adani

Power Ref: APML/EMD/MOEF/EC/158/05/22 Date: 26/05/2022

To, Additional Principal Chief Conservator of Forest (APCCF) Ministry of Environment, Forest & Climate Change Regional Office (WCZ), Ground Floor, East Wing, New Secretariat Building, Civil Line, Nagpur-440001 (MH).

- Sub: Six Monthly Compliance Status report of Environmental Clearance of Tiroda Thermal Power Plant for Phase- I & II along with Environmental Monitoring reports- Reg.
- Ref: Environmental Clearance letter J 13011/4/2008-IA.II (T) dated 29.05.2008 & EC
 Amendment letter no. J-13011/4/2008 –IA II (T) dated: 21/03/2012.
 Letter No. J-13012/81/2008-1A-II (T) dated 22.04.2010 & EC Amendment Letter
 no. J-13012/81/2008 IA II (T) dated: 30/03/2012 & 13/03/2014

Dear Sir,

With reference to above subject, please find enclosed herewith Six Monthly Environmental Clearance (EC) compliance status report along with environmental monitoring results like Ambient Air Quality, Stack Emission, Water Quality, Noise level, Soil, CAAQM, CEMS data, Met data, Green belt development and CSR reports etc. for the period of **October'2021 to March'2022** in soft (**e-mail**).

This is for your kind information & record please.

Thanking you

Yours faithfully, for Adani Power Maharashtra Limited

(Santosh Kumar Singh) Head - AESG

Encl: As above

CC: Member Secretary **Central Pollution control Board** Parivesh Bhavan, East Arjun Nagar Kendriya Paryavaran Bhawan New Delhi- 110 032. The Regional Officer, **Maharashtra Pollution Control Board** Regional Office, 5th Floor Udyog Bhawan, Civil Lines, Nagpur – 440001

Member Secretary, **Maharashtra Pollution Control Board** Kalpataru Point, 2nd – 4th floor, **Mumbai**–22

Adani Power Maharashtra Ltd Adani Corporate House Shantigram, S G Highway Ahmedabad 382 421 Gujarat, India CIN: U40101GJ2007PLC050506 Tel +91 79 2555 4444 Fax +91 79 2555 7177 www.adanipower.com

Registered Office: Adani Corporate House, Shantigram, Nr Vaishno Devi Circle, S G Highway, Khodiyar, Ahmedabad 382 421, Gujarat, India

COMPLIANCE REPORT OF ENVIRONMENTAL CLEARANCES

3300 (5x660) MW THERMAL POWER PLANT PHASE – I & II

At

TIRORA, DISTRICT GONDIA MAHARASHTRA

Submitted to:

MINISTRY OF ENVIRONMENT, FOREST and CLIMATE CHANGE

Submitted By:

Environment Management Department Adani Power Maharashtra Limited

> Plot NO: A -1, Tirora Growth Centre MIDC, Tirora, Gondia – 441911 (M.H)

PERIOD: OCTOBER'2021 - MARCH'2022

CONTENT

SL. No	Title	Annexures	
1	Introduction		
2	Compliance status of Environment Clearances (EC)		
List of A	nnexures		
3	Environmental Monitoring Report (Third Party)From October'2021 - March'2022• Micro Meteorology data• Ambient Air Quality Report• Stack Emission Report• Water Quality Report• Piezometer well analysis report• Water Level Monitoring• Noise Level Monitoring Report		
4	 Environmental Monitoring Report (In -House) From October'2021 – March'2022 Ambient Air Quality Report Stack Emission Report Waste Water Analysis Report Noise Level Monitoring Report 	Annexure - I A	
5	Online Continuous Ambient Air Quality Monitoring (CAAQMS) Results (October'2021 – March'2022)	Annexure – II	
6	Online Continuous Emission Monitoring System (CEMS) Results (October'2021 – March'2022)	Annexure – III	
7	Annual Fly Ash Return (2021 – 22)	Annexure – IV	
8	Ash Analysis Report	Annexure – V	
9	Green Belt/Plantation Details	Annexure – VI	
10	Progress Report of Corporate Social Responsibility (CSR)	Annexure – VII	
11	SC & ST Training and Placement details	Annexure – VIII	
12	Biodiversity Conservation plan Annexure – IX		
13	Fly Ash Generation & UtilizationAnnexure - X		
14	Ash Dyke Reclamation photograph Annexure – XI		
15.	Rainwater Harvesting Quantity & Structures inside Plant	Annexure – XII	
16	Bioaccumulation & Magnification Study Inception Report	Annexure – XIII	

1.0 Introduction

Adani Power Maharashtra Ltd, (APML), a wholly owned company of Adani Power Limited has established 3300 MW (5x660) Coal-based Thermal Power Plant at Tiroda, District Gondia in Maharashtra in two phases as below:

Phase I: 2 x 660 MW

Phase II: 3 x 660 MW

The plant site is located at Tiroda Growth Centre of MIDC (Maharashtra Industrial Development Corporation) developed area near Tiroda, District Gondia in Maharashtra. The Villages, Gumadhawara, Khairbodi, Chikhali, Churdi, Bhiwapur, Kachewani and Mendipur, surround the site. The power plant is based on supercritical, energy efficient & environment friendly technology.

APML has been granted Environmental Clearances from Ministry of Environment & Forest, Consent to Establish & Consent to Operate from Maharashtra Pollution Control Board for phase I & II (Unit 1, 2, 3, 4 & 5). As a part of the compliance of statutory requirements, environmental quality monitoring is being done regularly at locations suggested by Sub- Regional Officer, MPCB, Bhandara on the basis of micrometeorological parameters. Also, three nos. of Continuous Ambient Air Quality Monitoring System have been established in three different locations inside the plant boundary as per wind rose and suggested by SRO, MPCB Bhandara. Also third party lab (M/s Enviro Analyst & Engineers Pvt. Ltd, Mumbai) carried out, environmental monitoring & analysis for the power plant.

Point wise compliance status of Environmental Clearance for Phase -1 & 2 is furnished herewith.

Compliance status on Environmental Clearance (Phase -1: 2x660 MW Coal based Thermal Power Plant)

LETTER NO.J-13011/4/2008-1A-II (T) DATED 29.05.2008 and

Subsequent amendement in Environnemental Clearance vide LETTER NO.J-13011/4/2008-1A-II (T) DATED 21.03.2012

Sr. No.	Conditions	Compliance Status
(i)	The total land requirement for the project shall be restricted to 210 ha.	Complied. The project has undergone expansion. The total area has changed and the same has been approved by MoEFCC. The total area required for all two phases is 565.84 ha.
(ii)	Sulphur and ash content in the coal to be used in the project shall not exceed 0.5 % and 29.57 % respectively. (Amendment dt. 21.03.2012)	Being Complied. Sulphur & ash contents are below 0.5 % and 29.57 % respectively.
(iii)	A bi-flue stack of 275 m height shall be provided with continuous online monitoring equipment's for SOx, NOx and Particulate matter. Exit velocity of flue gases shall not be less than 22 m/sec.	Bi-flue Stack containing two flues of phase-I of 275 meters is installed with On- line monitoring equipment for SO ₂ , NOx & PM. Exit velocity of flue gas is more than 22m/sec.
(iv)	High efficiency Electrostatic Precipitator (ESPs) shall be installed to ensure that particulate emission does not exceed 50 mg/Nm ³ .	Highly efficient Electro Static Precipitators (ESPs) with efficiency of 99.93 % have been installed for each boiler to meet particulate emission less than 50 mg/Nm3. Monitoring report enclosed as Annexure – I & IA .
(v)	Space provision shall be kept for retrofitting of FGD, if required at a later date.	Noted. Space for installation of FGDs have been provided since construction stage. As per MoEFCC Notification dated 31 st March 2021, Tiroda TPP is falling under Category "C" Non- retiring TPP and the timelines for compliance of SO2 emission is up to December'2024. Accordingly, the work is under progress for FGD installation.
(vi)	Adequate dust extraction system such as cyclones /bag filters and water spray system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	Adequate air pollution control measures such as dust extraction system (bag filters followed by Cyclone) in the coal crusher and coal conveying transfer points (JNTs). Rain gun type dust suppression system in coal yard and dry fog type dust suppression system in belt conveyor have been provided.

(vii)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided and its utilization to the maximum extant shall be ensured. 100% fly ash utilization shall be ensured from 5 th year onward. Unutilized fly ash shall be disposed off in the ash pond in the form of High Concentrated Slurry and the bottom ash in conventional slurry mode.	Complied. 6 Nos of Silos have been established for collection of dry fly ash for end users. Rly.Rake/bulkers loading facility developed under the silos for bulk ash dispatch to users such as cement manufacturing units. Un-utilised ash disposed off in the ash pond through HCSD mode. Bottom Ash analysis including heavy metals being done. Please Refer Annexure – X for ash utilization details.
(viii)	Ash pond shall be lined with HDPE lining. Adequate safety measures shall also be implemented to protect the ash dyke from getting breached. Guard drains shall be provided all along the periphery of the ash dyke to avoid contamination of soil and surface water in case of run-off.	Being complied. Well design ash dyke with LDPE lining has been established as per the guidelines of MoEFCC, & CPCB. Adequate safety measures have been taken for any unforeseen incidents. Guard drains & guard pond established.
(ix)	Water requirement shall not exceed 36 MCM/year. No ground water shall be extracted for this power project including during construction phase.	Complied. 50.34 MCM of water withdrawn from River against the allocation of 70MCM for both phases during 2021-22. Comprehensive water audit has been conducted by "Academy of Water Technology & Environment Management" Kolkata in technical collaboration Indian Institute of Social Welfare and Business Management (IISWBM) – Kolkata. Specific water consumption reduced from 2.34 m3/MWh (FY 2020-21) to 2.33 m3/MWh (FY 2021-22).
(x)	Closed cycle cooling system with cooling towers shall be provided. Cycle of concentration (COC) of at least 5.5 shall be adopted and the effluents treated as per the prescribed norms.	Being complied. COC of 5.5 is being maintained.
(xi)	The treated effluents confirming to the prescribed standards shall be re-circulated and reused within the plant. There shall be no discharge outside the plant boundary except during monsoon for storm water. Arrangements shall be made that effluents and storm water do not get mixed.	All the effluent treated adequately & treated water is being reused within the plant. The concept of "Zero Discharge Condition" implemented except during monsoon period. Separate drainage network established for storm water.
(xii)	A sewage treatment plant shall be provided and the treated sewage shall be used for raising green belt/plantation.	2 x 120 KL/D of Sewage Treatment Plants (STP) have been installed and is under operational. Treated water being reused in green belt development
(xiii)	Rainwater harvesting should be adopted. Central Ground water Authority / Board shall be consulted for finalization of appropriate rainwater harvesting technology within a period of three months from the date of clearance and details shall be furnished.	Rainwater Harvesting study carried out & report submitted to Regional Director, Central Ground Water Board, Nagpur & Member Secretary- Central Ground Water Authority, New Delhi. Rainwater harvesting structures have been constructed within the plant to collect & store the rainwater for further uses. Please Refer Annexure – XII

(xiv)	Adequate safety measures shall be provided in the plant area to check/minimize spontaneous fires in coal yard, especially during summer season. Details of these measures along with location plant layout shall be submitted to Ministry as well as to the regional Office of the Ministry at Bhopal.	Adequate safety Control measures have been implemented to take preventive control measures. Fire hydrant and rain gun type water sprinklers installed in the coal yard. Details of control measures along with locations in the plant layout already submitted.
(xv)	Storage facilities for liquid fuel such as LDO to be used as auxiliary fuel in the project shall be made in the plant area where risk is minimum to the storage facilities. Adequate assessment of risk management shall be made in the Disaster management Plan for the same. Mock drills shall be conducted regularly as plan. Necessary clearance as may be applicable to such storage under HSM Rules shall be obtained.	Adequate storage & handling practices of LDO implemented as approved by Chief Controller of Explosive, Nagpur. Presently Low Sulphur containing LDO being used. Disaster Management Plan and On-site Emergency Plan have been prepared. Mock drills are being conducted periodically to check effectiveness of control measures & preparedness of response team.
(xvi)	Regular monitoring of ground water in and around the ash pond area shall be carried out, records maintained and periodic reports shall be furnished to the Regional Office of this Ministry.	Regular monitoring of ground water carried out around ash pond area. Monitoring results are being submitted to Regional Officer, MoEFCC and MPCB regularly. Please Refer Annexure – I .
(xvii)	A green belt of adequate width and density shall be developed around the plant periphery covering at least 69.64 ha of project area preferably with local species.	Complied, Green belt with local species has been developed on 258 Ha . of land in around the plant periphery, along the internal roads etc. so for, more than five lacs saplings planted as on March' 2022. In addition to above, around 22000 m ² area also covered under Green Carpet. In-house nursery established to cater our saplings requirement. survival rate of trees is maintained more than90%. Please Refer Annexure – VI.
(xviii)	A plan for conservation of fauna reported in the study area shall be prepared in consultation with State Forests and Wildlife Department within 3 months and shall be implemented effectively.	Complied. Conservation plan of Fauna in the study area was prepared in consultation with State Forest dept. and submitted to Wildlife warden, Govt. of Maharashtra with compliance report. Biodiversity Policy has been formulated to protect the local Flora & fauna. We are the member of India Business & Biodiversity Initiative (IBBI). Various migratory birds & other species have been observed inside the plant premises. Biodiversity conservation report is enclosed as Annexure – IX
(xix)	First aid and sanitation arrangements shall be made for the drivers and other contract workers during construction phase.	First Aid and sanitation facility have been provided for the drivers and contract workers during construction phase.
(xx)	Leq of Noise levels emanating from gas and steam turbines shall be limited to 75 dBA. For people working in the high noise area, requisite personal protective equipment like earplugs/ear muffs etc. shall be provided.	Necessary actions have been taken care to maintain Ambient Noise levels within 75 db(A) during plant operation. The personal protective equipment's have been provided to workers & employees working

	Workers engaged in noisy areas such as steam & gas turbines etc. shall be periodically examined to maintain audiometric record and for treatment for any hearing loss including shifting to non noisy/less noisy areas.	in noisy areas. Noise level monitoring is being carried out regularly and reports submitted to MoEF & CC, CPCB & MPCB. A complete medical checkup with audiometric test of workers & employees are being carried regularly. Please refer Annexure –I & IA
(xxi)	Regular monitoring of ground level concentration of SO ₂ , NOx, SPM and RSPM shall be carried out in the impact zone and records maintained. If at any stage these levels are found to exceed the prescribed limits, necessary control measures shall be provided immediately. The location of the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports (six monthly) shall be submitted to the Regional Office of this Ministry.	Complied. Regular Environmental monitoring of PM_{10} , $PM_{2.5}$, $SO_2 & NO_x$ as per revised NAAQS- 2009. Monitoring reports are being submitted to MPCB monthly. Ground level concentration of specified parameters are well within the limits. Monitoring stations have been established in consultation with MPCB. Please refer Annexure- I & IA .
(xxii)	The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned within seven days from the date of this clearance letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the State Pollution Control Board/Committee and may also be seen at Website of the Ministry of Environment and Forests at http://envfor.nic.in.	Complied. Copy of the same already submitted to your good office.
(xxiii)	A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.	 Environment Management Dept. is establish & heading by General Manager & supported by qualified Env. Engineers, Chemist, Horticulturist and Ash utilization team for implementation & compliance of environmental standards. Environmental Management System (Standard - ISO 14001:2015) implemented under Integrated Management System. NABL Accredited Environmental Laboratory (ISO/IEC 17025:2017) established for monitoring & analysis of Ambient Air quality, Water/wastewater, Stack emission etc.
(xxiv)	Half yearly report on the status of implementation of the stipulated conditions and environmental safeguards shall be submitted to this Ministry/Regional Office/CPCB/SPCB.	Complied, Six monthly compliance reports are being submitted regularly to MoEFCC, CPCB & MPCB. Last compliance report was submitted vide our letter No. APML/EMD/ MoEF/ EC/129/11/21 dated 18.11.2021 Compliance reports are also available on https://parivesh.nic.in and

		www	. <u>adanipower.com</u> .	
(xxv)	Regional Office of the Ministry of	Com	olied.	
	Environment & Forests located at Bhopal will monitor the implementation of the stipulated conditions. A complete set of documents including Environmental Impact Assessment Report and Environment Management Plan along with the additional information submitted from time to time shall be forwarded to the Regional Office for their use during monitoring.	EIA 8 regio infor requi	EMP reports have been nal office of MoEF&CC mation also being su red.	submitted to C. Additional Jbmitted as
(xxvi) Separate funds shall be allocated for implementation of environmental protection measures along with item-wise break-up. These cost shall be included as part of the project cost. The funds		Sepa for E Budg meas Lakh	rate fund has been alrea nvironmental Protection. let details for pollut sure for F.Y 2022 – 23 is s):	ady allocated tion control as below (in
	measures shall not be diverted for other	SL	Particulars	Cost (in Lac.)
	purposes and year-wise expenditure should be reported to the Ministry.	1	Pollution control equipment O &M	5960.18
		2	Pollution Monitoring, Study, and analysis	140.66
		3	Green belt Development	280.0
		4	Rural Development/CSR	382.70
		5	Legal & consent fees	381.15
		6	Training & Awareness	1.0
		7	Waste Management	11825
			Total	18970.69
(xxvii)	The project authorities shall inform the Regional Office as well as the Ministry regarding the date of financial closure and final approval of the project by the concerned authorities and the dates of start of land development work and commissioning of plant.	Comt	olied.	
(xxvii i)	Full cooperation shall be extended to the Scientists/Officers from the Ministry / Regional Office of the Ministry at Bhopal /the CPCB/the SPCB who would be monitoring the compliance of environmental status.	We a Scier Regio /the	lways extend full coope htists/Officers from the onal Office of the Minist CPCB/the SPCB etc.	ration to the Ministry / try at Bhopal
(xxix)	The project proponent shall upload the status of compliance of the conditions stipulated in the environmental clearance issued vide this Ministry's letter of even no. dated 30.03.2007, in its website and uploaded periodically and simultaneously send the same by e-mail to the Regional Office of the Ministry of Environment and Forests.	Comp EC comp Copy to th MPC	blied Compliance report is bany web portal <u>www.ada</u> of the same has also be e regional office of MoEF B by emails.	available on anipower.com. een submitted E&CC, CPCB &
(xxx)	Criteria pollutant levels including NOx, RSPM, (PM10 & PM2.5), Sox (from Stack & ambient air) shall be regularly monitored	Comp Onlin quali	blied. Ie monitoring data of ty including PM ₁₀ , PM _{2.5}	Ambient air , SO ₂ & NO _x .

ar al	nd results displayed in your website and so at the main gate of the power plant.	and Stack monitoring of PM, NOx, SO being displayed at main Gate of the Plant.	2.
----------	--	---	----

Compliance Status of Environmental Clearance (Phase- II (3x660) MW THERMAL POWER PLANT)

LETTER NO.J-13012/81/2008-1A-II (T) DATED 22.04.2010) & Subsequent Amendment

LETTER NO. J – 13012/81/2008- IA.II (T) dated 30.03.2012 and LETTER No. J-13012/81/2008-IA.II (T) dated 13.03.2014

Sr. No.	Conditions	Compliance Status
(i)	Only one unit of 1 x 660 MW shall be run on 100% domestic coal for which coal linkage from SECL is available and the other two units of 2 x 660 MW shall be run purely on imported coal, as per details in Para 2.	MoEF vide letter no. J-13012/81/2008-1A-II (T) dtd. 13.03.2014 has amended the condition for change of source of coal to indigenous Coal from subsidiary companies of "Coal India Limited" in place of Imported coal.
(ii)	Separate stacking arrangement shall be made for indigenous and imported coal.	Not Required as domestic coal being used as per amended EC dated 13.03.2014.
(iii)	In case source of fuel supply is to be changed at a later stage for the 2 x 660 MW the project proponent shall come back to the ministry as the appraisal presently was done based on imported coal for 2 x 660 MW unit.	Complied. Obtained required amendment on 13.03.2014.
Α	Water & Waste Water Management	
(iv)	No ground water shall be extracted for use in operation of the power plant even in lean season	Complied. We have already obtained permission from Water Resource Department (WRD) Govt. of Maharashtra for withdrawal of 70 MCM water for both phases from Wainganga River. The above quantity is adequate to meet the plant's requirement including lean season. Specific water consumption reduced from 2.34 m3/MWh (FY 2020-21) to 2.33 m3/MWh (FY 2021-22) against the limit 3.50 m3/MWh.
(v)	No water bodies including natural drainage system in the area shall be disturbed due to activities associated with the setting up / operation of the power plant	Complied There is no water body within plant premises.
(vi)	Minimum required environmental flow suggested by the Competent Authority of the State Govt. shall be maintained in the Channel / Rivers (as applicable) even in lean season.	Not Applicable Water allocation is from Dhapewada Irrigation Project constructed and maintained by Vidarbha Irrigation Development Corporation. APML has no role in regulating the water flow downstream.
(vii)	Hydro-geological study of the area shall be reviewed annually and results submitted to the Ministry and concerned agency in the State Govt. In case adverse impact on ground water quality and quantity is observed, immediate mitigating steps to contain any adverse impact on	Complied, Ground water quality is being monitored in and around the plant premises. Ground water level in nearby villages is also being monitored to know the seasonal fluctuations. CSIR – NEERI, Nagpur engaged to carry out Hydro-geological study & review from 2019 –

	ground water shall be undertaken	2022.
(viii)	Closed cycle cooling system with induced draft cooling towers shall be provided and COC of at least 5.5 shall be adopted.	5.5 COC is being maintained.
(ix)	The treated effluent confirming to the prescribed standards only shall be re-circulated and reused within the plant. There shall be no discharge outside the plant boundary except during monsoon. Arrangements shall be made that effluent and storm water do not get mixed.	Effluent treatment plant installed within the plant and treated water is being utilize/reuse within the premises to meet "Zero Discharge". Separate drains provided for trade effluent & storm water.
(x)	Effluent from the desalination plant shall be first treated in a guard pond before discharged, if applicable.	Not Applicable The desalination plant is not required
(xi)	A sewage treatment plant shall be provided (as applicable) and the treated sewage shall be used for raising greenbelt/plantation.	Complied. Sewage Treatment Plants have been installed and treated water is being reused for green belt development.
(xii)	Rainwater harvesting should be adopted. Central Groundwater Authority/ Board shall be consulted for finalization of appropriate rainwater harvesting technology within a period of three months from the date of clearance and details shall be furnished.	Rainwater Harvesting study was carried out & report submitted to Regional Director, Central Ground Water Board, Nagpur & Member Secretary, Central Ground Water Board, New Delhi. We have constructed 03 Nos. of rainwater harvesting structures having capacity 12 m ³ and 01 rainwater harvesting pond of capacity 394 m ³ . Total 429 m ³ rainwater has been harvested in FY 2021 – 22 through rainwater harvesting structures. The details of rainwater harvesting structures along with harvested quantity is enclosed as Annexure – XII
(xiii)	Regular monitoring of ground water shall be carried out by establishing a network of existing wells and constructing new piezometers. Monitoring around the ash pond area shall be carried out particularly for heavy metals (Hg, Cr, As, Pb) and records maintained and submitted to the Regional Office of the Ministry. The data so obtained should be compared with the baseline data so as to ensure that the ground water quality is not adversely affected due to the project.	Being Complied. Regular monitoring of ground water quality including heavy metals is being carried out regularly in and around the project area. Piezometric wells are established around the ash pond area. Records are maintained and the same are submitted to Regional office of the Ministry at Nagpur. Please Refer Annexure – I.
В	Air Pollution Control	
(xiv)	Provision for installation of FGD shall be provided.	Noted. Space for installation of FGDs have been provided since construction stage. As per MoEF&CC Notification dated 31st March 2021, Tiroda TPP is falling under Category "C" Non- retiring TPP and the timelines for compliance of SO ₂ emission is up to December 2024.

