त के मामाने से स्ट्राम स्ट्रामन का प्रमुख करेंद्रम महिल्या है के अपनी सर्वेशन का प्रमुख करेंद्रम महिल्या है के अपनी

अदाणी फाउंडेशन द्वारा महिलाओं को स्वरोजगार से जोड़ने और आत्मनिर्भर बनाने पर दिया जा रहा जोर

उपा किरण शक्ति उधमी समूह

quitter y could be

trianella

तहसील अंतर्गत महान इन्होंन हिर्मिटेड से प्रभावित गांवों में महिलाओं को स्वरोजगार के साधन उस्लब्ध कराने और आत्मनिक्षेर बनाने के डोर्स्य से स्वराही गांव में वनान के उद्देश्य से खराता गांव में शुक्रवारको एक दिवसीय प्रशिवण शिविर का आयोजन किया गया। इस दौबन अदाणी फाउन्नेशन के विशेषन ट्रेनर और प्रोजेक्ट अधिकार विकास समृ ने महिला उद्यमी समूह %उषा किरण% से जुड़े स्थानीय ग्रामीण महिलाओं को जुड़ स्थानाय प्रमाण माहराज्ञ का प्रश्नाती, आरावती एवं संख्या क्रा बनाने का यूर् सिरखाया प्रश्निष्ठण खे रही महिलाओं को इसके लिए अदाणी फाउँडेशन की और से नि-शृष्टक काच्या महल, पीक्रिंग की सामग्री, आवश्यक मशीनें और सामग्रा,आवश्यक मतान आर प्रचार-प्रसार करने की सामग्री भी

प्रधार-प्रधार करने थी सामधी भी प्रधान प्रधान करना करना किसती करना की स्थानी करना की स्थानी के निवाद करना की स्थानी के लिए प्रधान की स्थानी के लिए प्रधान के स्थानी के लिए प्रधान के स्थान की प्रधान करना था प्रधान करने के लिए प्रधान करना था प्रधान करने के लिए प्रधान करना की स्थान की स्थान करना की स्थान की स्थान करना की स्थान करना की स्थान करना की स्थान की स्थान की स्थान करना करना की स्थान की स्था

विकास कर उनको रोजधार में जोड़ने और स्वाबलम्बी बनाने के उद्देश्य अब तक अलग-अलग सम्बन्धानामाँ बनात के डांट्स अस तक अंशा-अन्तरा कार्यक्रमों के मध्यम से 300 से ज्यादा महिलाओं की निःशुरूक प्रविचया दिया जा चुक्त है। श्रीवादी गांव में आयवींता इस कार्यक्रम के समस्त संच्वान में सीरस्असर अभिकारी मनीज प्रभक्त, ग्राम सम्पन्ध्य क्रमलेश कुमारी एसं प्रीजेक्ट अभिकारी विकास रॉय का प्रमुख योगदान रहा जबकि स्थानीय महिलाओं में

देवी, देव कुंवर, पूजा साकेत, मनोषा साकेत और सोनमती की स्वार्थात ने आयोजन को सफल कार्या प्रशिक्षण प्राप्त सभी प्रशिक्षण प्राप्त सभी प्रशिक्षण प्राप्त सभी प्रशिक्षण अदाणी फाउडियन के तस्क से निःशृच्य समग्री पाकर क्रमी खुश हैं और बोअपने ज्यापार में आगे चलकर अन्य सामग्रियां बच्चने की बात कह रही हैं।

स्थानीय ग्रामीण जरूरतमंद स्थानीय महिलाओं को आत्मनिर्भर

स्थानिय प्राामण अंतर स्वरुपानिय स्थानिय स्थान

रीवा 07 अक्टूबर 2022 www.djmp.in/opapor

= सिंगरौली जागरण ==

कुपोषण दूर करने पर जोर : अदाणी फाउंडेशन का पोषण वाटिका पर एक दिवसीय प्रशिक्षण

अदाणी फाउंडेशन द्वारा अंतर्राष्ट्रीय महिला दिवस के अवसर पर नारी सम्मान कार्यक्रम आयोजित

बैंदुन, सिंगरौली। अंतर्राष्ट्रीय महिला दिवस के मौके पर अदाणी फाउंडेशन द्वारा रविवार को आयोजित महिला सराक्तिकरण नागरूकता कार्यक्रम में करीब 300 ग्रामीण मनिलाओं ने बढ़-चढ़ कर हिस्सा लिया। माद्य तहसील अंतर्गत महान इनजेंन लिमिटेड से प्रभावित गांवों नगवा, बंधौरा, कर्सुआलाल और खैराही के विस्थापितों के लिए नगवा गांव में बनाये गए पुनर्वास कॉलोनी में अवर्षिजत इस कार्यक्रम के मौके पर संगीत, नृत्य, भाषण एवं रंगोली प्रतिवीमिताओं के माध्यम से यह सत्देश देने की कोरीशा की गयी कि महिलाएं अपने साथ-साथ पूरे समाज को बदलने की ताकृत रखती हैं. उन्हें जरूरत मिर्फ अपने आत्मबल को पहचानने की है।

अदाणी फाउंडेशन द्वारा अंतराष्ट्रीय महिला दिवस के अवसर पर आयोजित आत्मनिर्भर नारी सम्मान कार्यक्रम में आसपास के क्षेत्र की पहिला सरपंच, उपसरपंच एवं चीरा उप स्वास्थ्य केंद्र के स्वास्थ्य कार्यक्रम की शुरुआत को। उन्होंने कहा कि महिलाओं की आर्थिक निभरता न सिर्फ परिवार के लिए बल्कि देश की आर्थिक तरकी में सुपरवाइजर श्रीमती प्रेमलता जायसवाल ने महिलाओं को जागरूक एवं आत्मनिर्भर बनने को सलाह दी। कार्यक्रम में सफल संचालन में बंधीरा को सरपंच डॉरामती सिंह, उपसरपंच सनैना सिंह, नगवा सरपंच कुसुम पाँडे, उपसरपंच तारामती, करसुआलाल की उपसरपंच राधा जायसवाल और अदाणी फाउंडेशन के मनोज प्रभाकर का

मानमतो. आशा सपरवाडजर सविता विश्वसम् ओमकार

शर्मा भी मौजूद थीं। कार्यक्रम में देवचंद विश्वकर्मा, रवीना शर्मा, सेजल तिवारी, नेहा विश्वकर्मा ने अपने संगीत के माध्यम से जबकि नत्य कार्यक्रम में नमता जायसवाल और अंग जायसवाल

का बेहतरीन प्रस्तुति रहा। भाषण प्रतियोगिता में लॉलता विश्वकर्मा, पूजा शर्मा, उषाकिरण महिला उद्यमी रूप से मुत्री पनिका, उपिला नायसवाल, पुण्या जयसवाल, नीरज साह और साँरता साह के अलावा आंगनवाड़ी कार्यकर्ता मीना पांडे, शोभा रानी, चंपा देवी, भी महत्त्वपूर्ण भूमिका निभाती है। मंच के माध्यम से आजा, पूष्मा, सोन् गुसा ने भी हिस्सा लिखा। आजा कार्यकर्ता फोटो यादव, सपरवाइजर श्रीमती प्रेमलवा जायसवाल ने महिलाओं को जागरूका, इंटमती विचार, विमला, समागी, सरस्वती, सीता, रीता, प्रीमला एवं आत्मनिभेर नारी सम्मान कार्यक्रम को काफी सराहा और कहा कि हम सभी अदानी फाउंडेशन के इस काम से बहत प्रभावित हैं।सभी महत्वपूर्ण योगदान रहा। इस मीक पर आजीविका मिशन की विजेताओं को अदाणी फाउडेशन के तरफ से पुरस्कार देकर दिवस के रूप में मनाया जाता है।