		Accordingly, the work is under progress for FGD installation.
(xv)	High Efficiency Electrostatic Precipitator (ESPs) shall be installed to ensure that particulate emission does not exceed 50 mg / Nm3.	ESP with efficiency of 99.93% (ESPs of 10 fields) installed for each boiler to meet permissible norm for particulate emission of less than 50 mg / Nm3.
(xvi)	Adequate dust extraction system such as cyclones /bag filters and water spray system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	Complied. Adequate air pollution control measures such as dust extraction system (Cyclone followed by bag filters) in coal crushers and rain gun type dust suppression system in coal yard and dry fog type dust suppression system in the belt conveyor with insertable dust collector at transfer points have been installed to meet particulate matter emission within the norms.
(xvii)	Green Belt consisting of 3 tiers plantations of native species around plant and at least 100 m width shall be raised. Wherever 100 m width is not feasible a 50 m width Shall be raised and adequate justification shall be submitted to the ministry. Tree density shall not be less than 2500 per ha with survival rate not less than 70%.	Complied, Green belt with local species have been developed on 258 Ha. of land in around the plant periphery, along the internal roads etc. so for, more than five lacs saplings planted as on March' 2022. In addition to above, around 22000 m ² area also covered under Green Carpet. In-house nursery established to cater our saplings requirement. survival rate of trees is maintained more than90%. Report is enclosed as Annexure – VI.
(xviii)	Noise level emanating from turbines shall be so controlled such that the noise in the work zone shall be limited to 75dBA. For people working in the high noise area, requisite personal protective equipment like earplugs/ear muffs etc. shall be provided. Workers engaged in noisy areas such as turbine area, air compressor etc. shall be periodically examined to maintain audiometric record and for treatment for any hearing loss including shifting to non noisy/less noisy areas.	Necessary actions have been taken care to maintain ambient noise levels within 75 db(A) during plant operation. The working personals provided with appropriate personal protective equipment and periodic audiometric check up is being carried out and records are being maintained. The monitoring reports regularly submitted to the MPCB & MoEF&CC. Please refer Annexure – I & IA
С	Fly Ash Management	
(xix)	Utilization of 100% Fly Ash generated shall be made from 4 th year of operation of the plant. Status of implementation shall be reported to the Regional Office of the Ministry from time to time.	Fly ash is being utilised as per the Ash Notification 2021. We have extended facilities to maximise utilisation of ash. Annual Ash generation and utilization Status report has been submitted to CPCB, CEA, MPCB & MoEFCC.
(xx)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided. Unutilized fly ash shall be disposed off in the ash pond in the form of slurry. Mercury and other heavy metals (As, Hg, Cr, Pb etc.) will be monitored in the bottom ash as	Complied. 6 Nos of silos has been constructed for collection of dry fly ash for downstream user. Rly.Rake/bulkers loading facility developed under silos for bulk ash dispatched to user - cement making units. Un-utilised ash disposed off in ash pond through HCSD mode. Bottom Ash analysis

	also in the effluents emanating from the existing ash pond. No ash shall be disposed off in low lying area.	including heavy metals being done.
(xxi)	Ash pond shall be lined with HDP/LDP lining or any other suitable impermeable media such that no leachate takes place at any point of time. Adequate safety measures shall also be implemented to protect the ash dyke from getting breached.	Complied. Well-designed Ash dyke with HDPE lining have been established as per guidelines of MoEF&CC, and CPCB. Regular monitoring is being carried out. We have stabilized/reclaimed Ash Dykes No. 2 having 34.50 LMT ash with green belt development. As on O1st April'2022, around 44.22 LMT legacy ash available in ash dykes and it will be utilized as per fly ash Notification 31.12.2021. Please refer Annexure – XI
(xxii)	For disposal of Bottom Ash in	Being Followed.
	undertaken) it shall be ensured that	We will inform to Maharashtra Pollution Control
	the Bottom and sides of the mined out area are adequately lined with clay before Bottom Ash is filled up. The project proponent shall inform the State Pollution Control Board well in advance before undertaking the activity.	Board well in advance. If any scope for
(xxiii)	Regular monitoring of ground water level shall be carried out by establishing a network of existing wells and constructing new piezometers. Monitoring around the ash pond area shall be carried out particularly for heavy metals (Hg, Cr, As, Pb) and records maintained and submitted to the regional Office of this Ministry. The data so obtained should be compared with the baseline data so as to ensure that the ground water quality is not adversely affected due to the project.	Regular monitoring of ground water quality including heavy metals is being carried out in and around the project area. Piezometric wells are established around the ash pond. Records are maintained and the same being submitted along with compliance report. Please refer Annexure – I . We have engaged CSIR – NEERI, Nagpur to carry out Fly Ash Leachability Study since 2019 up to 2022 .
D	Disaster Management	
(xxiv)	Adequate safety measures shall be provided in the plant area to check/minimize spontaneous fires in coal yard, especially during summer season. Copy of these measures with full details along with location plant layout shall be submitted to Ministry as well as to the regional Office of the Ministry.	Adequate safety team with safety control measures is available in the plant site to take preventive control measures. Fire hydrant and rain gun type water sprinklers established in the coal yard. Details of control measures and location within the plant layout has been already submitted to your good office.
(xxv)	Storage facilities for auxiliary liquid	Adequate storage & handling practices of LDO
	shall be made in the plant area in consultation with Department of Explosive, Nagpur. Sulphur content in the liquid fuel will not exceed 0.5%. Disaster management plan shall be prepared to meet any eventuality in case of an accident taking place due	Explosive, Nagpur. Presently Low Sulphur containing LDO being used. Disaster Management Plan and On-site Emergency Plan have been prepared. Mock drills are being conducted periodically to check effectiveness of control measures & preparedness of response team.

	to storage of oil.	
E	CSR/RCR Plan	
(xxvi)	A good action plan for R & R (if applicable) with package for the project affected persons be submitted and implemented as per prevalent R&R policy within three months from the date of the issue of this letter.	Approved R&R plan implemented. Indian Institute of Social Welfare and Business Management (IISWBM), Kolkata carried out R&R audit. The study report has been already submitted along with the EC compliance report.
(xxvii)	An amount of Rs. 66.0 Crores shall be earmarked as one time capital cost for CSR programme. Subsequently a recurring expenditure of Rs. 13.20 Crore per annum shall be earmarked as recurring expenditure for CSR activities. Details of the activities to be undertaken shall be submitted within one month along with road map for implementation.	Under the CSR program Rs. 67.275 Crores has been incurred (including more than Rs. 3.827 Crores budget for FY 2022-23) under Community Health promotion & facilitation, Sustainable Livelihood, Creating Rural Infrastructure, Promotion of Education, Skilled development etc. During COVID 19 pandemic, supported to civil hospital by supply & installation of Oxygen Plant, others medical material and vaccination drives. CSR activity report enclosed as Annexure – VII .
(xxviii)	While identifying CSR programme the company shall conduct need based assessment for the nearby villages to study economic measures with action plan which can help in upliftment of poor section of society. Income generating projects consistent with the traditional skills of the people besides development of fodder farm, fruits bearing orchards, vocational training etc. can form a part of such programme. Company shall provide separate budget for community development activities and income generating programmes. This will be in addition to vocational training for individuals imparted to take up self-employment and jobs. In addition a special scheme for upliftment of SC/ST's and marginalized population in the study area out of CSR programme shall be formulated and submitted to the Ministry within six months along with firm commitment of implementation. The scheme shall have an in – built monitoring mechanism.	Need Base Assessment Study for CSR programs prepared, and report already submitted to MoEFCC. Need Base plan implemented in nearby villages including individuals who are economically weak to undertake some economic activity that would help them to achieve sustainable livelihood and financial independence. We have established a Skill Development Center (ASDC) for skill development of SC/ST and marginalized populations from Gondia and Bhandara district. So far, we have trained 1054 students in which 968 placed for good job. Training on nursing (General Duty Assistance) for old, aged people and severe patient given to 123 girls in which 88 girls have been placed for job. Annual Report of ASDC is enclosed as Annexure VIII.
F	General	Complied
	Additional soll for leveling of the proposed site shall be generated within the site (to the extent possible) so that natural drainage system of the area is protected and improved.	No natural drain disturbed due to plant activities.
(xxx)	First aid and sanitation arrangements shall be made for the drivers and	First Aid and sanitation facilities were provided for the drivers and contract workers during

	other contract workers during	construction period.
(xxxi)	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Labour hutments have been established with all required facilities & infrastructure during construction phase.
(xxxii)	The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned within seven days from the date of this clearance letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the State Pollution Control Board/Committee and may also be seen at Website of the Ministry of Environment and Forests at <u>http://envfor.nic.in</u> .	Complied. Copy of the same already submitted to your good office with compliance report.
(xxxiii)	A copy of clearance letter shall be sent by the proponent to concern panchayat, Zila parisad/municipal corporation, urban local body and the local NG, if any from whom suggestions/representations, if any received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	Complied. Copy of EC and other required documents have been provided to Zila Parishad & Gram Panchayat.
(xxxiv)	A separate environment management cell with qualified staff shall be setup for implementation of the stipulated safeguards.	 A separate Environment Management Dept. is established with General Manager & supported by qualified Env. Engineers, Chemist, Horticulturist and Ash utilization team for implementation of environmental safeguards Environmental Management System (Standard SO 14001:2015) implemented under Integrated Management System. NABL Accredited Env. Laboratory (ISO/IEC 17025:2017) established to monitor & analyses Ambient Air, quality Water/wastewater, Stack emission etc.
(xxxv)	The proponent shall upload the status of compliance of stipulated EC conditions, including the results of monitoring data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional office of MoEF, the	Complied, Six monthly compliance report submitted regularly to the MoEFCC, CPCB & MPCB. Last compliance report was submitted vide our letter no. APML/EMD/MoEF/EC/129/11/21 dated 18.11.2021

	respective zone of CPCB & the SPCB. The criteria pollutant level namely; SPM, RSPM (PM10, PM2.5), SO2 and NOx (ambient level and stack emission) shall be displayed at the convenient location near the main gate of the company in the public domain.	Compliance reports are also available on <u>https://parivesh.nic.in</u> and <u>www.adanipower.com</u>
(xxxvi)	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated environmental clearance conditions including results of monitored data (both in hard copies as well by e-mail) to the respective Regional Office of MOEF, the respective Zonal Office of CPCB and the SPCB	Complied, Six monthly compliance report submitted regularly to the MoEFCC, CPCB & MPCB in soft by email. Last compliance report was submitted in November - 2021 for the period of April '21 to September '2021 to MoEFCC/MPCB/CPCB vide our letter no. APML/EMD/MoEF/EC/129/11/21 on 18.11.2021.
(xxxvii)	The environment statement for each financial year ending 31 st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of the Ministry by e- mail	Environment Statement for F.Y 20-21 submitted through online portal of Maharashtra Pollution Control Board. Please Refer Annexure - IV
(xxxviii)	The project proponent shall submit six monthly reports on the status of the implementation of the stipulated environmental safeguards to the Ministry of Environment and Forests, its Regional Office, Central Pollution Control Board and State Pollution Control Board. The project proponent shall upload the status of compliance of the environment of the environmental clearance conditions on their website and update the same periodically and simultaneously send the same by e-mail to the Regional Office, Ministry of Environment and Forests.	Six monthly Environmental Clearance compliance status report is regularly submitted to MoEFCC, CPCB & SPCB. The same is sent by email also. Compliance status is also uploaded on <u>https://parivesh.nic.in</u> and <u>www.adanipower.com</u> on company website.
(xxxix)	Regional Office of the Ministry of Environment & Forests will monitor the implementation of the stipulated conditions. A complete set of documents including Environmental Impact Assessment Report and Environment Management Plan along with the additional information	Complied. EIA & EMP reports have been submitted to regional office of MoEF&CC. Additional information also being submitted as required. Compliance reports are available on <u>https://parivesh.nic.in</u> and <u>www.adanipower.com</u>

	submitted from time to time shall be forwarded to the Regional Office for their use during monitoring. Project proponent will up-load the compliance status in their website and up-date the same from time to time at least six monthly basis. Criteria pollutants levels including NOx (from stack & ambient air) shall be displayed at the main gate of the power plant.			
(xi)	Separate funds shall be allocated for implementation of environmental protection measures along with item- wise break-up. These cost shall be included as part of the project cost. The funds earmarked for the	Separate fund has already been being utilize for Environme measures. Budget details for pollution of furnished herewith for F.Y 20 Lakhs):	en allocated and ental Protection control measures -21 as below (in	
	environment protection measures shall not be diverted for other	SL. No Particulars	Cost (in Lac.)	
	purposes and year-wise expenditure should be reported to the Ministry	Pollution control 1 equipment O &M	5960.18	
		2 Pollution Monitoring ,Study and analysis	140.66	
		3 Green belt Development	280.0	
		4 Rural Development/CSR	382.70	
		5 Legal & consent fees	381.15	
		6 Training & Awareness	1.0	
		7 Waste Management	11825	
		Total	18970.69	
(xii) (xiii)	The project authorities shall inform the Regional Office as well as the Ministry regarding the date of financial closure and final approval of the project by the concerned authorities and the dates of start of land development work and commissioning of plant Full cooperation shall be extended to the Scientists/Officers from the Ministry / Regional Office of the Ministry at Bangalore / CPCB/ SPCB	Complied. Noted. Full cooperation always extende	۰d.	
	who would be monitoring the compliance of environmental status.	ions (EC Amendment)		
	be through tarpaulin covered trucks for a maximum period of two years and hence forth shall be only through mechanically covered trucks.	Compliance. Coal is being transported through Rail only and unloaded within plant premises at wagon tippler & track hopper.		
(xv)	Avenue plantation of 2/3 rows all along the road shall be carried out by the project proponent at its own expense.	Thick Plantation have been do the Plant boundary.	ne in all around	

(xvi)	Periodic maintenance of the road shall be done by the project proponent at its own expense and shall also facilitate the traffic control on the road.	Complied. All internal roads are black topped or concreated and being maintained.
(xvii)	Sulphur and ash contents in the domestic coal to be used in the project shall not exceed 0.4 % and 33% at any given time. In case of variation of coal quantity at any point of time, fresh reference shall be made to the Ministry for suitable amendments to environmental clearance condition wherever necessary.	Being complied. We are using washed coal from SECL and blended with raw coal. We have also installed Real time Coal Ash Analyzers to monitor ash content. MPCB official also collect coal samples time to time and analysis results are well within the stipulated limit. Quarterly Ash content report is being sent to MoEFCC regional office, Average ash content is about 32.04% during the year of 2021-22
(xlvii)	A long term study of radio activity and heavy metals content on coal to be used shall be carried out through a reputed institute. Thereafter, mechanism for an in-built continuous monitoring for radio activity and heavy metals in coal and fly ash (including bottom ash) shall be put in place.	Being Complied. We have carried out testing of radioactive analysis in coal from Board of Radiation & Isotope technology (BRIT), Dept. of Atomic Energy, Govt. of India, Mumbai in FY 2017 – 18, 2018 – 19 and 2019 – 20. We have also done Heavy metal analysis in coal from Atomic Minerals Directorate for Exploration and Research, Dept. of Atomic Energy, Govt. of India, Hyderabad.
(xviii)	Harnessing solar power within the premises of the plant particularly at available roof tops shall be undertaken and status of implementation shall be submitted periodically to the regional office of the Ministry.	Solar panels installed at the roof top of Administrative building to cater domestic power requirement of administrative building. In addition to above, solar streetlights have been installed along the ash dyke area. Under CSR activities, we have installed more than 200 solar street-lights in nearby villages.
(xix)	Mercury emission from the stack shall also be monitored on periodic basis.	Being complied. Mercury emission from the stack is being monitored & reports are being submitted. Please refer Annexure – I.
(1)	Fugitive emission shall be controlled to prevent impact on agricultural or non-agricultural land.	To control fugitive emission, rain gun type water sprinkling system has been installed in coal yard. All coal conveying belts conveyors are covered and fog type dust suppression system provided. Adequate water sprinkling arrangements made in wagon tipplers and track hoopers to mitigate dust emission during coal un-loading by rail. Closed coal conveyor belts have been established. Cyclones followed by bag filters are provided at each coal transfer points (JNT's). Additionally, mobile water sprinklers are deployed at CHP area to suppress fugitive dust while movement of vehicles.
(11)	source sustainability study of water requirement shall be carried out by	Barrage on River Wainganga for water supply.

	an institute of repute. The study shall also specify the source of water for meeting the requirement during lean season. The report shall be submitted to the Regional Office of the Ministry within six months.	However, we have undergone source sustainability study of River Wainganga by "Academy of Water Technology Environ Management" Kolkata in technical collaboration Indian Institute of Social Welfare and Business Management – Kolkata and CSIR – CGCRI, Kolkata. Final report was already submitted along with compliance report.
(111)	Fly ash shall not be used for agricultural purpose. No mine void filling will be undertaken as on option for ash utilization without adequate lining of mine with suitable media such that no leachate shall take place at any point of time. In case, the option of mine void filling is to be adopted, prior detailed study of soil characteristics of the mine area shall be undertaken from an institute of repute and adequate clay lining shall be ascertained by the State Pollution Control Board and implementation done in close co-ordination with the State Pollution Control Board.	As per Fly ash Notification Ash is being used. AMPRI Bhopal (A division of CSIR) engaged for for demonstration and R&D for use of ash in agriculture.n. CSIR – NEERI, Nagpur engaged for three years (2019 – 2022) to carry out fly ash leachability Study and Bioaccumulation and magnification study. Inception report of Bioaccumulation and magnification study enclosed as Annexure – XIII
(liv)	Three tire green belt shall be developed all around Ash Pond over and above the Green Belt around the Plant Boundary.	Thick plantation/ green bet development around Ash pond area done. Our efforts are being made to develop more & more greenery inside the plant premises.
(Iv)	Social audit for the CSR Scheme shall be carried out periodically by reputed university or an institution as per the CSR guidelines of Government of India and Details to be submitted to MoEF besides putting it on company's website.	Social Audit have been carried out by Indian Institute of Social Welfare & Business Management, University of Kolkata . Study report already submitted to your good office along with compliance report of April 2019 to Sept 2019.
(Ivi)	An Environmental Cell shall be created at the project site itself and shall be headed by an officer of the company of appropriate seniority and qualification. It shall be ensured that the head of the Cell shall directly report to Head of the Organization. The environmental Cell shall be responsible and accountable for implementation of all the conditions given in the EC including in the amendment letter.	 A separate Environment Management Dept. is in place lead by General Manager & supported by qualified Env. Engineers, Chemist, Horticulturist and Ash utilization team for implementation of environmental safeguards Environmental Management System (Standard ISO 14001:2015) implemented under Integrated Management System. NABL Accredited Env. Laboratory (ISO/IEC 17025:2017) established to monitor & analyses Ambient Air Quality, Water/wastewater, Stack emission monitoring etc.
(Ivii)	Monitoring of surface water quantity and quality shall also be regularly conducted and record maintained. The monitoring data shall be submitted to the Ministry regularly. Further, monitoring points shall be located between the plant and drainage in the direction of flow of ground water and records	Monitoring of surface water and ground water quality including heavy metals is being done on regular basis and records maintained. Please refer Annexure - I

	maintained. Monitoring for heavy metals in ground water shall be undertaken.	
(lviii)	The environmental statement for each financial year ending 31 st March in Form – V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliances of environmental clearance conditions and shall also be sent to the respective Regional Offices of the Ministry by e-mail.	Environmental statement is being submitted regularly to MPCB. FY 2020 – 21 Environmental Statement submitted to MPCB through online portal.
(lix)	The project proponent shall formulate a well laid Corporate Environment Policy and identify and designate responsible officers at all levels of its hierarchy stipulated in this clearance letter and other applicable environment laws and regulations.	We have implemented ISO 14001:2015 under Integrated Management System consist of Environment, Health & Safety, Quality and Energy Management Systems. We have formulated a Corporate policy as per the requirement of Integrated Management System (IMS), Biodiversity Conservation Policy has already been framed and incorporated in existing IMS policy. We are member of Indian Biodiversity Business Initiative (IBBI) as initiated by MoEF&CC. IMS is Integrated with International Finance Corporation (IFC) Performance and complied IFC standards on Environmental Management. We are pleased to inform that Single Use Plastic has been completely restricted in the plant & township. We have also integrated Water Efficiency Management, Business Continuity Management, Asset Management System and IRBC with IMS system in FY 2021 – 22.

Annexure - 1 SIX MONTHLY ENVIRONMENTAL MONITORING REPORT

FOR The Period of Oct.2021-Mar. 2022

of

ADANI POWER MAHARASHTRA LTD. Tirora, Growth Center, MIDC, Gondia – 441 911

Prepared by

Recognised by MoEF (GOI) under GSR No. 983 dated. 2.5.2014 NABET Accredited and ISO 9001: 2000Certified Organisation Head Office: B-1003, Enviro House, 10 Flr. Western Edge II, W.E. Highway, Borivali (E), Mumbai-400 066

<u>Nagpur Branch</u>:- Banglow No. 65, Shivkunj, Old Verma Layout, Ambajari, Nagpur - 440 010 Tel- (0712)2241835 09321619746-48 Email: enviro.nagpur@eaepl.com, Website: www.enviroanalysts.com

NABET Accredited & MoEF (Govt. of India) approved CIN No. : U28900MH1995PTC093129

ENVIRO ANALYSTS & ENGINEERS PVT. L

H. O. : B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066. • Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

Foreword

The protection of environment plays a crucial role in maintaining the local environment quality for any industry, throughout their production. Hence compliance of the statutory requirements becomes very important to conserve the ecological balance within and surrounding the plant area. Therefore, environment protection is becoming a prerequisite for sustainable development. In line with this requirement, the management of Adani **Power Maharashtra Ltd.** has adopted a corporate responsibility of development and top priority is given for environment protection.

In order to comply with the Environment protection act, to fulfill statutory requirement and to be in tune with Environmental Preservation and sustainable development Adani **Power Maharashtra Ltd.**, has retained **Enviro Analysts and Engineers Pvt. Ltd.** as Environment Consultants and for various Environmental issues related to their Power Plant.

This report presents the Environmental Status for the period **Oct.2021-Mar. 2022** as a compliance to the statutory requirements.

The co-operation extended by the Staff and Management of Adani Power Maharashtra Ltd. during the work execution period is gratefully acknowledged.

For ENVIRO ANALYSTS & ENGINEERS PVT. LTD.