सम्मानित किया गया। इस कार्यक्रम का उद्देश्य ग्रामीण महिलाओं के बीच यह सन्देश पहुँचाना है कि वह हर मामले में आत्मिनभर और स्वतंत्र हैं और पुरुषों के बराबर सब कुछ करने में समर्थ भी हैं। ग्रामीणों ने अदाणी फाउंडेशन के इस कार्यक्रम का स्वणत करते हुए माना कि महिलाओं को अपने अधिकारों के लिए अभी आगे मीला लम्बा सफर तय करना है, जो दुर्गम एव कठिन तो है लेकिन महिलाओं ने यह साबित किया है कि वो जीवन के हर क्षेत्र में कार्य को करने में स्पन्नम हैं। घर की चारदीवारी के अंदर रहने वाली महिलाएं आज अपने देश ही नहीं विदेशों में भी अपना परचम लहरा रही हैं। महिलाओं की इन्हें उपलब्धियों को मराहने और उन्हें और ज्यादा सशक्त बनाने के लिए हर साल 8 मार्च को अंतर्राष्ट्रीय महिला

महिलाओं की आजीविका के लिए कौशल विकास पर अदाणी फाउंडेशन का जोर

विन्ध्य चेतना,सिंगरौली। माडा तहसील अंतर्गत महान इससे जुड़कर आत्मनिर्भर बनने इनर्जेन लिमिटेड से प्रभावित गांवों नगवा, बंधीग, कसंआलाल और खैराह्म में जरूरतमंद महिलाओं को आत्मनिर्भर बनाने की दिशा में सक्षम योजना के तहत अदाणी फाउंदेशन की तरफ से विशेष पहल किया जा रहा है। महिलाओं की आजीविका के लिए कौशल विकास और उद्यमिता कार्यक्रम के अंतर्गत अदाणी फाउंडेशन की टीम के सहयोग से महिला उद्यमी समह उपा किरण से जुड़ी महिलाएं होम केयर क्लीनिंग प्रोडक्ट बजावर बाजार में बेच रही हैं। रोम केयर बजीदिंग पोटकर के तहत फ्लोर क्लीनिंग, बाथ रूम क्लीनिंग के साथ साथ वर्तन और कपड़े धोने की सामग्री तैयार की जाती है। अब इन गांवों को महिलाएं आत्मनिर्भर बनकर परिवार को बेहतर जीवन के साथ नई दिशा देने का कार्य कर रही हैं।मांग को देखते हुए इन स्थानीय महिलाओं द्वारा अब लगातार इन सामग्रियों के निर्माण का कार्य जोर पकड़ रहा है और उसे अस्पतालों, विभिन्न दफ्तरों, रेस्टोरेंट, होटलों, किराना दुकानों आदि से संपर्क कर बिक्री किया जा रहा है। इस व्यवसाय से जुड़कर हर महिला को प्रतिमाह लगभग चार हजार रुपये की आमदनी होती हैं। अभी तक अदाणी फाउंडेशन की मदद से कुल 35 स्थानीय महिलाओं को होम केयर क्लीनिंग ग्रोडक्ट बनाने की ग्रशिक्षण दिलवाई गयी है लेकिन ग्रामीणों की खुशहाली के लिए आनेवाले कुछ महीनों में 200 स्थानीय महिलाओं को इस हुनर को सिखाये जाने का लक्ष्य है। धीरे-धीरे अन्य महिलाएं भी

लगी हैं।

महिला उद्यमी समूह उपा किरण की टीम लीहर दिमेला बाहर में नौकरी करते थे और घर की आर्थिक स्थिति अच्छी नहीं थी। अदाणी फाउंडेशन की टीम ने गांव में महिलाओं को एकत्रित कर खुद का व्यवसाय शुरू करने एव आत्मनिर्भर बनने के लिए प्रेरित किया। उन्हें होम केयर क्लीनिंग