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 65, Old Verma Layout, Ambazari, Nagpur - 440 010. Tel. : 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Dnyanal Mangal Hall, Pune - 411 030. Tel. : 020-2432 4444 Lab: Row House No. 2, Shalom Garden, I Opp. Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thane - 401 107. I Tel.: 022-2811 6442

Workshop : Plot No. E - 122, MIDC Tarapur, Boisar, Dist. - Thane - 401 506

Table of Contents

1.0	INTRODUCTION.	4
1.	1 Scope of Work.	. 4
2.0	DETAILS OF SAMPLING LOCATIONS.	. 6
2.	1 Meteorology and Ambient Air Quality	. 6
2	2Water Quality	. 8
2	3Noise Level:	10
2	4Soil Quality:	10
2.	5 Methodology of Monitoring	10
	2.5.1 Instruments Used	10
	2.5.2 Method of Analysis	11
2.	6 Analytical Procedures	13
	2.6.1 Meteorology	13
	2.6.2 Ambient Air Quality	13
3.	1 Meteorology	15
3.	2 Ambient Air Quality	18
	3.2.1 Presentation of Results	18
3.	3 Stack Monitoring.	21
	3.3.1 Presentation of Results	21
3	.4 Water Quality	
	3.4.1 Ground Water Quality.	22
	3.4.2 Surface Water Quality.	23
	3.4.3 Waste Water Quality	23
	3.4.4 Pizo-Metric Water Quality	23
3.	5 Noise Level:	23
3.	6 Soil Quality	24

LIST OF TABLES:

TABLE - 2.1 AMBIENT AIR QUALITY MONITORING LOCATION	6
TABLE- 2.2 WATER SAMPLING LOCATIONS	9
TABLE- 2.3 NOISE LEVEL LOCATIONS FOR THE PERIOD OF OCT. 2021- MAR. 20)2210
TABLE- 2.4 SOIL SAMPLING LOCATIONS FOR THE PERIOD OF OCT. 2021- MATABLE- 2.5 (TECHNIQUES USED FOR AMBIENT AIR QUALITY MONITORING)	AR. 202210 13
TABLE- 3.1 METEOROLOGICAL DATA MONITORED AT SITE FOR OCT. 2021- MAR.	202215
TABLE- 3.2 SUMMARY OF AMBIENT AIR QUALITY INSIDE PLANT AREA -OCT. 2021- M	IAR. 2022 20
TABLE- 3.3 STACK ANALYSIS REPORT - OCT.2021-MAR.2022	21
TABLE- 3.4 SURFACE WATER QUALITY – OCT.2021-MAR.2022	24-27
TABLE- 3.5 GROUND WATER QUALITY – OCT.2021-MAR.2022	
TABLE- 3.6 WASTE WATER QUALITY – OCT.2021-MAR.2022	
TABLE- 3.7 PIZO-METERIC WELL WATER QUALITY – OCT.2021-MAR.2022	
TABLE- 3.8 NOISE LEVEL	
TABLE- 3.9 SOIL ANALYSIS FOR OCT. 2021- MAR. 2022	

LIST OF FIGURES:

FIGURE - 2.1 SAMPLING LOCATIONS MAP	7
FIGURE- 3. 1 SITE SPECIFIC WINDROSE FOR OCT.2021-MAR.2022	7

LIST OF ANNEXURES:

Annexure I - On site Meteorological Data for OCT.2021-MAR.2022

Chapter – 1

Introduction

&

Scope of work

1.0 INTRODUCTION.

M/s. Adani Power Maharashtra Limited (APML) a wholly owned company of Adani Power Limited has established 3300 MW (5x660) Coal-based Thermal Power Plant at Tiroda, District Gondia in Maharashtra in two phases as below:

Phase I: 2 x 660 MW

Phase II: 3 x 660 MW

1.1 Scope of Work.

The scope of work includes the data generation for various environmental components viz Meteorology, Air, Noise, Water, Stack, Effluent and soil of Adani Power Maharashtra limited, Tirora.

To monitor the environmental parameters and data analysis in the vicinity of the power plant of 5x660MW at MIDC Area Tiroda, APML awarded the service to M/s Enviro Analysts & Engineers Pvt. Ltd. (EAEPL), Mumbai.

The present report incorporates data of various Environmental parameters for OCT.2021-MAR.2022

Chapter – 2

Details of sampling Locations

&

Methodology for sampling and analytical procedures

2.0 DETAILS OF SAMPLING LOCATIONS.

The details of sampling location w. r. t. Air, Water and Noise quality around the power plant are shown in the Sampling location Map as depicted in Figure.2.1

2.1 Meteorology and Ambient Air Quality.

Meteorological data was collected at one station concurrently with the ambient air quality monitoring. The weather station was placed on the roof top at a height of 10m. Wind speed, wind direction, relative humidity and temperature & Rainfall were recorded at hourly intervals contineously.

The sampling locations of Ambient Air Quality in the Power plant premises covering upwind and down wind direction . To assess the effect of industrial activity of power plant on the air, environmental parameters like Particulate Matter- PM_{10} , Particulate Matter- $PM_{2.5}$, Sulphur Dioxide-SO₂, Nitrogen Dioxide $-NO_2$ were monitored Details of the sampling locations with respect to the plant site are given below in **Table-2.1**.

Code	Name of the monitoring Station	Distance from plant boundry (km)	Direction with respect to plant	Environmental Setting	Remarks
A1	Near AWRS	Within Plant	_	Within Plant	Industrial area
A2	Near Brick Plant	Within Plant	-	Within Plant	Industrial area
A3	Near China colony	Within Plant	_	Within Plant	Industrial area

Table 2.1 Ambient Air Quality Monitoring Location

2.2 Water Quality

Water samples were collected at various locations within the area of 10 Km radius from the plant to assess the Physico-Chemical quality of Surface and Ground Quality water. Samples were collected as per the standard procedures. On site Parameters like Temperature, Electrical Conductivity, pH and Dissolved Oxygen were analyzed at-site using portable water analysis kit. Samples were collected by taking suitable precautions for preparation and transportation, particularly using sterilized bottles for bacteriological analysis. The details of the sampling locations are given in **Table-2.2** and **Figure.2.1** as depicted.

Water samples were collected on quarterly basis from 8 locations (Ground water 4, Surface water-4 Analytical methods mentioned in IS: 3025 and Standard Methods published by APHA were followed.

Adani Power Maharashtra Limited Six Monthly Environmental Monitoring Reports

TABLE-2.2 WATER SAMPLING LOCATIONS

Surface V	Water				
Code	Name of the monitoring Station	Distance from plant boundry (km)	Direction respect to plant	Source	
SW1	Wainganga River Water	7.0	NW	River	
SW2	Mendipur Pond Water	2.0	SE	Pond	
SW3	Garada Village Nalah water	3.0	SSW	Nalah water	
SW4	Kachewani Pond water	3.0	NE	Pond water	
Ground	Water				
GW1	Kachewani Hand Pump	3.2	NE	Bore well	
GW2	Mendipur Hand Pump	2.5	SE	Bore well	
GW3	Garada Hand Pump	3.2	SW	Bore well	
GW4	Chikhali Hand Pump	2.0	S	Bore well	
Waste Water					
WW1	71 Cooling Tower Blow Down water Unit-1				
WW2	Cooling Tower Blow Down water Unit	In Plant			
WW3	Cooling Tower Blow Down water Unit	In Plant			
WW4	Cooling Tower Blow Down water Uni	t-4		In Plant	
WW5	Cooling Tower Blow Down water Uni	t-5		In Plant	
WW6	Boiler Blow down Water Unit-3	In Plant			
Piezometric Well water					
P1	Near AWRPH	In Plant			
P2	B/H Ash dyke -1			In Plant	
P3	Near Raw Water pump house -02			In Plant	

2.3 Noise Level:

Noise level at following in plant location and Buffer zone location were recorded by APML for the period of OCT.2021-MAR.2022. Location details are given in **Table-2.3**. and as depicted in **Figure.2.1**

Code	Location	Location type	Remarks
NL- 1		Near Shanti Niketan I, II & III	Industrial
NL- 2		Near Labour Hutment	Industrial
NL- 3		Near Store Area	Industrial
NL- 4		Gate No.1	Industrial
NL- 5		Gate No.2	Industrial
NL- 6	Inside the plant	Gate No.3	Industrial
NL-7		Near OHC	Industrial
NL-8		Railway Siding	Industrial
NL-9		Near Reservoir 2	Industrial
NL-10		Near Ash Water Recovery Pump House	Industrial
NL-11		In China Colony	Industrial

2.4 Soil Quality:

Soil Samples collected at 3 location around the plant zone on the seasonal basis for the period of Oct.2021-Mar. 2022 Location details are given in **Table-2.4**. and as depicted in **Figure.2.1**

TABLE: 2.4 SOIL SAMPLING LOCATIONS FOR THE PERIOD OF Oct.2021-Mar.2022

Code	Location	Location type	Remarks
S1	Buffer Zone	Garada Village	Agricultural Field
S2		Mendipur Village	Agricultural Field
S 3		Churadi Village	Agricultural Field

2.5 Methodology of Monitoring

2.5.1 Instruments Used

Samples were collected at 'Ambient Air' monitoring locations' using standard Fine dust sampler & RDS sampler for monitoring PM_{10} , $PM_{2.5}$, SO_2 , NO_2 , concentrations and analyzed as per USEPA / IS methods in APML Laboratories at site

Also Continuous Ambient Air Monitoring station installed (CAAQMS) at APML make Tyledyne and Met One instrument approved by USEPA.

On site Micro-meteorological data for wind direction, wind Speed, Temp, Relative humidity and Rainfall collected from APML.

Ground water, Surface water & Effluent water were analyzed for onsite parameters likeTemperature, Electrical Conductivity, pH and Dissolved Oxygen were analyzed on-site using portable water analysis kit. Samples are collected, preserved and sent for further analysis to Enviro Analysts & Engineers Pvt. Ltd, where other parameters like total hardness, chlorides, sulphate etc and heavy metals are analyzed as per requirements IS 3025/APHA methods. Soil samples were analyzed for physical, chemical and heavy metal concentrations, using analytical methods.

Noise was measured at site locations using a noise level meter to determine sound levels in a scale as dB (A) This is suitable for audible range of 20 to 20,000 Hz for human being. Sound level monitoring done by APML.

Stack Monitoring kit having sensor probe was used to monitor stack data like Flue gas velocity, Volumetric flow of flue gas, Temperature of flue gas, Moisture content and other parameters like SPM, SO₂, NO₂ make by ECOTECH

2.5.2 Method of Analysis

Air samples were analyzed as per standard methods specified by Central Pollution Control Board (CPCB), EPA & IS method.

2.5.2.1 Meteorology

Micro-meteorological data was observed for wind direction and speed using wind vane and anemometer using an automatic met logger. The data was recorded at 1 hour interval. Wind speed & wind direction, Temperature, Rain fall, Relative humidity were recorded by Weather Monitoring Station by APML.

2.5.2.2 Ambient Air Quality (AAQ)

Sampling was carried out at each station during the stipulated study period using pre-calibrated Respirable Dust Samplers and Fine Dust Sampler in each of the stations by APML.

Earmarked samples were collected for Particulate Matter- PM_{10} , Particulate Matter- $PM_{2.5}$, SO_2 and NO_2 for 24 hourly.

The baseline data of air environment is generated for the parameters namely: Particulate Matter- PM_{10} , Particulate Matter- $PM_{2.5}$, Sulphur Dioxide SO₂, and Nitrogen Dioxide NO₂ in APML

2.5.2.3 Stack Monitoring

Stack emission were analyzed with the help of stack Kit (ECOTECH Stack Kit & Prob set, quarterly basis at Boiler Stack situated in plant. Height of the Boiler Stack was noted as, 275 m and I.D. 7.4m.Flue gas, Velocity, Temperature, Volume & Qty, Moisture Content, PM, SO₂, NO₂, Hg were analyzed. The values obtained were then compared vis-a-vis with the standards prescribed by CPCB.

Iso-kinetic stack monitoring was conducted as per standard method IS 11255 (Part-3) specified in Emission Regulation Act Part to determine PM, SO₂ and NO₂, Data was collected and analysis was done for other parameters like Flue gas Velocity, Temperature, Volumetric flow rate, Moisture contents.

2.5.2.4 Water/Waste Water Quality

Water/Waste water samples were collected for physico-chemical and bacteriological parameters taking suitable Precautions. Temperature, pH, Dissolved Oxygen and Electrical conductivity were measured in the field while collecting the samples. Sterilized bottles were used to collect samples for bacteriological analysis, stored in ice and transported to the Laboratory.

Ground and surface water samples were analysed as per IS: 10500 and Waste Water samples were analysed as per IS: 3025. The analytical methods mentioned in IS: 3025 and Standard Methods published by APHA were followed. MPN Index of coli forms was found as per standard methods (IS: 1622).

2.5.2.5 Noise Level

Noise is defined as unwanted sound that creates interferences in speech, communication, causes annoyance, disturbance in work concentration and sleep, thus deteriorating the quality of Noise environment. In the present study, Noise monitoring has been conducted regularly by APML Since loudness of sound is the important parameter to assess the effects of particular activities on human being, hence noise level is measured for noise environment assessment. Hourly Sound Pressure level (SPL) was recorded with Sound Level Meter for 24 hours.

2.6 Analytical Procedures

2.6.1 Meteorology

The data obtained from field is used to as certain the wind percentage frequencies in the sixteen directions for wind speeds using Beaufort's scale in the range of 0-1.8, 1.8-3.6, 3.6 - 7.2, 7.2 - 14.4, 14.4 - 28.8 and >28.8 kmph. Average wind roses at twenty four hourly are prepared from the data collected. Temperature, Relative Humidity is monitoring by Automatic Weather Monitor (WM 271, Envirotech) and Rain fall by using Rain Gauge of WM 271.

2.6.2 Ambient Air Quality

Whatman GF/A & PTFE filter paper was used in Respirable dust sampler RSPM and FDS and weighed in Mettler electronic balance and computed as per standard methods.

Ambient Air samples were analyzed for SO_2 concentration levels by using Improved West-Gaeke method using spectrophotometer (HACH DR 5000) at a wavelength of 560 nm. NO2 conc. levels were estimated using Jacob and Hocheiser modified (Na-As) method using spectrophotometer (HACH DR 5000) at a wavelength of 540 nm

Sampling and Analytical Techniques

The techniques used for ambient air quality monitoring and minimum detectable levels are given in **Table-2.5**

Sr. No.	Parameter	Technique	Technical protocol	Minimum detectable limit (µg/m ³)
1	PM10	Respirable Dust Sampler (Gravimetric Method)	IS-5182 (Part-IV)	5.0
2	PM2.5	Fine Respirable Dust Sampler (Gravimetric Method)	IS-5182 (Part-IV)	5.0
3	Sulphur dioxide	Improved West & Gaeke Method	IS-5182 (Part-II)	4.0
4	Nitrogen dioxide	Modified Jacob & Hochheiser Method	IS-5182 (Part-VI)	4.0

TABLE- 2.5 (TECHNIQUES USED FOR AMBIENT AIR QUALITY MONITORING)
Chapter – 3

DATA ANALYSIS

3.0 DATA ANALYSIS

Environmental monitoring for the period of OCT.2021-MAR.2022 consisted of collection and analysis of meteorological parameters, ambient air quality and ground water and surface water quality at different locations within study area selected for carrying out environmental monitoring around the plant site.

3.1 Meteorology

Meteorological data was collected by APML on hourly basis for wind speed, Wind direction, temperature and relative humidity continuously. Total Rain fall on monthly basis during the period of OCT.2021-MAR.2022 was measured and recorded and reported in the Environmental report.

Wind Pattern for the period OCT.2021-MAR.2022.

The data recorded during the study period was analyzed and the daily maximum, minimum and total of all the parameters were observed. The summary of all the meteorological observations is given in **Table-3.1**.

TABLE- 3.1 METEOROLOGICAL DATA MONITORED AT SITE

Month	Tempera	ature (⁰ C)	Relative l	Humidity (%)	Rainfall (mm)
	Max	Min	Max	Min	(Total)
Oct. 2021	35.3	13.4	80.1	15.5	7.8
Nov. 2021	33.3	12.1	77	18.5	14.6
Dec. 2021	30.0	6.6	83.2	11.9	49.2
Jan. 2022	28.8	6.6	80.8	12.8	30.4
Feb. 2022	32.9	8.3	85.1	11.9	42.4
Mar. 2022	40.6	16.4	60.6	7.0	0

(for the period of OCT.2021-MAR.2022)

Temperature

The Temperature for the month of OCT.2021-MAR.2022 was found to be within range of 6.6° C – 40.6° C.

Relative Humidity

The average relative humidity for the month of OCT.2021-MAR.2022 was found to be within range of 7.0-85.1%.

Rain Fall

Total Rain fall found the period of OCT.2021-MAR.2022 was 144.4mm

Wind Speed/Direction

The wind speed and direction data collected during the period of OCT.2021-MAR.2022. The wind roses plot using the collected data for OCT.2021-MAR.2022 is given in **Figure-3.1**

The first predominant wind direction during OCT.2021-MAR.2022 was SE. The calm condition ranges from 5.8 to 93.3%.

FIGURE-3.1 SITE SPECIFIC WINDROSE FOR OCT. 2021- MAR. 2022

3.2 Ambient Air Quality

Ambient air quality has been carried out within plant for the period of OCT.2021-MAR.2022. PM_{10} , $PM_{2.5}$, $SO_2 \& NO_2$, sampling at all the locations is done for 24 hours average twice a week by APML. The values obtained were then compared vis-a-vis the standards prescribed by CPCB for Industrial/ Rural / Residential uses.

3.2.1 Presentation of Results.

The summary of Ambient Air Quality monitoring results for the period of OCT.2021-MAR.2022 are presented in detail in **Table 3.2** for Inside plant area. 98th percentile; maximum and minimum values etc have been computed from the collected raw data for all the AAQ monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQ for residential and rural zone.

Particulate Matter-PM10

The minimum and maximum concentrations during OCT.2021-MAR.2022 in the plant area location for Particulate Matter- PM_{10} were recorded as 42.9 µg/m³ and 89.7 µg/m³ respectively. The minimum concentration was recorded at Near Brick Plant (A2) and maximum concentration at Near Chaina Colony (A3).

Particulate Matter-PM_{2.5}

The minimum and maximum concentrations in the plant area location for $PM_{2.5}$ were recorded as $15.9\mu g/m^3$ and $54.1 \ \mu g/m^3$ respectively. The minimum and Maximum concentration was recorded at Near China colony (A3).

Sulphur Dioxide (SO₂)

The minimum and maximum SO_2 concentrations in the plant area location were recorded as $4.0\mu g/m^3$ and $22.7 \ \mu g/m^3$ respectively. The minimum concentration was recorded at Near Chaina Colony (A3) and maximum concentration was recorded at Near Chaina Colony (A3) respectively.

Nitrogen Dioxide (NO₂)

The minimum and maximum NO₂ concentrations in the plant area location were recorded as 11.7 $\mu g/m^3$ and 29.3 $\mu g/m^3$ respectively. The minimum concentration was recorded at Near Brick Plant(A2) and maximum concentration was recorded at Near AWRS (A1) respectively.

TABLE- 3.2 SUMMARY OF AMBIENT AIR QUALITY RESULT

(Inside Plant Premises)

												All	values	s are µ	.g/m3	
Location		PM ₁₀			PM _{2.5}			SO ₂			NO ₂					
	Min	Max	Avg	98% tile	Min	Max	Avg	98% tile	Min	Max	Avg.	98% tile	Min	Max	Avg.	98% tile
Near AWRS	49.3	87.6	66.0	84.2	16.3	45.5	29.8	43.0	4.4	17.9	11.3	16.6	13.0	29.3	19.5	27.5
Near Brick Plant	42.9	75.9	61.5	74.5	18.6	39.7	27.1	39.3	6.3	17.9	10.1	16.6	11.7	28.0	18.2	27.4
Near Chaina colony	47.9	89.7	69.2	87.4	15.9	54.1	31.2	46.8	4.0	22.7	13.0	19.6	12.6	28.3	19.5	26.0
MPCB Limit	100		•	60		80			80							

for the period of Oct 2021- Mar. 2022

100.0 90.0 80.0 50.0 40.0 30.0 20.0 10.0 0 0		I	1		Nr AWRS NR. Brick Plant Nr. Chaina colony MPCB Limit
0.0	Min	Max	Avg	98th	

3.3 Stack Monitoring.

Stack monitoring is done with the help of stack Kit (ECOTECH Stack Kit) & Prob set, once in a quarter at Boiler Stack 1 to 5 situated in plant. Height of the Boiler Stack was noted as, 275m and I.D. 7.4m.Flue gas, Velocity, Temperature, Volume & Qty, PM, SO₂, NO_x, Hg are analysed. The values obtained are then compared vis-a-vis with the standards prescribed by CPCB.

3.3.1 Presentation of Results.

The Stack analysis results for the period of OCT.2021-MAR.2022 are presented in detail for various parameters like Flue gas, Velocity, Temperature, Volume & Qty, SPM, SO₂, NOx, Hg values etc computed from the collected raw data for the Stack monitoring station. The summary of these results is presented below. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/MPCB

		,			CONCEN	TRATION				
PARAMETERS	T.	.:4 T	U-	.:: 2			Uni	+ A	T	
	U	111 1	UI	III 2	U	III 3	UII	14	UII	15
Date of Sampling	Dec2021	Mar. 2022	Dec2021	Mar. 2022	Dec2021	Mar. 2022	Dec2021	Mar. 2022	Dec2021	Mar. 2022
Diameter of Stack (M)	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
Height of Stack (M)	275	275	275	275	275	275	275	275	275	275
Temp. of exit gas (0 C)	123	130	124	129	119	131	122	133	130	117
Velocity of exit gas (m/sec)	22.84	23.03	23.91	23.82	24.10	24.36	23.62	24.07	24.06	23.44
Flow of exit gas at stack temp. & Press.(m3/hr)	3534530.2	3563933.03	3700114.58	3686786.92	3729517.42	3769752.87	3655236.57	3724874.86	3723327.34	3627381.25
Flow of exit gas at NTP(Nm3/hr)	2526832.0	2503596.63	2638545.18	2596341.73	2721786.59	2641626.33	2619740.44	2734021.45	2615568.17	2633106.75
PM (mg/Nm3)	41.8	39.7	44.0	42.6	42.6	40.8	41.7	44.3	43.9	46.3
Total dust emission (kg/hr)	105.62	99.39	116.1	110.60	115.95	107.78	109.24	121.11	120.87	121.91
SO2 (mg/Nm3)	951.3	963.4	947.7	955.3	953.4	961.7	951.5	939.8	953.3	932.6
SO2 (kg/hr)	2403.78	2411.96	2500.55	2480.28	2594.95	2540.45	2492.68	2569.43	2493.42	2455.63
SO2 (TPD)	57.69	57.89	60.01	59.53	62.28	60.97	59.82	61.67	59.84	58.93
NOx (mg/Nm3)	351.4	363.7	372.2	341.9	347.2	358.5	355.6	361.4	367.1	330.8
Mercury (mg/Nm3)	0.0172	0.0166	0.0166	0.0175	0.0170	0.0163	0.0174	0.0169	0.0171	0.0167

TABLE- 3.3 Stack Analysis Report for the period of Oct. 2021 - Mar.-2022

Power Plant (Unit-I to Unit 5)

Note: Values of PM, SO2 and NOx based on 6% O2

3.4 Water Quality

Ground waters were collected at 4 locations and Surface water at 4 locations within the 10 km radial distance of power plant were analyzed as per IS 10500 to assess the quality of water for portability.

Presentation of Results

The results of the water quality monitored in the period of OCT.2021-MAR.2022, that of four surface water and four ground water samples and seven drinking water samples. The surface water quality results are given in **Table-3.4**, the results of ground water quality is given in **Table-3.5** and the results of Waste water quality are given in **Table-3.6** the findings are discussed below.

3.4.1 Ground Water Quality.

Most of the villages in the Nearby plant area have hand pumps, as most of the residents of these area use of this water for drinking and other domestic uses.

The analysis results indicate that the pH ranges from 7.65 to 8.10 the maximum pH observed at Kachewani Village(GW1) and Minimum pH were observed at Medipur Village (GW2) which is well within the specified standard of 6.5 to 8.5.

Total hardness was observed to be ranging from 218 to 390 mg/l. The maximum hardness 390 mg/l was recorded at Kachewani Village (GW1) and the minimum hardness of 218 mg/l was recorded at Mendipur village(GW2), Which is well within the specified standard of 200(600) mg/l.

Chlorides were found to be in the range of 17.2 mg/l to 138.4mg/l, the maximum concentration of chlorides was observed at Kachewani Village (GW1) and the minimum concentration of chlorides was observed at Mendipur Village(GW2)

Sulphates were found to be in the range of 13.4 mg/l to 117.2 mg/l. The maximum value observed at Kachewani Village (GW1) and the minimum value observed at Mendipur Village(GW2). The values of Chlorides and sulphate are acceptable limits.

The analysis results indicate all parameter including bacteriological and heavy metal parameters are well within the drinking water standards.

3.4.2 Surface Water Quality.

The analysis results indicate that the pH values in the range of 7.55 to 7.8 the minimum and maximum value was observed at Wainganga River and Garada nalah water respectively which is well within the specified standard of 6.5 to 8.5.

TDS was observed in the range of 154 mg/l to292 mg/l, the maximum TDS value was observed at Kachewani Pond where as minimum value was observed in Wainganga River, where as TDS is within Desirable limits.

Chlorides and Sulphates were found to be in the range of 10.7 to 16.2 mg/l and 9.1 to 13.5 mg/l respectively. It is observed that value of chlorides and Sulphates are well within acceptable limits. It is evident from the above values that all the parameters are found to comply with the requirements of IS: 10500 specification of surface water except bacteriological parameters. The surface water quality does not indicate any industrial contamination.

Heavy metals concentrations for metals like Arsenic (As), Mercury (Hg), Lead (Pb), Cadmium (Cd), Chromium (Cr) and Copper (Cu) were found to be within the acceptable limits.

3.4.3 Waste Water Quality

Waste water samples were also collected from Cooling Tower Blodown of unit 1 to 5 and Boiler-Blow down collected of Unit 3 in the March. 2022, Analytical methods mentioned in IS: 3025 and Standard Methods published by APHA were followed. The summary of waste water quality collected on quarterly basis for the period of Oct. 2021- Mar. 2022 are given in **Table-3.6**

3.4.4 Pizo-Metric water

There were 3 Pizo meteric monitoried for water level and collected water samples were analyzed as per IS: 3025 and Standard Methods published by APHA were followed. The summary of pizometric water quality collected on quarterly basis for the period of Oct. 2021- Mar. 2022 are given in **Table-3.7**

3.5 Noise Level:

Noise level was measured by APML in basic units of dB(A) at eleven location inside the plant (industrial Area) during day time and Night time for 24Hrs.

Noise level was found within the acceptable limits during daytime as well as night time for all locations with reference to CPCB standard limits for Industrial area and Residential area.

Noise levels at following locations were recorded for the period of Oct. 2021- Mar. 2022 on monthly basis. The summary of Noise Level is given in **Table-3.8**

3.6 Soil Quality

Soil samples were collected at 3 locations within the 10 km radial distance of power plant were analyzed as per IS:2720. The analysis results given in **Table-3.9**.

TABLE- 3.4 SURFACE WATER QUALITY

SW1: Wainganga River Water

Sr.		T T •4	A IG 10500 2012	Res	sults
No.	Test Parameters	Unit	As per 1S 10500 : 2012	Dec 2021	Mar. 2022
1	Apparent Colour	Hazen units	5 (15)	1.5	1.2
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	-	-
4	Turbidity NTU	NTU	1(5)	0.5	0.3
5	Total Dissolved Solid	mg / 1	500 (2000)	154	162
6	Electrical Conductivity	µS/cm	-	248	264
7	Total Alkalinity	mg / 1	200 (600)	94	97
8	pH Value at 25°C	-	6.5 to 8.5	7.55	7.65
9	Total Hardness (CaCO3)	mg / 1	200 (600)	90	92
10	Calcium (as Ca)	mg / 1	75 (200)	28.2	28.8
11	Magnesium (as Mg)	mg / 1	30 (100)	4.74	4.9
12	Copper as(Cu)	mg / 1	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / 1	0.3	0.072	0.075
14	Manganese as (Mn)	mg / 1	0.1(0.3)	< 0.01	< 0.01
15	Chlorides (as Cl)	mg / 1	250(1000)	10.7	10.9
16	Sulphate (as SO4)	mg / 1	200 (400)	9.1	9.4
17	Nitrates (as NO3)	mg / 1	45	2.15	2.20
18	Fluoride (as F)	mg / 1	1.0 (1.5)	0.35	0.40
19	Phenolic Compounds	mg / 1	0.001	BDL	BDL
20	Mercury as (Hg)	mg / 1	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / 1	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / 1	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / 1	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / 1	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / 1	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / 1	5 (15)	0.12	0.13
27	Total Chromium as (Cr)	mg / 1	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / 1	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / 1	0.2 (1.0)	Nil	Nil
30	Total Coliform	MPN/100 ml	Absent	>16	>16
31	E. Coli	Nos./100 ml	Absent	> 16	>16

SW2: Mendipur Pond Water

Sr.	Test Parameters	Unit	As per IS 10500 · 2012	Res	sults
No.		Omt	As per 15 10500 . 2012	Dec 2021	Mar. 2022
1	Apparent Colour	Hazen units	5 (15)	3.5	2.2
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	-	-
4	Turbidity NTU	NTU	1(5)	1.5	1.0
5	Total Dissolved Solid	mg / l	500 (2000)	180	204
6	Electrical Conductivity	µS/cm	-	288	330
7	Total Alkalinity	mg / l	200 (600)	136	152
8	pH Value at 25°C	-	6.5 to 8.5	7.60	7.75
9	Total Hardness (CaCO3)	mg / l	200 (600)	116	138
10	Calcium (as Ca)	mg / l	75 (200)	29.8	32.2
11	Magnesium (as Mg)	mg / 1	30 (100)	10.1	14.0
12	Copper as(Cu)	mg / 1	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / 1	0.3	0.081	0.086
14	Manganese as (Mn)	mg / l	0.1(0.3)	0.005	0.006
15	Chlorides (as Cl)	mg / l	250(1000)	12.2	14.3
16	Sulphate (as SO4)	mg / l	200 (400)	10.8	11.6
17	Nitrates (as NO3)	mg / l	45	2.40	2.60
18	Fluoride (as F)	mg / 1	1.0 (1.5)	0.45	0.65
19	Phenolic Compounds	mg / l	0.001	BDL	BDL
20	Mercury as (Hg)	mg / l	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / 1	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / l	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / l	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / l	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / l	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / 1	5 (15)	0.15	0.17
27	Total Chromium as (Cr)	mg / 1	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / 1	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / 1	0.2 (1.0)	Nil	Nil
30	Total Coliform	MPN/100 ml	Absent	> 16	> 16
31	E. Coli	Nos./100 ml	Absent	> 16	> 16

SW3: Garada Village Nalah water

Sr.	Test Parameters	Unit	As por IS 10500 · 2012	Res	sults
No.		Unit	As per 15 10500 : 2012	Dec 2021	Mar. 2022
1	Apparent Colour	Hazen units	5 (15)	1.0	1.5
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	-	-
4	Turbidity NTU	NTU	1(5)	0.5	1.0
5	Total Dissolved Solid	mg / l	500 (2000)	264	280
6	Electrical Conductivity	µS/cm	-	428	454
7	Total Alkalinity	mg / l	200 (600)	152	158
8	pH Value at 25°C	-	6.5 to 8.5	7.75	7.80
9	Total Hardness (CaCO3)	mg / 1	200 (600)	154	162
10	Calcium (as Ca)	mg / l	75 (200)	38.2	40.8
11	Magnesium (as Mg)	mg / 1	30 (100)	14.2	14.6
12	Copper as(Cu)	mg / 1	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / 1	0.3	0.075	0.083
14	Manganese as (Mn)	mg / 1	0.1(0.3)	< 0.01	< 0.01
15	Chlorides (as Cl)	mg / 1	250(1000)	15.5	16.2
16	Sulphate (as SO4)	mg / 1	200 (400)	12.3	13.5
17	Nitrates (as NO3)	mg / 1	45	2.25	2.35
18	Fluoride (as F)	mg / 1	1.0 (1.5)	0.50	0.55
19	Phenolic Compounds	mg / 1	0.001	BDL	BDL
20	Mercury as (Hg)	mg / 1	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / l	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / l	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / l	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / 1	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / l	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / l	5 (15)	0.17	0.17
27	Total Chromium as (Cr)	mg / 1	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / 1	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / 1	0.2 (1.0)	Nil	Nil
30	Total Coliform	MPN/100 ml	Absent	> 16	> 16
31	E. Coli	Nos./100 ml	Absent	> 16	> 16

SW4: Kachewani Pond water

Sr.	Test Parameters	Unit	As por IS 10500 · 2012	Res	sults
No.		Omt	As per 15 10500 . 2012	Dec 2021	Mar. 2022
1	Apparent Colour	Hazen units	5 (15)	3.0	2.0
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	-	-
4	Turbidity NTU	NTU	1(5)	1.5	1.0
5	Total Dissolved Solid	mg / 1	500 (2000)	292	270
6	Electrical Conductivity	µS/cm	-	468	452
7	Total Alkalinity	mg / 1	200 (600)	146	140
8	pH Value at 25°C	-	6.5 to 8.5	7.55	7.70
9	Total Hardness (CaCO3)	mg / 1	200 (600)	146	142
10	Calcium (as Ca)	mg / 1	75 (200)	44.0	38.8
11	Magnesium (as Mg)	mg / 1	30 (100)	8.75	10.9
12	Copper as(Cu)	mg / 1	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / 1	0.3	0.083	0.087
14	Manganese as (Mn)	mg / 1	0.1(0.3)	< 0.01	< 0.01
15	Chlorides (as Cl)	mg / 1	250(1000)	13.1	13.7
16	Sulphate (as SO4)	mg / 1	200 (400)	10.7	11.3
17	Nitrates (as NO3)	mg / 1	45	2.60	2.45
18	Fluoride (as F)	mg / 1	1.0 (1.5)	0.45	0.50
19	Phenolic Compounds	mg / 1	0.001	BDL	BDL
20	Mercury as (Hg)	mg / 1	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / 1	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / 1	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / 1	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / 1	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / 1	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / 1	5 (15)	0.13	0.17
27	Total Chromium as (Cr)	mg / 1	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / 1	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / 1	0.2 (1.0)	Nil	Nil
30	Total Coliform	MPN/100 ml	Absent	> 16	> 16
31	E.Coli	Nos./100 ml	Absent	> 16	> 16

TABLE- 3.5 GROUND WATER REPORT

Monitoring Date: 14.12.2021

		STATIC V	WATER LEVE	L OF OPI	EN WELL	
Name of village	Name of villagePlinth Height (m)Diameter (m)Water level 					Landmark
Mendipur	0.85	1.45	4.80	Round	11.00	Near Vitoba Ahinshak Suryavanshi Residence
Khairbori	1.10	1.83	3.60	Round	10.10	Near Hanuman Temple, Durga Temple
Churadi	1.20	2.60	6.40	Round	11.60	Near Primary School
Kachewani	1.5	4.80	3.05	Round	12.30	Opp. ZP. school

Monitoring Date: 22.03.2022

	STATIC WATER LEVEL OF OPEN WELL										
Name of village	Plinth Height (m)	Diameter (m)	Water level from G.L. (m)	Shape	Total Depth of well from G.L (m)	Landmark					
Mendipur	0.85	1.45	6.80	Round	11.00	Near Vitoba Ahinshak Suryavanshi Residence					
Khairbori	1.10	1.83	6.60	Round	10.10	Near Hanuman Temple, Durga Temple					
Churadi	1.20	2.60	8.60	Round	11.60	Near Primary School					
Kachewani	1.5	4.80	Dry	Round	12.30	Opp. ZP. school					

GROUND WATER QUALITY

GW1: Kachewani Hand Pump water

Sr.				Re	sults
No.	Test Parameters	Unit	As per IS 10500 : 2012	Dec 2021	Mar. 2022
1	Apparent Colour	Hazen units	5 (15)	0.1	0.1
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	Agreeable	Agreeable
4	Turbidity NTU	NTU	1(5)	0.1	0.1
5	Total Dissolved Solid	mg / 1	500 (2000)	784	830
6	Electrical Conductivity	µS/cm	-	1252	1334
7	Total Alkalinity	mg / 1	200 (600)	236	244
8	pH Value at 25°C	-	6.5 to 8.5	8.0	8.10
9	Total Hardness (CaCO3)	mg / 1	200 (600)	374	390
10	Calcium (as Ca)	mg / 1	75 (200)	83.2	85.2
11	Magnesium (as Mg)	mg / 1	30 (100)	40.3	43.0
12	Copper as(Cu)	mg / 1	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / 1	0.3	0.20	0.22
14	Manganese as (Mn)	mg / 1	0.1(0.3)	0.012	0.017
15	Chlorides (as Cl)	mg / 1	250(1000)	126.3	138.4
16	Sulphate (as SO4)	mg / 1	200 (400)	104.7	117.2
17	Nitrates (as NO3)	mg / 1	45	3.10	2.80
18	Fluoride (as F)	mg / 1	1.0 (1.5)	0.95	1.0
19	Phenolic Compounds	mg / 1	0.001	BDL	BDL
20	Mercury as (Hg)	mg / 1	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / 1	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / 1	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / 1	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / 1	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / 1	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / 1	5 (15)	0.52	0.57
27	Total Chromium as (Cr)	mg / 1	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / 1	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / 1	0.2 (1.0)	< 0.1	< 0.1
30	Total Coliform	MPN/100 ml	Absent	Absent	Absent
31	E. Coli	Nos./100 ml	Absent	Absent	Absent

Sr.				Res	sults
No.	Test Parameters	Unit	As per IS 10500 :2012	Dec 2021	Mar. 2022
1	Apparent Colour	Hazen units	5 (15)	0.1	0.1
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	Agreeable	Agreeable
4	Turbidity NTU	NTU	1(5)	0.1	0.1
5	Total Dissolved Solid	mg / 1	500 (2000)	464	492
6	Electrical Conductivity	µS/cm	-	752	796
7	Total Alkalinity	mg / 1	200 (600)	190	202
8	pH Value at 25°C	<u> </u>	6.5 to 8.5	7.65	7.80
9	Total Hardness (CaCO3)	mg / 1	200 (600)	218	240
10	Calcium (as Ca)	mg / 1	75 (200)	54.8	58.0
11	Magnesium (as Mg)	mg / 1	30 (100)	19.7	23.1
12	Copper as(Cu)	mg / 1	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / 1	0.3	0.072	0.081
14	Manganese as (Mn)	mg / 1	0.1(0.3)	< 0.01	< 0.01
15	Chlorides (as Cl)	mg / 1	250(1000)	17.2	18.3
16	Sulphate (as SO4)	mg / 1	200 (400)	13.4	15.2
17	Nitrates (as NO3)	mg / 1	45	2.25	2.15
18	Fluoride (as F)	mg / 1	1.0 (1.5)	0.55	0.75
19	Phenolic Compounds	mg / 1	0.001	BDL	BDL
20	Mercury as (Hg)	mg / 1	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / 1	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / l	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / 1	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / 1	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / 1	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / 1	5 (15)	0.13	0.16
27	Total Chromium as (Cr)	mg / 1	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / 1	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / 1	0.2 (1.0)	< 0.1	< 0.1
30	Total Coliform	MPN/100 ml	Absent	Absent	Absent
31	E.Coli	Nos./100 ml	Absent	Absent	Absent

GW2: Mendipur Hand Pump water

Sr.				Re	sults
No.	Test Parameters	Unit	As per IS 10500 : 2012	Dec 2021	Mar. 2022
1	Apparent Colour	Hazen units	5 (15)	0.1	0.1
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	Agreeable	Agreeable
4	Turbidity NTU	NTU	1(5)	0.1	0.1
5	Total Dissolved Solid	mg / 1	500 (2000)	570	630
6	Electrical Conductivity	µS/cm	-	930	1028
7	Total Alkalinity	mg / 1	200 (600)	195	216
8	pH Value at 25°C	-	6.5 to 8.5	7.80	7.90
9	Total Hardness (CaCO3)	mg / 1	200 (600)	284	308
10	Calcium (as Ca)	mg / 1	75 (200)	66.2	70.8
11	Magnesium (as Mg)	mg / 1	30 (100)	28.8	31.8
12	Copper as(Cu)	mg / 1	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / 1	0.3	0.095	0.11
14	Manganese as (Mn)	mg / 1	0.1(0.3)	< 0.01	< 0.01
15	Chlorides (as Cl)	mg / 1	250(1000)	21.6	32.6
16	Sulphate (as SO4)	mg / 1	200 (400)	17.3	22.7
17	Nitrates (as NO3)	mg / 1	45	2.55	2.40
18	Fluoride (as F)	mg / 1	1.0 (1.5)	0.65	0.90
19	Phenolic Compounds	mg / 1	0.001	BDL	BDL
20	Mercury as (Hg)	mg / 1	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / 1	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / 1	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / 1	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / 1	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / 1	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / 1	5 (15)	0.42	0.55
27	Total Chromium as (Cr)	mg / 1	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / 1	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / 1	0.2 (1.0)	< 0.1	< 0.1
30	Total Coliform	MPN/100 ml	Absent	Absent	Absent
31	E. Coli	Nos./100 ml	Absent	Absent	Absent

GW3: Garada Hand Pump water

GW4: Chikhali Hand Pump water

Sr.				Results		
No.	Test Parameters	Unit	As per IS 10500 : 2012	Dec 2021	Mar. 2022	
1	Apparent Colour	Hazen units	5 (15)	0.1	0.1	
2	Odour	-	Agreeable	Agreeable	Agreeable	
3	Taste	-	Agreeable	Agreeable	Agreeable	
4	Turbidity NTU	NTU	1(5)	0.1	0.1	
5	Total Dissolved Solid	mg / 1	500 (2000)	644	712	
6	Electrical Conductivity	µS/cm	-	1042	1146	
7	Total Alkalinity	mg / 1	200 (600)	216	230	
8	pH Value at 25oC	-	6.5 to 8.5	7.90	8.0	
9	Total Hardness (CaCO3)	mg / 1	200 (600)	317	340	
10	Calcium (as Ca)	mg / 1	75 (200)	77.8	81.2	
11	Magnesium (as Mg)	mg / 1	30 (100)	29.8	33.3	
12	Copper as(Cu)	mg / 1	0.05(1.5)	< 0.01	< 0.01	
13	Iron (as Fe)	mg / 1	0.3	0.092	0.12	
14	Manganese as (Mn)	mg / 1	0.1(0.3)	< 0.01	< 0.01	
15	Chlorides (as Cl)	mg / 1	250(1000)	21.7	33.6	
16	Sulphate (as SO4)	mg / 1	200 (400)	16.6	19.4	
17	Nitrates (as NO3)	mg / 1	45	2.20	2.55	
18	Fluoride (as F)	mg / 1	1.0 (1.5)	0.75	0.90	
19	Phenolic Compounds	mg / 1	0.001	BDL	BDL	
20	Mercury as (Hg)	mg / 1	0.001	< 0.0005	< 0.0005	
21	Cadmium as (Cd)	mg / 1	0.003	< 0.001	< 0.001	
22	Selenium as (Se)	mg / 1	0.01	< 0.001	< 0.001	
23	Arsenic as (As)	mg / 1	0.01 (0.05)	< 0.01	< 0.01	
24	Cyanide as (CN)	mg / 1	0.05	< 0.005	< 0.005	
25	Lead as (Pb)	mg / 1	0.01	< 0.001	< 0.001	
26	Zinc as (Zn)	mg / 1	5 (15)	0.31	0.38	
27	Total Chromium as (Cr)	mg / 1	0.05	< 0.03	< 0.03	
28	Mineral Oil	mg / 1	0.05	< 0.01	< 0.01	
29	Free Residual Chlorine	mg / 1	0.2 (1.0)	< 0.1	< 0.1	
30	Total Coliform	MPN/100 ml	Absent	Absent	Absent	
31	E. Coli	Nos./100 ml	Absent	Absent	Absent	

TABLE- 3.6 WASTE WATER QUALITY (OCT.2021-MAR.2022)

~				Results		
Sr. No.	Parameters	Unit	MPCB Limit	Dec 2021	Mar. 2022	
1.	Free Available Chlorine	mg / 1	0.5	0.25	0.22	
2.	Zinc as (Zn)	mg / 1	1.0	0.11	0.10	
3.	Total Chromium as (Cr)	mg / 1	0.2	0.013	0.012	
4.	Phosphate as (PO4)	mg/ l	5.0	1.37	1.34	

Sample Category : Unit-1- Cooling Tower Blow Down water (WW-1)

Sample Category : Unit-2- Cooling Tower Blow Down water (WW-2)

Sr.	Sr. Parameters		МРСВ	Results	
No.		Omt	Limit	Dec 2021	Mar. 2022
1.	Free Available Chlorine	mg / l	0.5	0.22	0.24
2.	Zinc as (Zn)	mg / 1	1.0	0.10	0.11
3.	Total Chromium as (Cr)	mg / 1	0.2	0.012	0.015
4.	Phosphate as (PO4)	mg/ l	5.0	1.34	1.38

Sample Category : Unit-3- Cooling Tower Blow Down water (WW-3)

Sr.	Sr. Parameters		МРСВ	Results	
No.).	Cint	Limit	Dec 2021	Mar. 2022
1.	Free Available Chlorine	mg / l	0.5	0.24	0.21
2.	Zinc as (Zn)	mg / 1	1.0	0.13	0.11
3.	Total Chromium as (Cr)	mg / 1	0.2	0.015	0.010
4.	Phosphate as (PO4)	mg/ l	5.0	1.32	1.28

Sr.	D (T T •4	МРСВ	Results	
No.	Parameters	Unit	Limit	Dec 2021	Mar. 2022
1.	Free Available Chlorine	mg / 1	0.5	0.20	0.25
2.	Zinc as (Zn)	mg / l	1.0	0.11	0.13
3.	Total Chromium as (Cr)	mg / 1	0.2	0.010	0.012
4.	Phosphate as (PO4)	mg/ l	5.0	1.30	1.34

Sample Category : Unit-4-Cooling Tower Blow Down water (WW-4)

Sample Category : Unit-5- Cooling Tower Blow Down water (WW-5)

Sr.	Demonsterne	T	МРСВ	Results	
No.	rarameters	Unit	Limit	Dec 2021	Mar. 2022
1.	Free Available Chlorine	mg / 1	0.5	0.22	0.23
2.	Zinc as (Zn)	mg / 1	1.0	0.13	0.11
3.	Total Chromium as (Cr)	mg / 1	0.2	0.010	0.014
4.	Phosphate as (PO4)	mg/ l	5.0	1.31	1.33

TEST RESULT

Sample Category : Unit 3- Boiler Blow Down Water (WW6)

Sr.	Test Parameters	Unit	MPCB Limit	Results
No.				Mar. 2022
1.	TSS	mg / 1	100	16
2.	Oil & Grease	mg / 1	20	< 4
3.	Copper (as Cu)	mg / 1	1	0.07
4.	Iron (as Fe)	mg / 1	1	0.03

TABLE- 3.7 Pizo-metric well water Report

Monitoring Date: 15.12.2021

	STATIC WATER LEVEL OF PIZO. WELL							
Name of village	Water level from B.G.L. (m)	Total Depth of Pizo well from G.L (m)	Total Depth of Pizo well with Casing (m)	Landmark				
Pizo well (P1)	2.5	18.6	19.8	Near AWRPH				
Pizo well (P2)	2.3	20.0	21.0	B/H Ash dyke -1				
Pizo well (P3)	2.1	20.0	20.7	Near Raw Water pump house -02				