पोडकर बनाने एवं बाजार में बेचने की बात समझाई गयी। इसके बाद उन्हें अदाणी फाउंडेशन द्वारा इन प्रोडक्ट को बनाने से सम्बन्धित निःशुल्क ऑनलाइन ट्रेनिंग दिलवाई गयी और पोडकर बनाने से सम्बन्धित सामग्री उपलब्ध करवार गयी। उर्मिला जायसवाल कहती हैं कि अदाणी फाउंडेशन ने व्यवसाय से महिलाओं को जोड़कर उनकी तकदीर बदलने का काम किया और आमदनी के एक से अधिक साधन होने से अब वो खशहल जीवन व्यतीत कर रही हैं।

गामीण महिलाओं को स्वावलंबी बना रहा अराणी फाउंडेशन: आर्थिक रूप से कमजोर परिवारों, महिलाओं और

बेरोजगरों को आत्मिनर्भर बनाने के उद्देश्य से अटाणी फाउंडेशन द्वारा समय-समय पर कई योजनाओं की शुरुआत की जाती है। जिन ग्रामीण महिलाओं में शिक्षा का अभाव है एवं कृषि कार्य से जड़ी हैं, वैसी महिलाओं को खेतों को उपजाऊ ानने के लिए वर्मी कम्पोस्ट खाद बनाने की तकनीक और जैविक खाद बनाने के तरीके से अवगत कराया जा रहा है। स्थानीय जरूरतमंद महिलाओं को हनरमंद बनाने और रोजगार के अवसर पैदा करने के उद्देश्य से सिलाई प्रशिक्षण केंद्र की स्थापना की गई है। अदाणी फाउंडेशन की टीम के मदद से ग्रामीण महिलाओं को मशरूम का उत्पादन, धूपवत्ती, अगरवत्ती एवं संबानी कप बनाने जैसी टेनिंग दी जा रही है।

न्यायिक भारत

सीधी/सिंगरौली

अदाणी फाउंडेशन द्वारा वॉलीबॉल और कबड़ी प्रतियोगिता का आयोजन, कोठिया और माडा की टीम विजेता घोषित

Employee Volunteer Engagement

For communities, employee volunteering provides a skilled and talented volunteer pool, as employees devote personal and professional skills to community needs, Business HoDs wives support to villagers in different program and mobilize them with their experiences and ensure them for better support by Adani.

Participation in Children Day Celebration & Republic day celebration at School

Skill Training support & Encouragement

<u>S</u>

Distribution of Winter Cloths among poor villagers

Appreciation letter from stakeholder(s)

कार्यालय ग्राम पंचायत क्षेत्र खेराही

जनपद पंचायत वैदन, जिला-सिंगरीली (म॰ प्र॰) 486886

मुस्ताक अहमद

सरपंच

मो० 9165538965 7773817703

निवास- ग्राम खैराही जिला- सिंगरौली (म०प्र०) पिन कोड- 486886

чяіт. 37.....

दिनांक 05/01/2023

सरपंच ग्राम पंचायत क्षेत्र खैराही जनपद पंचायत वैदन जिला-सिंगरीली (म० प्र०)

2.6 Beneficiaries count

S.No.	Activity Description	Direct	Indirect	Access
A.	Education			
1	Free education to R & R families	1203	4600	
2	Free bag distribution & stationery	1753	3400	
3	Science Exhibition	200	1000	
4	Inter school Sports tournament	200	1500	
B.	Community Health			
1	R & R hospital	14368	23544	
2	Health Camp	3044	10000	
3	Blankets Distribution	1100	1900	
4	Mosquito net	300	600	
C.	Sustainable Livelihood Development			
1	Livelihood by Enterprises Development	18	72	
2	Livelihood through Skill Development	123	466	
3	Mushroom Production	23	125	
4	Organic practices on agriculture	53	450	
5	Capacity building & Training	65	230	
D.	Community Infrastructure Development			
1	R & R hospitals	5000	20000	
2	Anganwadi center	32	100	
3	Drainage Cleaning	720	2100	
4				