Pizo-metric	well w	ater A	Analysis	Report

Sr. No.	Test Parameters	Unit	As per IS : 10500 : 2012	Pizo well (P1) Near AWRPH	Pizo well (P2) B/H Ash dyke -1	Pizo -well (P3) Near Raw Water pump house -02
1	рН		6.5 to 8.5	7.95	7.85	8.0
2	Total Dissolved Solid	mg / 1	500 (2000)	624	594	566
3	Electrical Conductivity	µS/cm	-	1022	963	918
4	Copper as(Cu)	mg / 1	0.05 (1.5)	< 0.01	< 0.01	< 0.01
5	Iron (as Fe)	mg / 1	0.3 (1.0)	0.15	0.17	0.12
6	Manganese as (Mn)	mg / 1	0.1 (0.3)	0.063	0.080	0.057
7	Mercury as (Hg)	mg / 1	0.001	< 0.0005	< 0.0005	< 0.0005
8	Cadmium as (Cd)	mg / 1	0.01	0.0037	0.0019	0.0013
9	Selenium as (Se)	mg / 1	0.01	0.0015	0.0012	0.0011
10	Arsenic as (As)	mg / 1	0.05	0.0092	0.008	0.013
11	Cyanide as (CN)	mg / 1	0.05	< 0.005	< 0.005	< 0.005
12	Lead as (Pb)	mg / 1	0.05	0.0021	0.0018	0.0011
13	Zinc as (Zn)	mg / 1	5 (15)	2.07	2.24	2.15
14	Total Chromium as (Cr)	mg / 1	0.05	< 0.010	< 0.010	< 0.010

Monitoring Date: 22.03.2022

STATIC WATER LEVEL OF PIZO. WELL								
Name of village	Water level from B.G.L. (m)	Total Depth of Pizo well from G.L (m)	Total Depth of Pizo well with Casing (m)	Landmark				
Pizo well (P1)	3.2	18.6	19.8	Near AWRPH				
Pizo well (P2)	3.0	20.0	21.0	B/H Ash dyke -1				
Pizo well (P3)	2.8	20.0	20.7	Near Raw Water pump house -02				

Pizo-metric well water Analysis Report

Sr. No.	Test Parameters	Unit	As per IS : 10500 : 2012	Pizo well (P1) Near AWRPH	Pizo well (P2) B/H Ash dyke -1	Pizo -well (P3) Near Raw Water pump house -02
1	рН		6.5 to 8.5	8.0	7.95	7.60
2	Total Dissolved Solid	mg / 1	500 (2000)	677	618	582
3	Electrical Conductivity	µS/cm	-	1090	998	946
4	Copper as(Cu)	mg / 1	0.05 (1.5)	< 0.01	< 0.01	< 0.01
5	Iron (as Fe)	mg / 1	0.3 (1.0)	0.17	0.20	0.15
6	Manganese as (Mn)	mg / 1	0.1 (0.3)	0.067	0.083	0.042
7	Mercury as (Hg)	mg / 1	0.001	< 0.0005	< 0.0005	< 0.0005
8	Cadmium as (Cd)	mg / 1	0.01	0.0041	0.0021	0.0016
9	Selenium as (Se)	mg / 1	0.01	0.0018	0.0015	0.0010
10	Arsenic as (As)	mg / 1	0.05	0.011	0.010	0.017
11	Cyanide as (CN)	mg / 1	0.05	< 0.005	< 0.005	< 0.005
12	Lead as (Pb)	mg / 1	0.05	0.0024	0.0019	0.0013
13	Zinc as (Zn)	mg / 1	5 (15)	2.18	2.02	1.95
14	Total Chromium as (Cr)	mg / 1	0.05	< 0.010	< 0.010	< 0.010

				RESUL	T (dBA)		
SL.	LOCATION			DA	AY		
NO.		Oct. 2021	Nov 2021	Dec. 2021	Jan. 2022	Feb. 2022	Mar. 2022
1	Near Shanti Niketan I, II & III	59.8	57.2	58.9	57.8	58.0	56.9
2	Near Labour Hutment	62.3	56.5	53.3	56.7	60.4	64.5
3	Near Store Area	60.5	57.1	58.1	63.9	61.5	61.6
4	Gate No.1	56.0	63.6	52.0	52.0	49.9	61.7
5	Gate No.2	63.8	57.4	61.7	61.3	61.6	64.7
6	Gate No.3	72.3	68.3	67.3	67.8	67.9	73.3
7	Near OHC	56.8	59.2	51.3	47.8	48.8	56.6
8	Railway Siding	64.8	65.3	63.6	64.7	58.5	65.4
9	Near Reservoir 2	60.1	48.4	49.3	56.9	50.2	52.9
10	Near Ash Water Recovery Pump House	61.6	66.7	59.9	61.5	59.3	62.0
11	In China Colony	39.3	45.7	45.4	44.8	38.0	39.4
С	PCB Standards						
In	dustrial Area			7	5		

TABLE- 3.8 Noise Level (Within Plant area)

SL.				RESUL	T (dBA)		
SL.	LOCATION			NIC	GHT		
NO.		Oct. 2021	Nov 2021	Dec. 2021	Jan. 2022	Feb. 2022	Mar. 2022
1	Near Shanti Niketan I II & III	51.2	48.3	42.2	47.5	48.2	49.8
2	Near Labour Hutment	52.2	50.2	49.8	45.2	50.2	54.8
3	Near Store Area	49.7	51.1	50.7	51.2	51.0	50.5
4	Gate No.1	51.0	52.2	48.7	42.2	41.8	54.4
5	Gate No.2	53.2	48.8	52.2	50.8	51.8	52.2
6	Gate No.3	62.2	59.9	58.9	60.4	62.2	65.5
7	Near OHC	46.7	51.9	48.5	41.7	42.7	48.7
8	Railway Siding	50.5	49.7	55.5	59.8	52.2	55.7
9	Near Reservoir 2	51.2	44.4	43.3	43.3	43.0	41.1
10	Near Ash Water Recovery Pump House	51.2	60.5	52.4	50.8	42.8	52.4
11	In China Colony	36.7	34.4	37.1	36.5	37.2	36.0
С	PCB Standards						
In	idustrial Area			7	0		

Sr. No.	Test Parameters	Unit	Garada Village	Mendipur Village	Churdi Village
1	pH	-	7.75	7.85	7.85
2	E. Conductivity	μs/cm	577	512	526
3	Nitrogen as N	Kg/ha	264	221	242
4	Phosphorus as P2O5	Kg/ha	140.3	83.6	75.1
5	Potassium as K	Kg/ha	79.2	71.2	59.9
6	Calcium (as Ca)	Kg/ha	3.70	3.74	3.77
7	Magnesium (as Mg)	Kg/ha	1.28	1.12	1.06
8	Total Organic Carbon	%	0.740	0.796	0.702
9	Iron as Fe	Kg/ha	2.53	2.68	2.40
10	Boron as B	Kg/ha	ND	ND	ND
11	Natural Moisture Content	%	6.1	6.0	6.1
12	Field Capacity	%	7.0	6.4	6.9
13	Wilting Coefficient	%	0.68	0.70	0.66
14	Available Water Storage Capacity	%	0.73	0.74	0.72
15	Bulk Density	gm/cc	1.37	1.37	1.38
16	Grain size Distribution : a) Sand	%	32.8	35.3	34.2
	b) Silt	%	31.9	30.6	30.6
	c) Clay	%	35.3	34.1	35.2
17	Cation Exchange Capacity	meq/100gm	37.7	35.2	33.4
18	Biological Status:				
	a) Total Heterotrophy	CFU	33.5 x103/gm	20.6 x103/gm	31.4 x103/gm
	b) Azetobacter	CFU	35.7 x103/gm	28.8 x103/gm	26.6 x103/gm
	c) Actinomycetes	CFU	26.4 x101/gm	14.3 x102/gm	34.8 x103/gm
	d) Yeast	CFU	129 x102/gm	138 x102/gm	166 x102/gm

Annexure I - On site Meteorological Data for Oct. 2021- Mar. 2022

Oct. 2021

Date	Wind Direction (Blowing	Wind (Kr	Speed n/hr)	Tem	perature	(°C)	Н	umidity (%	6)	Barometric Pressure (mBar)	Rainfall (mm)
	From)	Max.	Avg.	Max	Min	Avg.	Max	Min	Avg	(Average)	
01.10.2021	ENE	32	19.91	34.7	23.5	27.8	76.8	36.2	61.4	978.7	0.0
02.10.2021	ENE	40	22.49	29.6	23.3	25.6	79	53.5	69.4	979.2	0.0
03.10.2021	E	64.6	22.89	32.8	21.5	25.9	78.7	44.4	66.4	978.5	4.8
04.10.2021	NNW	32.4	19.76	35.1	21.6	27.3	80.1	38.5	62.3	977.9	0.0
05.10.2021	NW	57.8	20.40	33	23.2	25.8	78.5	46.2	67.6	978.5	0.0
06.10.2021	WNW	41.2	20.05	35.1	22.3	26.6	79.4	37.2	64.2	978.2	0.0
07.10.2021	NNW	30.4	19.86	35.3	22.9	27.8	77.9	37.1	61.3	977.7	0.0
08.10.2021	Е	52.8	20.98	34.7	23.8	27.3	76.3	38.5	62.3	977.4	0.0
09.10.2021	N	33.6	19.75	34.9	22	27.2	78.7	30.4	58.2	977.9	0.0
10.10.2021	Ν	34.2	19.71	33.7	20.2	25.1	78.5	31.8	62.1	978.7	0.0
11.10.2021	Ν	44.0	20.28	33.6	22.1	29.1	73.6	27.3	46.1	977.6	0.0
12.10.2021	Ν	44.6	19.78	33.6	20.1	26.5	79.4	29.3	55.7	977.6	0.0
13.10.2021	NW	32.8	9.83	34.4	20.2	26.7	79.2	23.7	53.9	979.1	0.0
14.10.2021	NE	33.3	2.84	32.8	20.8	26.0	73	30.7	51.7	980.1	0.0
15.10.2021	NE	32.1	2.65	32.5	19.2	25.0	69.7	38.4	54.5	977.9	0.0
16.10.2021	W	43.5	5.79	33.4	22.8	27.7	71.8	35.5	54.4	977.4	0.0
17.10.2021	NW	47.2	3.28	34.3	23.1	27.3	77.8	39.1	62.3	978.1	0.2
18.10.2021	ENE	34.1	6.29	30.7	23.5	26.3	71.4	47	61.2	978.3	2.8
19.10.2021	Е	36.8	6.52	31.9	22.5	26.4	73.8	37.8	57.5	982.1	0.0
20.10.2021	NNW	22	2.45	33.7	20.5	26.2	71.5	25.6	51.7	985.5	0.0
21.10.2021	NW	24	2.85	33.5	19.2	25.4	76.4	15.5	47.4	986.1	0.0
22.10.2021	NW	20.7	3.04	32.9	16.2	24.0	73.7	18	47.9	986.8	0.0
23.10.2021	NW	27.9	3.05	32.2	16.5	24.0	75	21.3	48.4	987.1	0.0
24.10.2021	NW	24	2.34	33.5	17.9	22.6	71.5	30.4	55.2	986.5	0.0
25.10.2021	ENE	18	1.95	31.9	19.8	26.4	67.2	22.2	42.5	985.8	0.0
26.10.2021	Е	21.5	2.15	31.9	17.4	23.7	73.6	24.6	52.3	985.6	0.0
27.10.2021	S	30.9	3.85	31.2	17.5	23.6	72.8	26.3	50.1	986.7	0.0

<u>Nov. 2021</u>

Date	Wind Direction (Blowing	Wind (Kn	Speed n/hr)	Tem	perature	(°C)	н	umidity (%	6)	Barometric Pressure (mBar)	Rainfall (mm)	
	(Blowing From)	Max.	Avg.	Max	Min	Avg.	Max	Min	Avg	(Average)		
01.11.2021	ENE	28.2	2.75	29.5	13.7	21.7	70.1	25.3	46.0	987.3	0.0	
02.11.2021	Ν	28.2	3.28	30.4	15.9	22.2	66.7	28.4	49.7	987.2	0.0	
03.11.2021	NW	31.1	3.61	30.4	18.2	23.8	68.2	39.2	54.9	986.6	0.0	
04.11.2021	WNW	27.4	3.22	30.9	18.2	24.4	70.9	35.1	52.9	986.2	0.0	
05.11.2021	NW	29.9	4.05	29.8	16.7	22.5	66.7	24.5	45.6	987.4	0.0	
06.11.2021	W	29.3	2.87	28.9	13.7	21.8	69.5	24.8	45.8	987.3	0.0	
07.11.2021	NW	33.8	2.85	30.1	14	21.5	68.6	19	44.1	985.0	0.0	
08.11.2021	SSW	26.4	3.00	29.9	13.7	21.2	67	19.5	44.0	986.0	0.0	
09.11.2021	N	18.8	2.37	28.9	13.8	20.5	65.6	23.8	46.3	986.7	0.0	
10.11.2021	SSE	31.6	3.37	29.2	13.9	20.3	61.7	19.5	42.1	985.5	0.0	
11.11.2021	S	25.9	3.71	29	14.3	20.5	58.2	23.4	44.6	983.7	0.0	
12.11.2021	SSW	33.3	3.57	28.2	15.5	22.1	66.8	36.5	53.0	983.1	0.0	
13.11.2021	ESE	35.3	3.09	28.2	19.8	23.4	69.3	47.1	59.3	982.7	0.0	
14.11.2021	WNW	27.4	2.81	31.2	19	24.3	73.3	36.4	55.0	982.4	0.0	
15.11.2021	ENE	24.2	3.01	31.1	18.2	23.9	61.7	31.2	48.2	981.6	0.0	
16.11.2021	WSW	25.4	4.19	29.3	16.9	22.9	66	36.2	49.5	982.4	0.0	
17.11.2021	NW	35.1	5.22	30.9	18.4	23.9	67.1	34.7	52.4	984.0	0.0	
18.11.2021	WNW	30.1	5.40	30.5	18.6	24.5	69.2	34.5	51.0	983.0	0.0	
19.11.2021	NW	32.1	4.14	31.8	19.5	24.9	67.1	26.6	45.8	981.3	0.0	
20.11.2021	WNW	29.1	4.24	30.4	19.1	23.8	69.6	38.5	53.6	981.2	1.6	
21.11.2021	W	26.7	3.57	32.1	19.6	23.9	74.7	38.4	61.5	982.9	8.0	
22.11.2021	NW	24	2.91	28.4	21.6	24.6	73.9	46.6	60.3	984.0	5.0	
23.11.2021	NNE	24	1.77	33.3	19.3	24.2	77	24.3	57.3	983.6	0.0	
24.11.2021	ENE	29.9	3.17	29.8	16.9	22.4	73	24.5	48.7	986.4	0.0	
25.11.2021	NW	24.7	2.49	30.9	16.9	23.0	73	28	53.5	985.0	0.0	
26.11.2021	ENE	28.4	2.54	30.3	16.6	22.2	71.3	19.9	47.4	985.7	0.0	
27.11.2021	NW	27.7	4.06	31.5	18.7	24.1	68.8	37.5	53.2	981.3	0.0	
28.11.2021	WNW	26.2	2.27	32.9	19.4	24.0	76.9	27.8	57.4	983.7	0.0	
29.11.2021	W	29.1	3.17	27.9	14.6	22.3	63.7	18.5	34.3	988.0	0.0	
30.11.2021	WNW	31.4	3.49	27.8	12.1	19.3	63.1	20.9	41.8	987.5	0.0	

Dec. 2021

Date	Wind Direction	Wind (Kr	Speed n/hr)	Tem	perature	(°C)		Humidity	(%)	Barometric Pressure (mBar)	Rainfall (mm)
Daic	(Blowing From)	Max.	Avg.	Max	Min	Avg.	Max	Min	Avg	(Average)	
01.12.2021	ENE	31.9	3.78	27.3	18.1	23.2	61.2	24.8	37.1	985.9	0.0
02.12.2021	WNW	33.8	5.69	27.2	19	24.0	52.6	25.8	35.0	985.6	0.0
03.12.2021	WNW	34.1	3.67	28.2	16.7	22.7	61.4	28.5	43.3	986.8	0.0
04.12.2021	NW	28.2	3.10	28.3	13.9	20.8	70.8	28.7	49.9	985.6	0.0
05.12.2021	WNW	30.4	3.21	29.3	14.6	21.3	68.1	26.2	50.4	985.5	0.0
06.12.2021	ENE	26.4	2.61	30	15.3	22.2	65.4	26.9	47.9	985.1	0.0
07.12.2021	NW	20.5	2.90	28.5	17.6	23.5	63.5	30.7	45.0	986.9	0.0
08.12.2021	WNW	29.6	2.99	29	15.4	21.1	69.9	25.5	53.5	987.4	0.0
09.12.2021	WNW	28.4	3.04	29.7	17.3	21.8	65.3	26.8	50.3	988.6	0.0
10.12.2021	SSW	22.7	3.44	29.2	16	21.3	65.4	24.8	49.8	989.1	0.0
11.12.2021	NW	29.1	3.13	28.1	15.1	20.7	63.5	27.5	47.0	989.2	0.0
12.12.2021	SW	20.5	2.41	27.9	14.1	19.8	60.7	25	45.5	989.5	0.0
13.12.2021	WSW	22	3.41	27.5	13.4	19.5	63.1	23.7	46.0	988.4	0.0
14.12.2021	NNW	25.9	2.80	27.2	12.7	18.7	68.5	24.5	48.9	987.0	0.0
15.12.2021	NNW	27.4	3.72	26.8	12.5	18.8	69	24.6	48.2	988.0	0.0
16.12.2021	NW	31.6	3.93	26.7	12.2	18.9	72.5	24.4	48.0	988.8	0.0
17.12.2021	NW	24.7	3.10	27	11.9	18.6	70.7	26	50.3	988.9	0.0
18.12.2021	WNW	34.3	3.92	24.7	12.1	17.4	71.8	33.1	51.0	989.1	0.0
19.12.2021	NW	33.6	4.82	22.6	9.6	15.1	50.6	18.6	33.4	990.3	0.0
20.12.2021	NNW	26.4	2.83	24	6.6	14.3	58.2	11.9	34.1	989.8	0.0
21.12.2021	NNW	19.5	2.30	25.8	6.6	15.6	65.7	13.3	36.8	988.6	0.0
22.12.2021	NW	21.7	3.25	26.1	7.5	16.4	62.8	14.9	37.1	986.6	0.0
23.12.2021	NE	21.7	2.67	27.4	9.2	17.8	63.1	17.9	39.5	986.1	0.0
24.12.2021	NNW	25.4	2.95	27.1	10.1	18.6	67.3	25.6	45.8	985.1	0.0
25.12.2021	ESE	24.7	2.13	27.7	11.5	19.8	69.8	28.3	47.8	985.6	0.0
26.12.2021	NW	28.7	3.76	26.9	12.9	19.5	65.7	30.8	49.3	987.6	0.0
27.12.2021	NW	19.3	3.38	26.8	14.2	19.7	71.3	35.5	57.2	988.2	0.0
28.12.2021	NW	60.5	6.52	25.3	14.4	18.1	77.6	43.3	66.5	986.8	49.2
29.12.2021	N	34.3	3.53	20.6	13.7	16.2	83.2	51.4	69.4	987.9	0.0
30.12.2021	ESE	31.4	3.98	22	12	15.9	73	45.2	62.7	991.3	0.0
31.12.2021	SW	25.2	3.49	23.3	10.7	16.2	73.1	41.5	59.8	991.9	0.0

<u>Jan.</u> 2022

Date	Wind Direction (Blowing	Wind (Kr	Speed n/hr)	Temperature (°C)			Humidity (%)			Barometric Pressure (mBar)	Rainfall (mm)	
	From)	Max.	Avg.	Max	Min	Avg.	Max	Min	Avg	(Average)		
01.01.2022	NE	21.2	2.83	26.5	11.4	17.8	67.5	36	54.5	991.2	0.0	
02.01.2022	SSE	22.2	3.21	26.9	13	18.8	68.8	33.7	53.9	989.6	0.0	
03.01.2022	SSW	25.4	3.15	26.1	12.3	18.5	68.4	30.4	50.1	988.6	0.0	
04.01.2022	ESE	22.7	2.46	28	11.3	18.6	65.5	24.8	46.3	988.4	0.0	
05.01.2022	NW	27.7	3.56	27.2	12	19.0	67.2	24.5	48.5	987.9	0.0	
06.01.2022	Ν	22	2.58	27.5	12.2	19.6	73.2	33.1	54.3	986.9	0.0	
07.01.2022	NW	27.9	4.83	27.3	14.3	20.6	71.2	34.4	51.9	987.2	0.0	
08.01.2022	NW	32.1	8.43	26.7	16.2	21.5	62.1	36	49.8	987.5	0.0	
09.01.2022	NW	32.9	4.71	23.4	16.5	19.0	75.3	47.9	63.3	985.6	7.6	
10.01.2022	NE	24.2	2.94	20.9	16	17.1	77.6	60.1	72.9	987.0	1.2	
11.01.2022	NW	32.4	3.68	18.6	14.9	16.5	74.4	63	71.2	987.2	8.4	
12.01.2022	NE	24.5	2.67	20.4	13.6	15.0	78.7	54.2	73.5	986.2	0.0	
13.01.2022	WNW	28.9	7.44	22.1	14.2	17.2	76.2	59.1	72.6	986.4	0.0	
14.01.2022	NNW	26.7	4.66	18	14.3	16.1	74.5	60	67.8	986.9	10.4	
15.01.2022	NW	24.5	2.88	21.3	13.1	16.7	80.8	50.8	65.8	988.0	0.0	
16.01.2022	SSW	23.7	3.89	24.2	11.2	15.7	76.4	30.8	63.3	989.7	0.0	
17.01.2022	ESE	26.4	3.39	26	11.5	17.8	62	31.5	43.7	990.7	0.0	
18.01.2022	NE	26.2	3.60	25	11.1	19.3	72.2	33.8	48.8	988.4	0.0	
19.01.2022	Ν	27.7	3.46	25.1	9.7	17.3	68.4	18.9	42.3	986.6	0.0	
20.01.2022	SSW	24.7	4.14	27.3	10.3	18.0	64.3	21.4	41.9	983.5	0.0	
21.01.2022	NNW	24.7	2.80	28.8	11.3	18.8	71.1	23.1	48.7	982.7	0.0	
22.01.2022	NW	41.2	5.00	27.7	11.4	19.7	71.1	25.1	48.1	981.3	0.0	
23.01.2022	ENE	37.3	5.24	25.3	14.7	19.2	71.2	27.4	49.3	981.5	2.8	
24.01.2022	Е	32.4	4.16	23.2	11.6	16.6	70.8	31.5	51.4	983.7	0.0	
25.01.2022	ESE	33.6	3.64	22.8	9.2	15.3	66.7	27.4	48.3	985.1	0.0	
26.01.2022	SSW	26.7	4.19	23.2	8.9	15.0	63.2	25.7	45.4	986.1	0.0	
27.01.2022	S	41.2	4.75	22.5	7.5	14.7	64.1	23.7	42.7	987.8	0.0	
28.01.2022	Ν	32.4	3.65	22.2	6.6	14.2	63.9	20.5	41.8	989.0	0.0	
29.01.2022	Е	26.2	3.39	25.1	7.1	15.6	62.6	12.8	38.4	989.0	0.0	
30.01.2022	Е	28.9	3.82	26.3	7.4	17.0	68.8	18.3	38.4	986.1	0.0	
31.01.2022	ESE	26.9	3.71	28.1	9	18.8	72.1	16.6	42.3	984.4	0.0	

Feb. 2022

Date	Wind Direction (Blowing	Wind (Kn	Wind Speed (Km/hr)		perature	(°C)		Humidity	(%)	Barometric Pressure (mBar)	Rainfall (mm)
	(Dio wing From)	Max.	Avg.	Max	Min	Avg.	Max	Min	Avg	(Average)	
01.02.2022	NW	24.9	3.4	26.6	10.7	18.3	65.2	28.1	47.6	985.8	0.0
02.02.2022	NNW	28.9	2.7	28.7	11.1	19.2	72.1	25.5	49.3	985.3	0.0
03.02.2022	NW	31.2	3.0	27.2	10.6	19.5	74.3	25.6	52.8	984.3	0.0
04.02.2022	Ν	26.2	3.9	26.4	8.9	20.1	79.0	29.1	50.4	983.8	0.0
05.02.2022	Е	31.9	3.7	26.8	9.4	18.0	60.2	26.8	46.8	985.0	0.0
06.02.2022	ESE	29.8	3.2	27.8	10.9	23.8	65.8	20.4	48.9	983.4	0.0
07.02.2022	NW	26.9	4.2	29.5	12.2	23.6	62.5	18.2	30.8	986.7	0.0
08.02.2022	NW	22.7	3.8	29.7	12.6	20.9	62.1	18.8	39.1	985.6	0.0
09.02.2022	NNW	59.8	6.0	26.0	14.4	20.2	74.8	37.5	54.4	984.5	40.0
10.02.2022	NW	32.4	4.9	25.6	14.2	18.5	76.7	28.3	58.4	986.8	0.4
11.02.2022	SSE	38.5	5.1	24.5	10.2	16.8	71.3	22.5	44.2	988.1	0.0
12.02.2022	SSW	37.0	4.3	27.0	8.3	16.5	65.9	18.3	41.5	988.1	0.0
13.02.2022	SW	29.9	4.2	30.7	11.8	24.3	85.1	38.6	55.2	981.7	0.0
14.02.2022	NNW	33.6	3.5	30.2	10.5	20.2	65.9	19.9	41.0	986.0	0.0
15.02.2022	NW	29.1	4.6	28.7	12.5	21.2	66.5	21.5	39.3	984.0	0.0
16.02.2022	ENE	25.9	3.9	28.9	14.2	21.2	66.3	27.9	46.2	982.3	0.0
17.02.2022	W	30.9	3.4	20.2	15.5	17.7	70.0	43.2	57.8	983.1	0.4
18.02.2022	W	23.0	3.5	28.1	14.1	20.1	71.9	28.7	51.5	984.4	0.0
19.02.2022	N	35.6	4.1	29.8	16.4	22.2	67.0	26.7	48.4	985.0	0.0
20.02.2022	ESE	40.3	3.5	30.2	15.7	22.2	73.5	19.4	45.0	982.5	0.0
21.02.2022	ENE	42.5	3.7	30.9	11.5	21.0	67.2	11.9	33.9	983.0	0.0
22.02.2022	SSW	26.7	3.7	32.9	11.9	22.4	61.4	12.4	30.1	985.3	0.0
23.02.2022	NW	33.6	5.6	32.4	12.8	23.5	61.3	22.6	37.2	987.1	0.0
24.02.2022	ENE	41.5	7.8	31.1	19.7	25.2	60.8	28.1	43.0	987.1	1.6
25.02.2022	SSW	29.1	3.4	31.8	17.3	24.3	65.0	16.4	38.1	987.3	0.0
26.02.2022	ENE	29.4	5.0	31.2	15.5	23.3	61.1	27.7	43.6	987.5	0.0
27.02.2022	NE	38.3	6.0	30.5	17.3	24.1	70.0	25.4	45.5	987.4	0.0
28.02.2022	ENE	35.6	6.6	31.6	18.8	24.8	59.5	18.5	38.3	986.8	0.0

<u>Mar. 2022</u>

Date	Wind Direction (Blowing	Wind (Kr	Speed n/hr)	Tem	perature	(°C)		Humidity	(%)	Barometric Pressure (mBar)	Rainfall (mm)
	From)	Max.	Avg.	Max	Min	Avg.	Max	Min	Avg	(Average)	
01.03.2022	SSW	24.0	4.7	32.1	17.3	23.3	58.4	18.8	40.4	987.1	0.0
02.03.2022	E	24.7	4.0	32.2	18.6	26.2	52.7	20.7	35.3	986.5	0.0
03.03.2022	NW	39.5	4.3	29.3	17.6	23.2	59.2	26.2	39.8	987.1	0.0
04.03.2022	NE	40.0	3.8	33.5	17.7	25.0	59.6	20.7	37.6	986.5	0.0
05.03.2022	ESE	39	3.5	32.4	17.9	25.1	56.0	21.5	36.7	985.9	0.0
06.03.2022	NE	36.8	4.6	32.4	16.5	24.1	52.4	17.5	35.0	985.7	0.0
07.03.2022	NW	29.4	5.0	34.3	16.4	25.1	51.7	13.4	30.7	985.8	0.0
08.03.2022	NW	24.9	2.9	34.2	17.0	25.7	54.0	13.6	29.7	985.4	0.0
09.03.2022	WNW	28.2	4.3	33.8	20.9	28.5	44.2	13.9	24.0	985.4	0.0
10.03.2022	E	27.9	3.5	34.2	18.7	26.0	52.0	16.9	32.7	984.1	0.0
11.03.2022	SSE	28.4	3.2	34.9	19.4	26.4	47.3	16.2	31.8	983.9	0.0
12.03.2022	NW	27.2	3.1	35.1	18.2	26.4	43.9	15.0	28.0	984.0	0.0
13.03.2022	NW	26.8	2.9	36.4	19.1	26.8	44.8	16.4	29.4	985.0	0.0
14.03.2022	N	25.9	3.3	36.0	22.3	30.4	49.6	12.5	22.8	983.9	0.0
15.03.2022	NE	36.3	3.2	38.1	17.3	27.7	58.7	12.5	30.9	981.5	0.0
16.03.2022	NW	35.6	2.7	39.0	19.7	29.3	55.6	10.1	26.7	980.0	0.0
17.03.2022	ENE	23.5	2.5	39.6	19.9	29.3	52.2	12.3	24.4	979.4	0.0
18.03.2022	NNE	29.6	3.2	38.2	21.2	29.5	48.7	12.8	26.3	979.1	0.0
19.03.2022	NW	36.1	6.1	36.8	22.1	28.8	51.2	16.4	34.4	978.6	0.0
20.03.2022	NW	30.6	4.3	35.6	21.8	27.6	56.9	23.5	41.4	978.6	0.0
21.03.2022	NW	52.4	3.2	38.1	21.8	28.9	57.8	11.3	34.5	979.9	0.0
22.03.2022	ESE	24.2	2.3	38.9	19.3	29.2	60.6	9.4	26.2	980.5	0.0
23.03.2022	WNW	37.8	4.3	38.8	21.2	30.1	58.3	8.9	25.6	980.5	0.0
24.03.2022	NNW	27.4	5.3	36.7	26.2	32.1	39.6	16.7	26.0	980.2	0.0
25.03.2022	NNW	40.3	6.5	35.1	24.1	29.4	55.9	26.8	38.5	980.7	0.0
26.03.2022	NW	31.6	4.9	38.6	26.5	31.8	44.6	9.9	27.9	982.3	0.0
27.03.2022	S	25.2	2.9	38.9	21.0	30.0	52.7	7.7	26.1	983.3	0.0
28.03.2022	ENE	28.7	3.3	39.4	20.2	29.8	43.4	7.5	21.6	982.3	0.0
29.03.2022	NW	23.5	3.3	40.3	19.2	29.7	55.7	7.5	24.1	980.8	0.0
30.03.2022	NW	24.0	3.5	40.3	18.3	30.3	50.7	7.0	23.0	980.4	0.0
31.03.2022	ENE	29.4	2.9	40.6	20.7	30.8	50.7	7.7	22.6	980.6	0.0

adani ENVIRONMENTAL LABORATORY

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C5	19321000001030F			Date: 23	3.10.2021			
		3	TEST REPORT					
	Issued To:	APML,Plot No. A - Dist. Gondia - 44	1, Tirora Growth Cen I 911	tre, MIDC – Tirora,	6			
S	ample Particulars :	Stack Monitoring						
Sa	mple Collected by :	Environment Dep	at. APML					
1	Sampling Location		Unit	-5				
2	Date of Sampling		21.10.	2021				
3	Time of Sampling	:	4:40					
4	Load (MW)		55	0				
5	Height of Stack (Me	ter) :) : 275					
6	Diameter of Stack (Vleter) :	7.	4				
7	Type of Fuel	3	Co	Coal				
8	Flue Gas Temperatu	ure (⁰ C) :	12	9				
9	Flue Gas Velocity (M	//sec) :	23.	56				
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	2601	415				
Sr. No	Test Parameters	Test Method	MPCB Standards	Results				
		10 44055						

1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	43.9
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	967
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	265

* Results are corrected with 5% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023, March 2024)

Authorized Signator (Technical Manager)

Page 1 of 1

NOTHIN ?

TG = \$193

4

ENVIRONMENTAL LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C5	19321000001029F			Date: 23	.10.2021		
			TEST REPORT				
Issued To: APML,Plot No. A -1 Dist. Gondia - 441			-1, Tirora Growth Cent 1 911	re, MIDC – Tirora,)		
Sample Particulars :		Stack Monitoring					
Sa	mple Collected by :	Environment Dept. APML					
1	Sampling Location	1	Unit	-4			
2	Date of Sampling	:	21.10.2	21.10.2021			
3	3 Time of Sampling :		4:00 PM				
4	Load (MW)		503	i			
5	5 Height of Stack (Meter) :		275				
6	Diameter of Stack (I	Vieter) :	7.4				
7	Type of Fuel	ž	Coal				
8	8 Flue Gas Temperature (⁰ C) :		124				
9 Flue Gas Velocity (M/sec) :		23.20					
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	25949	70			
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results		
-35	1.105	18 11255	800	5000 S - 240	020102		

		10 44075			
1	PM	(Part- 1):1985	50	Mg/Nm ^a	34.2
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	718
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	403.9

Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of Jaw.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

Authorized Signator (Technical Manager)

Page 1 of 1

arital Las

YG-DIGS

adani ENVIRONMENTAL LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C5	19321000001028F			Date:	09.10.2021
Issued To: APML,Plot No. A -1 Dist. Gondia - 441 S Sample Particulars : Stack Monitoring		, Tirora Growth Centr 911	re, MIDC – Tiro	ra,	
		Stack Monitoring			
Sa	mple Collected by :	Environment Dept	APML		
1	Sampling Location	5	Unit -	3	
2	Date of Sampling	:	07.10.2	021	
3	Time of Sampling	:	4:10 PM		
4	Load (MW) :		593		
5	Height of Stack (Meter) :		275		
6	5 Diameter of Stack (Meter) :		7.4		
7	Type of Fuel	:	Coal		
8	Flue Gas Temperatu	ıre (°C) :	124		
9	Flue Gas Velocity (M/sec) :		23.15		
10	0 Flow of Exit Gas at NTP (NM ³ /Hr) :		25885	57	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results*
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	42.8
-		IS 11255 (Part 2)			070 5

Note: Tested results are well within the permissible limits of MPCB. 1. The report is referring only to the tested sample and for applicable parameter.

SO2

NOx

Results are corrected with 6% oxygen

2

3

2. The sample will be destroyed after retention time unless otherwise specified specially.

1985 IS 11255 (Part 7)

2005

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-Mg

Authorized Signato (Technical Manager)

676.5

284.8

Page 1 of 1

Mg/Nm³

Mg/Nm³

-11

Avtai Lo

70+510

200

450

End of the Report

adani ENVIRONMENTAL LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To: Sample Particulars : Sample Collected by :		APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911						
		Stack Monitoring Environment Dept. APML						
								1
2	Date of Sampling		:	07.10.202	t			
3	Time of Sampling		:	3:35 PM				
4	Load (MW)		:	552				
5	Height of Stack (Me	ter) :		275				
6	Diameter of Stack (Vieter) :		7.4				
7	Type of Fuel	t		Coal				
8	Flue Gas Temperature (⁰ C) :			126				
9	9 Flue Gas Velocity (M/sec) :			23.21				
10 Flow of Exit Gas at NTP (NM ³ /Hr) :		6	2582061					

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	39.6
2	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	920.3
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	319.6

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law
- 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

im Authonized Signa (Technical Manager)

Page 1 of 1

with Lay

0.1115

1

adani ENVIRONMENTAL LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To: Sample Particulars : Sample Collected by :		APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911 Stack Monitoring Environment Dept. APML												
								1	Sampling Location		6	Unit -1		
								2	Date of Sampling	63	19	07.10.202	11	
3	Time of Sampling		8	3:00 PM										
4	Load (MW)	:		578										
5	Height of Stack (Me	ter) :		275										
6	6 Diameter of Stack (Meter)			7.4										
7	Type of Fuel	:		Coal										
8	Flue Gas Temperature (⁰ C) :			129										
9	9 Flue Gas Velocity (M/sec) :			23.09										
10 Flow of Exit Gas at NTP (NM ³ /Hr) :			2549978	1										

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	37.3
2	SOz	IS 11255 (Part 2) 1985	200	Mg/Nm ³	861.5
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	362.1

· Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law,
- 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024

Authorized Signato (Technical Manager)

Page 1 of 1

YC + BID
(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519321000001001F

Date 31.10.2021

Issued To:		APML, Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911							
San	nple Particulars :	Ambient Air Quality (Plant) Environment Dept. APML Test Report							
Sam	ple Collected by :								
					Parameters				
Station	Sampling Location	Sampling Date	Analysis Starting	PM 10	PM 2.5	SO2	NOx		
			Date	µg/m3	µg/m3	µg/m3	µg/m3		
-		04.10.2021	05.10.2021	57.9	37.8	11.6	20.2		
		08.10.2021	09.10.2021	57.5	25.8	9.2	14.3		
		11.10.2021	12.10.2021	49,7	34.8	10.2	13.0		
	Near AWRS	13.10.2021	14.10.2021	62.4	28,4	10.7	13.7		
AAQ 1		18.10.2021	19.10.2021	54.4	28.5	13.1	16.3		
		22.10.2021	23.10.2021	65.0	21.0	10.2	18.9		
		25.10.2021	26.10.2021	74.4	25.1	8.2	13.0		
		29.10.2021	30.10.2021	69.9	36.4	7.3	14.3		
	Near Brick Plant	04.10.2021	05.10.2021	47,6	22.0	7.8	15.7		
		08.10.2021	09.10.2021	54.7	25.7	7.3	13.0		
		11.10.2021	12.10.2021	52.9	25.4	11.3	22.8		
		13.10.2021	14.10.2021	53.8	20.7	9.2	12.4		
AAUZ		18.10.2021	19.10.2021	59.7	37.2	10.2	13.7		
		22.10.2021	23.10.2021	56.5	23.7	11.1	15.7		
		25.10.2021	26.10.2021	62.7	24.4	10.7	18.9		
		29.10.2021	30.10.2021	60.6	30.6	9.2	17.0		
		04.10.2021	05,10.2021	67.7	30.6	13.6	24.1		
		08.10.2021	09.10.2021	68.0	35.0	11.6	21.0		
		11.10.2021	12.10.2021	61.4	26.9	10.8	28.3		
0002	China Colocu	13,10,2021	14.10.2021	60.3	21.5	9.7	13.8		
nnu o	China Colony	18.10.2021	19.10.2021	47,9	18.9	12,1	18.0		
		22.10.2021	23.10.2021	53.7	27.1	17.0	20.4		
		25.10.2021	26.10.2021	53.0	22.7	11.6	22.2		
		29.10.2021	30.10.2021	55.1	15.9	12.1	18.6		
NAA		2MS Standard	· · · · · · · · · · · · · · · · · · ·	100	60	80	80		

End of the Report

Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

1. The report is referring only to the tested sample and for applicable parameter.

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signator Technical Manager ł

Ato In

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No.	: TC519321000001023F	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911 Ambient Noise Level (Plant) Environment Dept. APML				
Issued T	·o:					
Sample	Particulars :					
Sample	Collected by :					
Date of	Sampling:	09.10.2021				
		Test Report				
20220		Day Time in dB (A)	Night Time in dB (A)			
S. No	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)			
1	Near Shanti Niketan I II & III	59.8	51.2			
2	Near Labour Hutment	62.3	52.2			
3	Near Store Area	60.5	49.7			
4	Gate No.1	56.0	51.0			
5	Gate No.2	63.8	53.2			
6	Gate No.3	72.3	62.2			
7	Near OHC	56.8	46.7			
8	Rallway Siding	64.8	50.5			
9	Near Reservoir 2	60.1	51.2			
10	Near Ash Water Recovery Pump House	61.6	51.2			
11	In China Colony	39.3	36.7			
CI	PCB Standards (Industrial Area)	75	70			

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signator (Technical Manager)

offlite.

0+0101

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Issued To:	APML, Plot No. A -1, Tirora	Growth Centre, MIDC – Tirora, D	ist. Gondia – 441 911	
Sample Collection Date	20.10.2021	Analysis Starting Date	20.10.2021	
	100 / 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	ALL CAUSES	1480 A.M. Starrage M.S. (1994) 403 64	

	TEST REPORT										
Sr	Parameter (NABL SCOPE)	Parameter Unit Test Methods		MPCB Standards	Results						
no		Unit	TWO CHIESTING		STP-1	STP-2					
1	TSS	mg/l	APHA-23rd - 2540 D	50	12	16					
2	COD	mg / 1	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	60	52					
3	BOD at 27 ⁰ C for 3 days	mg / l	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	10	12					

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially 5

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law. TC+11113 ULCUIRIAN

4. # Indicates this parameter is not covered in our NABL scope

mantal (

ine:

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To:	APML, Plot No. A -1, Tirora Gr	owth Centre, MiDC – Tirora, Dist. C	Gondia – 441 911
Sample Collection Date	20.10.2021 Analysis Starting Date		20.10.2021
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APML

TEST REPORT

					R	sults
Sr no	Parameter (NABL SCOPE)	Unit	Test Methods	MPCB Standards	N-pit	ETP Outlet
1	pH Value	244	APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	8.4	8.1
2	TSS	mg/1	APHA-23/d - 2540 D	100.0	44	15
3	TDS	mg/1	APHA-23rd - 2540 C	2100.0	475	184
4	COD	mg/l	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	82	102
5	BCD at 27°C for 3 days	mg / I	IS: 3025 (P-44)-1993 R- 1999 Ad 1 BOD 3-days at 27 °C	30,0	5	21
6	Oil & Grease	mg/1	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	4.3

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

Yo-biss Charante

Authorized Signatory (Technical Manager)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519321000001014F

Date: 31.10.2021

Issued To:	APML, Plot No. A -1, Tirora	i Growth Centre, MIDC – Tirora, Dist. G	ondia – 441 911
Sample Collection Date	20.10.2021	Analysis Starting Date :	20,10,2021
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APML
mple Particulars : Coolin	g tower blowdown (Waste	Water)	

TEST REPORT

	Deservation			MPCB		_	Results		
Srno	(NABL SCOPE)	Unit	Test Methods	Standards	U # 1	U#2	U#3	U#4	U#5
1	Free Availablo Chlorine	mg/l	APHA-23rd – 4500- Cl G, DPD Colorimetric Method	0.5	0.2	0.2	0.2	0.3	0.3
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chloride Method	5	2.9	2.6	2.7	2.2	2.8
3	Zinc as (Zn)	mg/l	-	4	BDL	BDL	BDL	BDL	BDL
4	Total Chromium as (Cr)	mg/l	-	0.2	BDL	BDL	BDL	BDL	BDL

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retontion time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

artin I TU-610 * utflorized Signator (Technical Manager)

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519321000001013F

Date: 31.10.2021

Issued To:	APML, Plot No. A -1, Tiror	a Growth Centre, MIDC – Tirora	ı, Dist	. Gondia - 441 911
Sample Collection Date	20.10.2021	Analysis Starting Date	1 2	20.10.2021
Quantity received	1 Ltr / Sample	Sampled by	8	Environment Dept. APML
Sample Particulars : Co	ondenser Cooling Water	(Waste Water)		

TEST REPORT

Sr	1 SERVICE COLORIAN	140.00		MPCB			Results		
no	Parameter	Unit	Test Methods	Standards	U#1	U#2	U#3	U#4	U#5
ĩ	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	7.9	8.4	8,3	8.2	8.1
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5°C than that of intake water	32.0	30.0	31.0	32.0	31.0
3	Free Available Chlorine	РРМ	APHA-23rd – 4500-Cl G, DPD Colorimetric Method	0.5	0.1	0.3	0.1	0.2	0.2

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signato (Technical Manager)

wittel (

TC-BIC

34

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C51	19321000001129F			Date: 13	.11.2021
		Т	EST REPORT		
	Issued To:	APML,Plot No. A - Dist. Gondia - 441	1, Tirora Growth Centr 911	e, MIDC – Tirora,	
Sample Particulars : Sample Collected by :		Stack Monitoring			
		Environment Dep	t. APML		
1	Sampling Location	:	Unit -	4	
2	Date of Sampling	2	10.11.2	021	
3	Time of Sampling	:	3:25 P	M	
4	Load (MW)	:	644		
5	5 Height of Stack (Meter) :		275		
6	Diameter of Stack (I	Vleter) :	7.4		
7	Type of Fuel	:	Coal		
8	Flue Gas Temperatu	ıre (°C) :	123		
9	Flue Gas Velocity (M	A/sec) :	23.3	1	
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	26137	73	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	37.1
2	SO,	IS 11255 (Part 2)	200	Mg/Nm ³	785

* Results are corrected with 6% oxygen

NOx

3

adani

End of the Report

450

Mg/Nm³

4

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

1985 (S 11255 (Part 7)

2005

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of aw

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023 March 2024)

Authorized Signato (Technical Manager)

322

VinTeleza

TC = SSUB (7. Centres (HE)

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C5	19321000001130F			Date: 13.	11.2021
		1	TEST REPORT		
	Issued To:	APML,Plot No. A - Dist. Gondia - 441	1, Tirora Growth Centre I 911	e, MIDC – Tirora,	
Sa	ample Particulars :	Stack Monitoring			
Sample Collected by :		Environment Dep	ot. APML		
1	Sampling Location	¢	Unit -	5	
2	Date of Sampling		10.11.20)21	
3	Time of Sampling	:	4:00 PI		
4	Load (MW)		649		
5	Height of Stack (Me	ter) :	r) : 275 eter) : 7.4		
6	Diameter of Stack (I	Meter) :			
7	Type of Fuel	:	Coal	Coal	
8	Flue Gas Temperati	ure (^a C) :	125		
9	Flue Gas Velocity (N	Aisec) :	23.18	ŝ	
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	258576	51	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
-					

No					
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	42.1
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	892
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	284

* Results are carrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

Authorized Signato (Technical Manager)

Page 1 of 1

Stonial La

TC - 5193

in the 1

OUD, Course

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C5	19321000001128F			Date: 20	0.11.2021
	Issued To:	APML,Plot No. A -1 Dist. Gondia – 441	, Tirora Growth Centr 911	e, MIDC – Tirora,	
S	ample Particulars :	Stack Monitoring			
Sa	mple Collected by :	Environment Dept	APML		
1	Sampling Location	3	Unit -	3	
2	Date of Sampling		18.11.2	021	
3	Time of Sampling	:	3:50 P	м	
4	Load (MW)	2	650		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (I	Neter) :	7.4		
7	Type of Fuel		Coa	te	
8	Flue Gas Temperatu	ıre (⁰ C) :	133		
9	Flue Gas Velocity (N	N/sec) :	23.50	0	
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	25701	15	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	43.7
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	836.6
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	251.9

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

Authorized Signatory (Technical Manager)

Page 1 of 1

mininia La

70-5103 (92).0-010-5-194

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C5	19321000001127F			Date: 20).11.2021
	Issued To:	APML,Plot No. A -1 Dist. Gondia - 441	, Tirora Growth Centr 911	e, MIDC – Tirora,	
S	ample Particulars :	Stack Monitoring			
Sa	mple Collected by :	Environment Dept	. APML		
1	Sampling Location		Unit -	2	
2	Date of Sampling	:	18.11.2	021	
3	Time of Sampling	:	5:00 P	M	
4	Load (MW)	:	642		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (Meter) :	7.4		
7	Type of Fuel	*	Coa		
8	Flue Gas Temperatu	ıre (° C) :	131		
9	Flue Gas Velocity (M	Nisec) :	22.7	1	
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	24959	70	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	35.1
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	821.4
3	NOx	IS 11255 (Part 7)	450	Ma/Nm ³	326.6