^{*} Refer attachments:

a. Guidance on Calculation of Beneficiaries of AF CSR Projects

b. FAQ-Beneficiaries Count

Adani Foundation team

S.No.	Name	Position
1,	Mr. Manoj Prabhakar	Program Manager
2.	Mr. Rishabh Panday	Project Officer (Health & Education)
3.	Mr. Vikas Rai	Project Officer (SLD)
4.	Kamlesh Kumari	Village Coordinator
5.	Sat Kumari Jaiswal	Village Coordinator

Site office address:

Mahan Energen Limited, Village – Bandhaura, Post –Karsualal, Tahsil – Mada, District- Singrauli Pin- 486886

Power

Ref: APL/MEL/Env/PCCF/407/23

Date: 03.04.2023

To,

The Principal Chief Conservator of Forest (Wildlife), Pragati Bhawan, Bhopal Vikas Pradhikaran, 3rd Floor, M.P Nagar, Bhopal Madhya Pradesh - 462011

Sub.: Submission of Ecological Assessment and Flora Fauna Wildlife Conservation and Management Plan for Operational 1200 (2x600) MW Thermal Power Plant with proposed Expansion of Bandhaura Ultra Super Critical Thermal Power Plant at Village Bandhaura, Tehsil Mada, District Singraulli, Madhya Pradesh by Mahan Energen Limited.

Ref.: 1.Environmental Clearance (EC) vide File no. J-13011/56/2006. IA. II(T) dated 20.04.2007 and amendments on 10.02.2009, 23.08.2013 and 08.04.2016.

2. Certified EC compliance by MoEFCC, IRO, Bhopal vide File no. 4(0)1/2022(Env.) I/10563/2022 (2) dated; 02.09.2022.

Dear Sir,

With reference to above mentioned subject, the Ministry of Environment, Forest & Climate Change (MoEFCC) has granted Environmental Clearance vide letter no **J-13011/56/2006-IA.II** (T) dated: 20.04.2007 and its subsequent amendments dated 10.02.2009. 23.08.2013, 08.04.2016. Subsequently transfer of EC to **Mahan Energen Limited (MEL) on 15.09.2022**.

In compliance of the **Specific Condition no**: **xiii of EC**; "A conservation Plan for Schedule -I animals reported in the study area of the project shall be prepared in consultation with an expert organization and duly approved by state wildlife department of Madhya Pradesh". during the plant site visit by **MoEF&CC**, **Integrated Regional Officer**, **Bhopal** for certification of EC Compliance status vide letter / File no. 4(0)1/2022(Env.) I/10563/2022 (2) dated; 02.09.2022.

MEL has also proposed to undertake expansion of the existing plant of Bandhaura Ultra Super Critical Thermal Power Plant by adding 1600 (2x800) MW to existing 1200 (2x600) MW within the existing plant boundary / areas at Village Bandhura, Tehsil Mada, District Singraulli, Madhya Pradesh.

Mahan Energen Ltd (Formerly Essar Power MP Ltd) Adani Corporate House Shantigram, S G Highway Ahmedabad 382 421 Gujarat, India CIN: U40100DL2005PLC201961 Tel +91 79 2555 4444 Fax +91 79 2555 7177 www.adanipower.com

We are submitting herewith the Ecological Assessment and Flora & Fauna Wildlife Conservation & Management Plan, which is prepared by M/s Good Earth Enviro Care in Association with Department of Environment Management, Indian Institute of Social Welfare & Business Management, Kolkata (Kolkata University & NABET Members).

The Wildlife Conservation Plan prepared by consultant is hereby submitted for your kind Pursual.

Solicit your suggestion and recommendation.

Thanking You,

Your's faithfully

for Mahan Energen Limited

(Authorized Signatory)

Head - Environment & Forest

Encl: Ecological assessment and flora fauna & Wildlife Conservation and Management Plan for Mahan Energen Limited

- CC: 1. Integrated Regional Office, Ministry of Environment, Forest & Climate Change, Kendriya Paryavaran Bhavan, Link Road No. 3, Ravi Shankar Nagar, Bhopal (M.P) – 462016
 - 2. **The District Forest Officer,** Majan Road, Waidhan, Singrauli, Madhya Pradesh 486889.
 - 3. **The Regional Officer,** Madhya Pradesh Pollution Control Board, Regional Office, Waidhan, Singrauli, M.P. -

Power

Ref: APL/MEL/Env/CGWA/404/23

Date: 03.04.2023

To,
The Regional Director
Central Ground Water Board,
North Central Region, Block-1,
4th Floor, Paryawas Bhawan Area Hills,
Jail Road, Bhopal - 462011, Madhya Pradesh

Sub.: Submission of Hydrogeology Assessment & Rainwater Harvesting Study Report for operational 1200 (2x600) MW Thermal Power Plant with proposed Expansion of Bandhaura Ultra Super Critical Thermal Power Plant at Village Bandhaura, Tehsil Mada, District Singraulli, Madhya Pradesh by Mahan Energen Limited.

Ref.: 1. Environmental Clearance (EC) vide File no. J-13011/56/2006. IA. II(T) dated 20.04.2007 and amendments on 10.02.2009, 23.08.2013 and 08.04.2016.

2. Certified EC compliance by MoEFCC, IRO, Bhopal vide File no. 4(0)1/2022(Env.) I/10563/2022(2) dated; 02.09.2022.

Dear Sir,

With reference to above mentioned subject, the Ministry of Environment, Forest & Climate Change (MoEFCC) has granted Environmental Clearance vide letter no **J-13011/56/2006-IA. II** (T) dated: 20.04.2007 and its subsequent amendments dated 10.02.2009. 23.08.2013, 08.04.2016. Subsequently EC transferred to **Mahan Energen Limited (MEL) on 15.09.2022.**

In compliance of the **Specific Condition no**: **xiv of EC**; "Rain water Harvesting shall be practiced. A detailed scheme for Rainwater harvesting to recharge the ground water aquifer shall be prepared in consultation with Central Ground Water Authority/ State Ground water Board" and **MoEF&CC**, **Integrated Regional Office**, **Bhopal** was visited plant site on 02.05.2022 & suggested to submit Rainwater harvesting plan to CGWA in respect of certified EC Compliance report vide File no. 4(0)1/2022(Env.) 1/10563/2022(2) dated; 02.09.2022.

MEL has also proposed to undertake expansion of the existing project of Bandhaura Ultra Super Critical Thermal Power Plant by adding 1600 (2X800) MW to existing 1200 (2X600) MW within the existing plant boundary/area at Village Bandhura, Tehsil Mada, District Singraulli, Madhya Pradesh.

Mahan Energen Ltd (Formerly Essar Power MP Ltd) Adani Corporate House Shantigram, S G Highway Ahmedabad 382 421 Gujarat, India CIN: U40100DL2005PLC201961 Tel +91 79 2555 4444 Fax +91 79 2555 7177 www.adanipower.com

We are submitting herewith the Hydrogeology Assessment & Rainwater Harvesting Study Report, which is prepared by M/s Akshar Geo Services, Bhuj – Kutch, Gujarat.

The Rainwater Harvesting Study Report prepared by consultant is hereby submitted for your kind perusal.

Solicit your suggestion and recommendation.

Thanking You,

Yours faithfully

for Mahan Energen Limited

(Authorized Signatory)

Head-Environment & Forest

Encl: Hydrogeology Assessment & Rainwater Harvesting Study for Mahan Energen Limited.

CC: The Member Secretary

Central Ground Water Authority 18/11, Jamnagar House, Man Singh Road New Delhi-110011