* Results are corrected with 6% oxygen

0 **

lar

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

2005

- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in could of law
- 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

Authorized Signato (Technical Manager)

Page 1 of 1

al laing

10-61-

\$2

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

	Issued To:	APML,Plot No. A - Dist. Gondia - 441	1, Tirora Growth Centr I 911	re, MIDC – Tirora.	
S	ample Particulars :	Stack Monitoring			
Sa	mple Collected by :	Environment Dep	ot. APML		
1	Sampling Location	\$	Unit -	1	
2	Date of Sampling	2	18.11.2	021	
3	Time of Sampling	2	4:23 F	M	
4	Load (MW)	3	628		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (M	Meter) :	7.4		
7	Type of Fuel	1	Coa	í.	
8	Flue Gas Temperatu	ire (°C) :	131		
9	Flue Gas Velocity (N	l/sec) :	24.13	3	
10	Flow of Exit Gas at	NTP (NM³/Hr) :	26518	90 .	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	40.3

·	ABINARE	(Part- 1):1985	~~	ingritti	
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	794.9
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	313.6

* Results are corrected with 6% oxygen

adar

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

Authorized Signatory (Technical Manager)

Page 1 of 1

stell's

TO + STOR

adani environmental LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Date 30.11.2021

URL No : TC519321000001101F

Issued To:

Station

AAQ 1

AAQ 2

AAQ 3

APML, Plot No. A -1, Tirora Growth Centre, MIDC - Tirora, Dist. Gondia - 441 911 Ambient Air Quality (Plant) Sample Particulars : Sample Collected by : Environment Dept. APML Test Report Parameters Analysis Starting PM 2.5 NOx PM 10 \$02 Sampling Location Sampling Date Date ug/m3 µg/m3 µg/m3 µg/m3 39.3 17.0 01.11.2021 02 11 2021 74.7 4.4 08.11.2021 09.11.2021 51.3 16.3 11.6 13.0 12.11.2021 13.11.2021 73.4 34.4 6.8 20.9 17.6 23.2 10.2 15.11.2021 14.11.2021 68.7 Near AWRS 16.3 19.11.2021 20,11,2021 73.9 34.8 12.6 15.0 22.11.2021 23.11.2021 74.0 40.2 9.2 36.5 14.5 25.4 25.11.2021 27.11.2021 70.6 11.1 17.6 60.6 24.1 29.11.2021 30.11.2021 01.11.2021 02.11.2021 66.9 20.1 10.7 15.0 37.3 14.3 08,11,2021 09.11.2021 42.9 7.8 22.8 12.11.2021 13.11.2021 63.9 39.7 B.9 17.6 15.11.2021 14.11.2021 73.7 27.1 8.2 Near Brick Plant 19.11.2021 20.11.2021 59.0 27.5 9.7 24.1 67.0 26.6 17.9 20.2 22.11.2021 23.11.2021 35.0 19.6 56.2 11.1 26.11.2021 27.11.2021 29.11.2021 30.11.2021 74.4 26.4 13.6 14.3 02.11.2021 74.1 36.4 12.6 16.8 01.11.2021 7.8 18.0 16.7 08.11.2021 09.11.2021 65.6 12.11.2021 13.11.2021 71.9 26.8 3.9 14.4 18.0 14.11.2021 84 2 35.3 13.1 15.11.2021 China Colony 19.11.2021 20.11.2021 67.1 46.3 10.7 12.6 61.2 31.3 17.0 19.8 22.11.2021 23,11,2021

End of the Report

mantul Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

27.11.2021

30.11.2021

1. The report is referring only to the tested sample and for applicable parameter.

26.11.2021

29.11.2021

NAAQMS Standard

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of awards.

Sharashira V Authorized Signatory (Technical Manager)

15.0

14.1

80

32.2

27.5

60

66.5

67.7

100

Page 1 of 1

21.0

19.2

80

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519321000001106F

Date: 30.11.2021

Issued To:	APML, Plot No. A -1, Tiro	ra Growth Centre, MIDC – Tirora	, Dist	. Gondia – 441 911
Sample Collection Date	10.11.2021	Analysis Starting Date	:	10.11.2021
Quantity received	1 Ltr / Sample	Sampled by	:	Environment Dept. APML
Sample Particulars : Co	ondenser Cooling Water	(Waste Water)		

TEST REPORT

Sr	1 000000000000000000000000000000000000	11-14	*****	MPCB			Results		
no	Parameter	Unit	Test Methods	Standards	U#1	U#2	U#3	U#4	U#5
1	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.1	8.0	8.3	8.1	8.2
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5'C than that of intake water	31.0	30.0	31.0	30.0	32.0
3	Free Available Chlorine	PPM	APHA-23rd – 4500-Cl G, DPD Colorimetric Method	0.5	0.2	0.2	0.2	0.1	0.1

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially. (NOV Delign 10)

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

30/11/21 Authorized Signatory (Technical Manager)

inonial?

 $\frac{1}{2}$

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519321000001107F

Date: 30.11.2021

Issued To:	APML, Plot No. A -1, Tirora	Growth Contre, MIDC - Tirora, Dist. G	ondia - 441 911
Sample Collection Date	10.11.2021	Analysis Starting Date :	10.11.2021
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APMI
ample Particulars : Coolin	g tower blowdown (Waste	Water)	

TEST REPORT

	Dependence	nuncery		MPCR			Results		
Sr no	(NABL SCOPE)	Unit	Test Methods	Standards	U#1	U # 2	U#3	U#4	U#5
1	Free Available Chlorine	mg/l	APHA-23rd - 4500- Cl G, DPD Celorimetric Method	0.5	0.3	0.3	0.3	0.1	0.1
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chloride Method	5	2.2	2,5	2.2	1.8	1.7
3	Zinc as (Zn)	mg/l		4	BOL	BDL	BDL	BDL	BDL
4	Total Chromium as (Cr)	mg/l		0.2	BDL	BDL	BDL	BDL.	BDL,

""End of the Report""

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

đ VCL BES $\frac{1}{2}$ WILL BUST alation has 30/11/21 Authorized Signatory (Technical Manager)

Page 1 Of 1

nontul (

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

		Date: 30.11.2021	
Issued To:	APML,Plot No. A -1, Tirora	Growth Centre, MIDC – Tirora, D	ist. Gondia – 441 911
Sample Collection Date	10.11.2021	Analysis Starting Date	10.11.2021
Quantity received	3 Lit /Sample	Sampled by	Environment Dept

			TESTR	EPORT		
Sr	Parameter	Unit	Test Methods	MPCB Standards	Res	ults
ho	(NABL SCOPE)	1000	122100000000		STP-1	STP-2
1	TSS	mg/l	APHA-23rd - 2540 D	50	10	12
2	COD	mg / 1	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	50	80
3	BOD at 27°C for 3 days	mg / I	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	13	21

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially:

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

Althan Cal 011 Authorized Signatory (Technical Manager) Page 1 Of 1

muntal (

102 - 5100 PRES,0-07=220

adani ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C-5193

Issued To:	APML, Plot No. A -1, Tirora Gr	owth Centre, MIDC - Tirora, Dist. C	Gondia – 441 911
Sample Collection Date	10.11.2021	Analysis Starting Date	10.11.2021
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APML

EST	REPORT	
mart.		

			Sector Se			R	sults
Srno	Parameter (NABL SCOPE)	Unit	Test Methods	MPCB Standards	N-pit	ETP Outlet	
ą	pH Value		APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	7.9	8.3	
2	TSS	mg/1	APHA-23/d - 2540 D	106.0	12	30	
3	TDS	mg/l	APHA-23rd - 2540 C	2100.0	316	479	
4	COD	mg/l	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	51	122	
5	BOD at 27°C for 3 days	mg / I	IS: 3025 (P-44)-1993 R- 1999 Ad 1 BOD 3-days at 27 °C	30.0	12	18	
6	Oil & Grease	mg / 1	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BOL antal L	3.1	

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No	; TC519321000001123F	Date: 30.11.2021			
Issued 1	Го:	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911			
Sample Particulars :		Ambient Noise Level (Plant)			
Sample	Collected by :	Environment Dept. APML			
Date of	e of Sampling: 06.11.2021				
		Test Report			
		Day Time In dB (A)	Night Time in dB (A)		
S. NO	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)		
1	Near Shanti Niketan I II & III	57.2	48.3		
2	Near Labour Hutment	56.5	50.2		
3	Near Store Area	57.1	51.1		
4	Gate No.1	63.6	52.2		
5	Gate No.2	57.4	48.8		
6	Gate No.3	68.3	59.9		
7	Near OHC	59.2	51.9		
8	Railway Siding	65.3	49.7		
9	Near Reservoir 2	48.4	44.4		
10	Near Ash Water Recovery Pump House	66.7	60.5		
11	In China Colony	45.7	34.4		
C	PCB Standards (Industrial Area)	75	70		

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

Authorized Signa (Technical Manager

105.0

TC-#10

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C5	19321000001226F			Date: 11	.12.2021
	Issued To:	APML,Plot No. A -1 Dist. Gondia - 441	, Tirora Growth Centr 911	e, MIDC – Tirora,	
S	ample Particulars :	Stack Monitoring			
Sa	mple Collected by :	Environment Dept	APML		
1	Sampling Location	* 	Unit -	1	
2	Date of Sampling		9.12.20	21	
3	Time of Sampling	:	3:45 P	M	
4	Load (MW)	s.	592		
5	5 Height of Stack (Meter) :		275		
6 Diameter of Stack (Meter) :		Aeter) :	7.4		
7	Type of Fuel	1	Coal		
8	Flue Gas Temperatu	ire (⁰ C) :	123		
9	Flue Gas Velocity (N	N/sec) :	23.23	2	
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	26028	21	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	34.8
2	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	810.4
3	NOx	IS 11255 (Part 7)	450	Ma/Nm ³	340.3

Results are corrected with 6% oxygen

Mercury

4##

adani

End of the Report

0.03

Ma/Nm³

Mg/Nm³

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

The sample will be destroyed after retention time unless otherwise specified specially.

2005

USEPA - 0060

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Malain. Authorized Signatory (Technical Manager)

0.0172

Page 1 of 1

TG-BHD

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To:	APML,Plot No. A -1, Tiro Dist. Gondia – 441 911	ora Growth Centre, MIDC – Tirora,	
Sample Particulars :	Stack Monitoring		
Sample Collected by :	Environment Dept. APML		
1 Sampling Location	*	Unit -2	
2 Date of Sampling	:	09.12.2021	
3 Time of Sampling		4:20 PM	
4 Load (MW)	*)	665	
5 Height of Stack (Me	ter) :	275	
6 Diameter of Stack (I	Meter) :	7.4	
7 Type of Fuel		Coal	
8 Flue Gas Temperatu	ıre (⁰ C) :	125	
9 Flue Gas Velocity (M	//sec) :	23.55	
10 Flow of Exit Gas at	NTP (NM ³ /Hr) :	2626656	

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	42.4
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	782.4
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	305.5
4##	Mercury	USEPA - 0060	0.03	Mg/Nm ³	0.0166

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD. (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager) Page 1 of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To:	APML,Plot No. A -1, Tiro Dist. Gondia – 441 911	ora Growth Centre, MIDC – Tirora,		
Sample Particulars :	Stack Monitoring			
Sample Collected by :	Environment Dept. APML			
1 Sampling Location		Unit -3		
2 Date of Sampling	1	09.12.2021		
3 Time of Sampling		5:00 PM		
4 Load (MW)	1	654		
5 Height of Stack (Me	ter) :	275		
6 Diameter of Stack (Meter) :	7.4		
7 Type of Fuel	1	Coal		
8 Flue Gas Temperat	ure (° C) :	129		
9 Flue Gas Velocity (I	M/sec) :	23.16		
0 Flow of Exit Gas at	NTP (NM ³ /Hr) :	2557782		

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	36.8
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	849.1
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	276.5
4##	Mercury	USEPA - 0060	0.03	Mg/Nm ³	0.0170

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signator (Technical Manager)

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C519321000001229F		Date: 17.12.2021		
	TEST	REPORT		
Issued To:	APML,Plot No. A -1, Tirc Dist. Gondia – 441 911	ora Growth Centre, MIDC – Tirora,		
Sample Particulars :	Stack Monitoring			
Sample Collected by :	Environment Dept. APM	Environment Dept. APML		
1 Sampling Location		Unit -4		
2 Date of Sampling	:	15.12.2021		
3 Time of Sampling	:	3:35 PM		
4 Load (MW)		656		
5 Height of Stack (Me	eter) :	275		
6 Diameter of Stack (Meter) :	7.4		
7 Type of Fuel	(1)	Coal		
8 Flue Gas Temperat	ure (°C) :	121		
9 Flue Gas Velocity (M/sec) :	23.56		
10 Flow of Exit Gas at	NTP (NM ³ /Hr) :	2654867		

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	43.4
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	825
3	NOX	IS 11255 (Part 7) 2005	450	Mg/Nm ³	299
4##	Mercury	USEPA - 0060	0.03	Mg/Nm ³	0.0174

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signator (Technical Manager)

(Q-n1)

and Automatical

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C519321000001230F		Date: 17.12.2021
	TEST	REPORT
Issued To:	APML,Plot No. A -1, Tiro Dist, Gondia – 441 911	ora Growth Centre, MIDC – Tirora,
Sample Particulars :	Stack Monitoring	
Sample Collected by :	Environment Dept. API	ML.
1 Sampling Location		Unit -5
2 Date of Sampling	÷.	15.12.2021
3 Time of Sampling	:	4:00 PM
4 Load (MW)	:	649
5 Height of Stack (Me	ter) :	275
6 Diameter of Stack (I	Meter) :	7.4
7 Type of Fuel	5	Coal
8 Flue Gas Temperati	ure (°C) :	125
9 Flue Gas Velocity (I	M/sec) :	23.18
IO Flow of Exit Gas at	NTP (NM ³ /Hr) :	2585761

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	40.5
2	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	801
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	318
4##	Mercury	USEPA - 0060	0.03	Mg/Nm ³	0.0162

* Results are corrected with 6% oxygen

adani

""End of the Report""

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory 7 (Technical Manager)

Page 1 of 1

22

Plot No. A-1, Tiroda Growth Centre, M.I.D.C., Dist: Gondia - 441911, Maharashtra, India Tel.: +917198255983, Fax: +917198253971, E-mail:arunpratap.singh@adani.com Website:www.adani.com adani environmental laboratory

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519321000001201F

Date 31,12,2021 Issued To: APML, Plot No. A -1, Tirora Growth Centre, MIDC - Tirora, Dist. Gondia - 441 911 Sample Particulars : Ambient Air Quality (Plant) Sample Collected by : Environment Dept, APML Test Report Parameters Analysis Starting Station PM 10 PM 2.5 SOZ NOx Sampling Location Sampling Date Date µg/m3 µg/m3 µg/m3 ug/m3 03.12.2021 04,12,2021 31.5 9.7 26.1 77.5 07.12.2021 87.6 30.2 11.1 20.2 05.12.2021 10.12.2021 11.12.2021 80.0 28.1 10.7 16.3 13.12.2021 14.12.2021 74.1 22.0 11.6 18.9 AAQ 1 Near AWRS 17.12.2021 18.12.2021 55.2 23.1 12.6 19.6 62.0 29.7 17.6 20.12.2021 21.12.2021 10.7 24.12.2021 82.9 32.4 22.2 25.12.2021 9.7 27.12.2021 28,12,2021 53.1 25.8 11.1 21.5 04.12.2021 59.5 25.6 28.0 03 12 2021 13.6 06.12.2021 07.12.2021 64.2 27.5 16.5 23.5 10.12.2021 11.12.2021 62.7 23.0 8.9 17.6 14.12.2021 76.9 22.1 10.7 27.4 13.12.2021 AAQ 2 Near Brick Plant 17.12.2021 15.12.2021 68.9 21.8 9.2 15.7 21.12.2021 50.5 22.1 20.12.2021 13.1 19.6 24.12.2021 25.12.2021 68.9 27.7 6.3 13.7 27.12.2021 28.12.2021 63.4 25.3 16.3 10.7 03.12.2021 24.7 04.12.2021 87.3 38.4 17.5 06.12.2021 07.12.2021 73.5 30.3 18.9 22.2 10.12.2021 11.12.2021 54.1 15.3 23.5 77.1 14.12.2021 79.2 33.4 9.7 16.2 13.12.2021 AAQ 3 China Colony 27.1 16.8 17.12.2021 18.12 2021 63:9 13.6 71.5 17.4 20.12.2021 21.12.2021 31.3 10.2 24.12.2021 25.12.2021 82.4 27.2 9.2 13.2 27.12.2021 28.12.2021 62.6 28.7 8.2 12.6 NAAQMS Standard 100 60 80 80

End of the Report

0221,75

California and

Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

1. The report is referring only to the tested sample and for applicable parameter.

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

Page 1 of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No	.: TC519321000001223F	Da	ate: 31.12.2021
Issued '	To:	APML, Plot No. A -1, Tirora Grow MIDC – Tirora, Dist. Gondia – 44	rth Centre, I1 911
Sample	Particulars :	Ambient Noise Level (Plant)	
Sample	Collected by :	Environment Dept. APML	
Date of	Sampling:	18.12.2021	
		Test Report	
_	•	Day Time in dB (A)	Night Time in dB (A)
S. NO	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)
1	Near Shanti Niketan I II & III	58.9	42.2
2	Near Labour Hutment	53.3	49.8
3	Near Store Area	58.1	50.7
4	Gate No.1	52.0	48.7
5	Gate No.2	61.7	52.2
6	Gate No.3	67.3	58.9
7	Near OHC	51.3	48.5
8	Railway Siding	63.6	55.5
9	Near Reservoir 2	49.3	43.3
10	Near Ash Water Recovery Pump House	59.9	52.4
11	in China Colony	45.4	37.1
с	PCB Standards (Industrial Area)	75	70

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

aprol La

11日 - 11日 日本11日

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519321000001217F

Date: 31.12.2021

Issued To:	APML,Plot No. A -1, Tiro	ra Growth Centre, MIDC – Tirora	ı, Dist	. Gondia – 441 911
Sample Collection Date	22.12.2021	Analysis Starting Date	;	22.12.2021
Quantity received	1 Ltr / Sample	Sampled by	ŧ	Environment Dept. APML
Sample Particulars : Co	ondenser Cooling Water	(Waste Water)		
Location of sample : Ur	nit1,Unit-2,Unit-3,Unit-4 &	Unit-6		

TEST REPORT

Sr	N anita and a second	11	woode wardelooper	MPCB			Results		
no	Parameter	Unit	lest Methods	Standards	U#1	U#2	U#3	U#4	U#5
1	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.3	8.1	7.9	8.2	8.0
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5'C than that of intake water	29.0	30.0	29.0	30.0	31.0
3	Free Available Chlorine	РРМ	APHA-23rd – 4500-CI G, DPD Colorimetric Method	0.5	0.1	0.1	0.1	0.2	0.2

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially after retention

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law-

Authorized Signatory (Technical Manager)

CONTRACT.

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No: TC519321000001218F

31.12.2021 Date:

Issued To:	APML, Plot No. A -1, Tirora	Growth Centro, MIDC – Tirora, Dist. G	ondia - 441 911
Sample Collection Date	22.12.2021	Analysis Starting Date :	22.12.2021
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APML
mple Particulars : Coolin	g tower blowdown (Waste	Water)	

TEST REPORT

_	Parameter	STATES	No. of South States of States and States	MPCB			Results		
Srno	(NABL SCOPE)	Unit	Test Methods	Standards	U#1	U # 2	U#3	U#4	U#5
1	Free Available Chlorine	mg/l	APHA-23rd - 4500- CI G, DPD Colorimetric Method	0.5	0.2	0.2	0.2	0.3	0.3
2	Phosphate as (PO4)	mg/l	APHA-23rd -4600 P D Stannous Chloride Method	5	2.4	2,1	2.2	2.0	2.0
3	Zinc as (Zn)	mg/l		4	BOL	BDL	BDL	BDL	BDL
4	Total Chromium as (Cr)	mg/l		0.2	BOL	BDL	BOL.	BDL	BDL

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

Page 1 Of 1

100mmini

និមិវេលនៅលើ

(Accredited by NABL)

adani

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To:	APML,Plot No. A -1, Tirora Gr	owth Centre, MIDC – Tirora, Dist. C	Sondia - 441 911
Sample Collection Date	22.12.2021	Analysis Starting Date	22.12.2021
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APM

TEST REPORT

	2010/07/2014				B	esults
Sr no	Parameter (NABL SCOPE)	Unit	Test Methods	MPCB Standards	N-pit	ETP Outlet
1	pH Value	-	APHA-23rd -4500-H+B Electrometric Method	5,5-9.0	7.8	8.1
2	TSS	mg/l	APHA-23rd - 2540 D	100.0	23	35
3	TDS	mg/1	APHA-23rd - 2540 C	2100.0	463	450
4	COD	mg/	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	92	102
5	BOD at 27 ¹ C for 3 days	mg/l	18: 3025 (P-44)-1993 R- 1999 Ad 1 BOD 3-days at 27 °C	30,0	12	27
6	Oli & Grease	mg/l	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	1.9

""End of the Report"**

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

TO + 01 Ett definition Spineration . Authorized Signatory (Technical Manager)

(Accredited by NABL)

adani

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

			Date: 31.12.2021
issued To:	APML,Plot No. A -1, Tirora	Growth Centre, MIDC – Tirora, D	ist. Gondia – 441 911
Sample Collection Date	22.12.2021	Analysis Starting Date	22.12.2021
Quantity received	3 Lit /Sample	Sampled by	Environment Dept

			TEST R	EPORT		
Sr no	Parameter (NABL SCOPE)	Parameter Unit Test Methods	MPCB Standards	Results		
					STP-1	STP-2
1	TSS	mg/l	APHA-23rd - 2540 D	50	27	23
2	COD	mg / I	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	50	70
3	BOD at 27°C for 3 days	- mg / I	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	16	26

End of the Report

Note Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

TG-8103 Authorized Signatory (Technical Manager) Page 1 Of 1

entri La

adani environmental LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No: TC519322000000101F

Date 31.01.2022 issued To: APML, Plot No. A -1, Tirora Growth Centre, MIDC - Tirora, Dist. Gondia - 441 911 Sample Particulars : Ambient Air Quality (Plant) Environment Dept. APML Sample Collected by : **Test Report** Parameters Analysis Starting Station PM 10 PM 2.5 802 NOx Sampling Location Sampling Date Date µg/m3 µg/m3 µg/m3 ugim3 03.01.2022 04.01.2022 84.0 39.8 16.5 26.1 07.01.2022 08.01.2022 67.7 32.5 13.6 29.3 10.01.2022 11.01 2022 75 1 42 8 11.6 15.0 12.01.2022 13.01.2022 71.2 34.6 17.9 24.1 AAQ 1 Near AWRS 17.01.2022 18.01.2022 58.3 38.2 9.2 17.0 7.3 21.01.2022 22.01.2022 60.6 36.7 22.8 24.01.2022 25.01.2022 66.7 35.0 12.1 19.6 28.01.2022 29.01.2022 51.2 45.5 10.2 16.3 03.01.2022 04.01.2022 62.3 29.2 10.7 18.3 07.01.2022 08.01.2022 68.1 33.3 7.3 15.0 10.01.2022 67.0 11.01.2022 35.4 8.4 11.7 12.01.2022 13.01.2022 57.8 22.6 12.6 26.7 AAQ 2 Near Brick Plant 17.01.2022 18.01.2022 50.3 18.6 13.1 23.5 21.01.2022 22.01.2022 67.2 32.7 8.2 16.3 24.01.2022 25.01.2022 62.4 32.6 8.7 13.7 28.01.2022 29.01.2022 69.7 35.2 8.2 18.3 03.01.2022 04.01.2022 89.7 35.4 18.4 24.7 08.01.2022 07.01.2022 38.1 75.4 13.6 22.2 10.01.2022 11.01.2022 84.9 44.2 22.7 23.5 12.01.2022 13.01.2022 69.7 39.8 13.1 16.2 AAQ 3 China Colony 17.01.2022 18.01.2022 32.4 7.8 77.0 16.8 21.01.2022 22.01.2022 66.2 29.4 12.1 17.4 24.01.2022 25.01.2022 66.1 32.5 10.7 13.2 28.01.2022 29.01.2022 81.0 37.6 11.1 12.6 NAAQMS Standard 100 60 80 80

*** End of the Report ***

Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS) Note:

1. The report is referring only to the tested sample and for applicable parameter.

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

P122 and ellas Kuthorized Signated (Pechnical Manager)

Page 1 of 1

- ukin V

adani environmental laboratory

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

	Issued To:	APML,Plot No. A -1, Tire Dist. Gondia – 441 911	ora Growth Centre, MIDC – Tiron	a,		
Sample Particulars :		Stack Monitoring				
Sa	ample Collected by :	Environment Dept. API	ИL			
1	Sampling Location	1	Unit -1			
2	Date of Sampling	:	20.01.2022			
3	Time of Sampling		2:50 PM			
4	Load (MW)	:	542			
5	Height of Stack (Me	ter) :	275			
6	Diameter of Stack (M	Aeter) :	7.4			
7	Type of Fuel	4	Coal			
8	Flue Gas Temperatu	ıre (° C) :	123			
9	Flue Gas Velocity (N	1/sec) :	23.24			
10	Flow of Exit Gas at I	NTP (NM ³ /Hr) :	2606020			

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	41.3
2	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	812.3
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	307.2

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.
- 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-Mai

Page 1 of 1

Authorized Signat (Technical Manag

protocitien His

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

	Issued To:	APML,Piot No. A Dist. Gondia – 44	-1, Tirora Growth Centro 1 911	e, MIDC – Tirora,		
Sample Particulars : Sample Collected by :		Stack Monitoring				
		Environment Dept. APML				
1	Sampling Location	2	Unit -2	2		
2	Date of Sampling		20.01.20	22		
3	Time of Sampling	3	3:27 PI	M		
4	Load (MW)	Load (MW) ;				
5	Height of Stack (Met	er) :	275			
6	Diameter of Stack (N	leter) :	7.4			
7	Type of Fuel		Coal			
8	Flue Gas Temperatu	re (°C) :	122			
9	Flue Gas Velocity (M	/sec) :	23.14			
10	Flow of Exit Gas at N	NTP (NM ³ /Hr) :	260061	4		
Sr.	Tool Downwolver	Tool Math - 4	MDOD Standards	I laite Des	uller	

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	39.0
2	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	820.9
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	329.6

* Results are corrected with 5% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-M

Page 1 of 1

Authorized Signa (Technical Manag

autilisemp.

itt - Ripa

adani environmental laboratory

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

dullat.

VG -- Otto

Authorized Sign Technical Man

Page 1 of 1

mu

issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Centre 11 911	e, MIDC — Tirora,
Sample Particulars : Stack Monitoring		9	
Sample Collected by	: Environment De	pt. APML	
1 Sampling Location	on :	Unit -3	
2 Date of Sampling	Date of Sampling :		22
3 Time of Sampling		4:18 PM	n
4 Load (MW)	Load (MW) :		
5 Height of Stack (I	Vieter) :	275	
6 Diameter of Stac	(Meter) :	7.4	
7 Type of Fuel		Coal	
8 Flue Gas Temper	ature (° C) :	125	
Flue Gas Velocity (M/sec) :		23.82	
0 Flow of Exit Gas	at NTP (NM ³ /Hr) :	265669	1

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	35.1
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	778.6
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	271.3

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law
- 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023 March

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

TC5	19322000000126F		Date: 08.01.202
		TEST	REPORT
	Issued To:	APML,Plot No. A -1, Tin Dist. Gondia – 441 911	ora Growth Centre, MIDC – Tirora,
S	ample Particulars :	Stack Monitoring	
Sa	mple Collected by :	Environment Dept. AP	ML.
1	Sampling Location	:	Unit -4
2	Date of Sampling	1	06.01.2022
3	Time of Sampling	¢.	5:10 PM
4	Load (MW)	\$	660
5	Height of Stack (Met	er) :	275
6	Diameter of Stack (M	leter) :	7.4
7	Type of Fuel	*	Coal
8	Flue Gas Temperatu	re (⁰ C) ;	125
9	Flue Gas Velocity (M	/sec) :	22.34
10	Flow of Exit Gas at N	ITP (NM ³ /Hr) :	2492482

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	42.3
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	799
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	293

* Results are corrected with 6% oxygen

adani

""End of the Report""

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024

Authorized Signa (Technical Manage

Page 1 of

The second

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

TEST REPORTIssued To:APML,Plot No. A -1, Tirora Growth Centre, MIDC - Til Dist, Gondia - 441 911Sample Particulars :Stack MonitoringSample Collected by :Environment Dept. APML1 Sampling Location:Unit -52 Date of Sampling:10.11.20213 Time of Sampling:4:00 PM	C. ODIOTIZOZZ
Issued To:APML,Plot No. A -1, Tirora Growth Centre, MIDC - Til Dist. Gondia - 441 911Sample Particulars :Stack MonitoringSample Collected by :Environment Dept. APML1 Sampling Location:2 Date of Sampling:3 Time of Sampling:	
Sample Particulars :Stack MonitoringSample Collected by :Environment Dept. APML1 Sampling Location:2 Date of Sampling:3 Time of Sampling:4:00 PM	rora,
Sample Collected by :Environment Dept. APML1Sampling Location:2Date of Sampling:3Time of Sampling:4:00 PM	
1 Sampling Location:Unit -52 Date of Sampling:10.11.20213 Time of Sampling:4:00 PM	
2 Date of Sampling:10.11.20213 Time of Sampling:4:00 PM	
3 Time of Sampling : 4:00 PM	
4 Load (MW) : 649	
5 Height of Stack (Meter) : 275	
6 Diameter of Stack (Meter) : 7.4	
7 Type of Fuel : Coal	
8 Flue Gas Temperature (⁰ C) : 125	
9 Flue Gas Velocity (M/sec) : 23.18	
10 Flow of Exit Gas at NTP (NM ³ /Hr) : 2585761	

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	36.2
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	782
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	281

* Results are corrected with 5% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law,

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March

Authorized Sign (Technical Manag

NATE INTO A

PROFESSION PROFESSION

(Accredited by NABL)

adani

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No	b. ; TC5193220000000123F	Da	ite: 31.01.2022			
Issued To:		APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911				
Sample	Particulars :	Ambient Noise Level (Plant)				
Sample	Collected by :	Environment Dept. APML				
Date of	Sampling:	15.01.2022				
		Test Report				
1251254	100000 A0000000	Day Time In dB (A)	Night Time In dB (A)			
S. No	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)			
1	Near Shanti Niketan I II & III	57.8	47.5			
2	Near Labour Hutment	56.7	45.2			
3	Near Store Area	63.9	51.2			
4	Gate No.1	52.0	42.2			
5	Gate No.2	61.3	50.8			
6	Gate No.3	67.8	60.4			
7	Near OHC	47.8	41.7			
8	Railway Siding	64.7	59.8			
9	Near Reservoir 2	56.9	43.3			
10	Near Ash Water Recovery Pump House	61.5	50.8			
11	In China Colony	44.8	36.5			
C	PCB Standards (Industrial Area)	75	70			

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

O-DIES Attended Salat Authorized Si (Technical Marleg

Amentic

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

URL No : TC51932200000000112F

adani

Date: 31.01.2022

Issued To:	APML, Plot No. A -1, Tiro	ra Growth Centre, MIDC - Tirora,	Dist.	Gondia - 441 911
Sample Collection Date	19.01.2022	Analysis Starting Date :	:	19.01,2022
Quantity received	1 Ltr / Sample	Sampled by :		Environment Dept. APML
Sample Particulars : Co	ondenser Cooling Water	(Waste Water)		

TEST REPORT

Sr	Parameter	Unit	Test Mathode	MPCB	(Results		
no	- stationst	onic	Tearmethous	Standards	U#1	U#2	U#3	U#4	U#5
1	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.1	8.3	8.2	8.0	7.9
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5°C than that of intake water	30.0	29.0	30.0	29.0	30.0
3	Free Available Chlorine	PPM	APHA-23rd – 4500-CI G, DPD Colorimetric Method	0.5	0.3	0.3	0.3	0.1	0.1

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

uthorized Signa (Technical Manage

Page 1 Of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7,8/F01

anitiki i

MARL CONTRACTORY

annta D

(Technical Manager)

Authorized Signator, V.J. Wondebul (Technical Manager)

Page 1 Of 1

712-54103

IRL No: TC51932200000	000116F		Date: 31.01.2022		
Issued To:	APML, Plot No. A -1, Tirora Growth Centre, MIDC - Tirora, Dist. Gondia - 441 911				
Sample Collection Date	19.01.2022	Analysis Starting Date	19.01.2022		

TEST REPORT								
Sr no (Parameter	Unit Test Methods		Unit	Test Methods	MPCB Standards	Res	ults
	(NABL SCOPE)	~::00///	r porenosikowski)		STP-1	STP-2		
1	TSS	mg/l	APHA-23rd - 2540 D	50	19	25		
2	COD	mg/I	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	80	50		
3	BOD at 27°C for 3 days	mg / 1	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	15	23		

End of the Report

Note Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

TC-5780

Issued To:	APML, Plot No. A -1, Tirora G	rowth Centre, MIDC - Tirers, Dist. (Gondia - 441 911
Sample Collection Date	19.01.2022	Analysis Starting Date	19.01.2022
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APML

TEST REPORT

	Parameter	0000	8-03-1			osults
srno	(NABL SCOPE)	Unit	Test Methods	MPCB Standards	N-pit	ETP Outlet
4	pH Value	***	APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	8.2	7.9
2	TSS	mg/1	APHA-23rd - 2540 D	100.0	18	35
з	TDS	mg / I	APHA-23/d - 2540 C	2100.0	217	481
4	COD	mg/l	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	61	112
5	BOD at 27°C for 3 days	mg/l	IS: 5025 (P-44)-1993 R- 1999 Ad.1 BOD 3-days at 27 °C	30.0	13	21
6	Oil & Groase	mg / 1	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	2.5

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

adani

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

177 - 11 1 11 1 14 - Constanting 1 michten Authorized Signatory (Technical Manager Page 1 Of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC51932200000000113F

31.01.2022 Date:

Sample Collection Date	19.01.2022	Analysis Starting Date :	19.01.2022
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APML

TEST REPORT

400-0	Parameter	0.00		MPCB	Result		Results	B	
Sr no	(NABL SCOPE)	Unit	Test Methods	Standards	U#1	U#2	U#3	U#4	U#5
4	Free Available Chlorine	mg/l	APHA-23rd - 4509- Cl G, DPD Colorimetri: Method	0.6	0.3	0.3	0.3	0.1	0.1
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chlorido Mothod	5	2.3	2.7	2.4	1.8	2.1
3	Zinc as (Zn)	mg/l		3	BDL	BDL.	BOL	BDL	8DL
4	Total Chromium as (Cr.)	mg/i		0.2	BDL	BDL	BDL	BDL.	BDL

""End of lise Report""

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or In part, and can't be used as evidence in court of law,

12-1140 (22211-12) [20222 Julan) Wamphio! Authorized Signatory (Technical Manager)

Page 1 Of 1

00000

adani environmental laboratory

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C519322000000226	F		Date: 12	.02.2022	
issued To:	APML,Plot No Dist. Gondia	o. A -1, Tirora Growth Cer - 441 911	ntre, MIDC – Tirora,		
Sample Particular	s : Stack Monito	oring			
Sample Collected	by : Environment	Dept. APML	L		
1 Sampling Loca	tion	: Uni	it -1		
2 Date of Samplin	ng	: 10.02	.2022		
3 Time of Sampli	ng	: 3:35	3:35 PM		
4 Load (MW)		64	640		
5 Height of Stack	(Meter) :	27	275		
6 Diameter of Sta	ick (Meter) :	7	7.4		
7 Type of Fuel	:	Co	Coal		
8 Flue Gas Temp	erature (° C) :	1:	126		
9 Flue Gas Veloc	ity (M/sec) :	23	23.86		
10 Flow of Exit Ga	s at NTP (NM ³ /Hr) :	265	4695		
Sr. No Test Paramet	ers Test Meth	od MPCB Standards	Units	Results*	
1 PM	IS 1125	5 50	Mg/Nm ³	41.1	

· .		(Part- 1):1985		ingruit	
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	761.1
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	283.2

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially,

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law,

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2022 Mar

Authorized Signatory (Technical Manager)

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

	Issued To:	APML, Plot No. A -	1, Tirora Growth Centre	», MIDC – Tirora		
Sample Particulars : Stack Monitoring			511			
Sa	mple Collected by :	Environment Dept. APML				
1	Sampling Location	:	Unit -2	2		
2	Date of Sampling		10.02.20	22		
3	Time of Sampling	:	4:10 PM	Ň		
4	Load (MW)		637			
5	Height of Stack (Me	ter) :	275			
6	Diameter of Stack (N	Vieter) :	7.4			
7	Type of Fuel	:	Coal			
8	Flue Gas Temperatu	ıre (° C) :	124			
9	Flue Gas Velocity (N	//sec) :	24.16			
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	270166	13		
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *	

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	43.7
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	853.2
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	304.1

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law
- 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023

0 Authorized Signatory 22 (Technical Manager)

adani ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To:	APML, Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911		
Sample Particulars :			
Sample Collected by :	Environment Dept. API	ЛL	
1 Sampling Location	:	Unit -3	
2 Date of Sampling	*	10.02.2022	
3 Time of Sampling	:	4:45 PM	
4 Load (MW)	9	636	
5 Height of Stack (Met	er) :	275	
6 Diameter of Stack (N	leter) :	7.4	
7 Type of Fuel	:	Coal	
8 Flue Gas Temperatu	re (° C) :	126	
9 Flue Gas Velocity (M	/sec) :	23.73	
0 Flow of Exit Gas at N	ITP (NM ³ /Hr) :	2640418	

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	35.1
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	810.9
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	317.9

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law,

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-Mar

Authorized Signator

(Technical Manager)

adani environmental laboratory

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

rC51	9322000000229F			Date: 28	3.02.2022
			TEST REPORT		
	Issued To:	APML,Plot No. A - Dist. Gondia - 441	1, Tirora Growth Centre 911	e, MIDC – Tirora,	
Sa	mple Particulars :	Stack Monitoring	ň.		
Sar	mple Collected by :	Environment Dep	t. APML		
1	Sampling Location	:	Unit -4	l I	
2	Date of Sampling	:	28.02.20	22	
3	Time of Sampling	\$	4:15 PI	м	
4	Load (MW)		629		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (I	Meter) :	7.4		
7	Type of Fuel	•	Coal		
8	Flue Gas Temperatu	are (°C) :	124		
9	Flue Gas Velocity (M	A/sec) :	22.80	Č.	
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	254974	10	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	36.7
2	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	790
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	310

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023/March 2024)

1 73 Authorized Signator (Technical Manager)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

19322000000230F			Date: 28	.02.2022
		TEST REPORT		
Issued To:	APML,Plot No. A - Dist. Gondia - 441	1, Tirora Growth Centre 911	e, MIDC – Tirora,	
ample Particulars :	Stack Monitoring			
mple Collected by :	Environment Dep	I. APML		
Sampling Location	:	Unit -5	5	
Date of Sampling		28.02.20	22	
Time of Sampling	:	3:40 PI	N	
Load (MW)	:	623		
Height of Stack (Me	ter) :	275		
Diameter of Stack (I	Meter) :	7.4		
Type of Fuel		Coal		
Flue Gas Temperate	ure (⁰ C) :	127		
Flue Gas Velocity (M	//sec) :	23.12		
Flow of Exit Gas at	NTP (NM ³ /Hr) :	256600	6	
Test Parameters	Test Method	MPCB Standards	Units	Results
	Issued To: Issued To: ample Particulars : mple Collected by : Sampling Location Date of Sampling Load (MW) Height of Stack (Me Diameter of Stack (Me Diameter of Stack (Me Diameter of Stack (Me Flue Gas Temperatu Flue Gas Velocity (M Flow of Exit Gas at	19322000000230F Issued To: APML,Piot No. A - Dist. Gondia - 444 ample Particulars : Stack Monitoring mple Collected by : Environment Dep Sampling Location : Date of Sampling : Load (MW) : Height of Stack (Meter) : Diameter of Stack (Meter) : Type of Fuel : Flue Gas Temperature (⁰ C) : Flow of Exit Gas at NTP (NM ³ /Hr) : Test Parameters Test Method	TEST REPORT TEST REPORT Issued To: APML,Plot No. A -1, Tirora Growth Centre Dist. Gondia – 441 911 ample Particulars : Stack Monitoring mple Collected by : Environment Dept. APML Sampling Location : Unit -5 Date of Sampling : 28.02.20 Time of Sampling : 275 Date of Stack (Meter) : 275 Diameter of Stack (Meter) : 7.4 Type of Fuel : Coal Flue Gas Temperature (° C) : 127 Flue Gas Velocity (M/sec) : 23.12 Flow of Exit Gas at NTP (NM ³ /Hr) : 256600 Test Parameters Test Method MPCB Standards	Date: 28 TEST REPORT Issued To: APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911 ample Particulars : Stack Monitoring ample Particulars : Stack Monitoring Image: Collected by : Environment Dept. APML Sampling Location : Unit -5 Date of Sampling : 28.02.2022 Time of Sampling : 3:40 PM Load (MW) : 623 Height of Stack (Meter) : 7.4 Type of Fuel : Coal Flue Gas Temperature (°C) : 127 Flue Gas Velocity (M/sec) : 23.12 Flow of Exit Gas at NTP (NM ³ /Hr) : 2566006

No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	42.6
2	SOz	IS 11255 (Part 2) 1985	200	Mg/Nm ³	822
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	270

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2028)March 2024

Authorized Signatory (Technical Manager)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.6/F01

URL No : TC519322000000201F

Date 28.02.2022

	Issued To:	APML, Plot No. A	-1, Tirora Growth Cen	tre, MIDC - T	Tirora, Dist. Go	ndia – 441 911				
Sample Particulars :		Ambient Air Qua	Ambient Air Quality (Plant)							
San	ple Collected by :	Environment Dept. APML								
		Test Report								
- 1	i		1	Parameters						
Station	Sampling Location	Sampling Date	Analysis Starting	PM 10	PM 2.5	SO2	NOx			
chiccol		Sector Contractor Ste	Date	µg/m3	µg/m3	µg/m3	µg/m3			
		01.02.2022	02.02.2022	66.9	25,1	13.6	25,4			
		04.02.2022	05.02.2022	67.5	24.4	14.1	27.4			
		07.02.2022	08.02.2022	71.0	34,4	10.2	14.3			
		11.02.2022	12.02.2022	65.0	31.3	16.0	24.8			
AAUT	Near AWR5	14.02.2022	15.02.2022	68.2	28.2	9.2	17.0			
		18.02.2022	19.02.2022	78.4	29.1	12.6	20.9			
		21.02.2022	22.02.2022	71.6	23.9	11.1	18.3			
		25.02.2022	26.02.2022	64.9	27.5	15.0	24.8			
		01.02.2022	02.02.2022	58.1	20.9	10.2	17.6			
		04.02.2022	05.02.2022	53.2	24.0	7.8	14.3			
		07.02.2022	08.02.2022	71.9	23.9	12,3	18.3			
1000	ALL DATE DUAL	11.02.2022	12.02.2022	60.5	28.4	12.6	25.4			
ANW 2	Near Brick Plant	14.02.2022	15.02.2022	69.3	23,0	13.6	19.6			
- 1		18.02.2022	19.02.2022	67.6	21.9	8.2	16.3			
		21.02.2022	22.02.2022	63,4	25.7	8.7	11.7			
		25.02.2022	26.02.2022	66.6	24.3	9,2	20.2			
_		01.02.2022	02.02.2022	76.2	28.1	18.4	24.1			
		04.02.2022	05.02.2022	73.4	39.2	14.5	19.2			
		07.02.2022	08.02.2022	80.4	27.4	11.8	16.8			
140.2	China Colory	11.02.2022	12.02.2022	78.7	28.2	18.9	23.5			
with 3	crima corony	14.02.2022	15.02.2022	70.6	30.3	12.1	21.0			
		18.02.2022	19.02.2022	72.9	27.9	14.1	24.1			
		21.02.2022	22.02.2022	77.5	22.2	11.6	19.8			
		25.02.2022	26.02.2022	70.8	23.7	14.1	21.0			
	NAAC	QMS Standard		100	60	80	80			

End of the Report

Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

1. The report is referring only to the tested sample and for applicable parameter.

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

01 03 22 Authorized Signatory

(Technical Manager)

Plot No. A-1, Tiroda Growth Centre, M.I.D.C., Dist: Gondia - 441911, Maharashtra, India Tel.: +917198255983, Fax: +917198253971, E-mail:arunpratap.singh@adani.com Website:www.adani.com

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519322000000206F

Date: 28.02.2022

Issued To:	APML,Plot No. A -1, Tiroi	ra Growth Centre, MIDC – Tirora	, Disl	t. Gondia – 441 911
Sample Collection Date	09.02.2022	Analysis Starting Date	:	09.02.2022
Quantity received	1 Ltr / Sample	Sampled by	:	Environment Dept. APML
Sample Particulars : Co	ondenser Cooling Water	(Waste Water)		

TEST REPORT

Sr		11-14	Tool Matheada	MPCB	JE		Results		
no	Parameter	Unit	Test Methods	Standards	U#1	U#2	U#3	U#4	U#5
1	pH Value	-	APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.0	8.1	8.3	8.1	8.2
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5°C than that of intake water	34.0	34.0	33.0	34.0	34.0
3	Free Available Chlorine	РРМ	APHA-23rd – 4500-Cl G, DPD Colorimetric Method	0.5	0.2	0.2	0.2	0.3	0.3

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

1 Authorized Signatory (Technical Manager)

Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519322000000207F

Date: 28.02.2022

Issued To:	APML, Plot No. A -1, Tirora	i Growth Centre, MIDC – Tirora, Dist. G	ondia - 441 911
Sample Collection Date	09.02.2022	Analysis Starting Date :	09.02.2022
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APML
mple Particulars : Cooling	g tower blowdown (Waste	Water)	

TEST REPORT

	Parameter	Same		MPCP			Results		
Sr no	(NABL SCOPE)	Unit	Test Methods	Standards	U#1	U#2	U#3	U#4	U#5
1	Free Available Chlorine	mg/l	APHA-23rd – 4500- Cl G, DPD Colorimetric Method	0,5	0.2	0.2	0.2	0.3	0.3
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chloride Method	5	2.7	2.8	2.6	1.9	2.2
3	Zinc as (Zn)	mg/l	Ŧ	Ŧ	BDL	BDL	BDL.	BDL	BDL
4	Total Chromium as (Cr)	mg/l		0.2	BDL	BDL	BDL	BDL	BDL.

""End of the Report""

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter,

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory

(Technical Manager)

Page 1 Of 1

adani environmental laboratory (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

10-5163

Issued To:	APML, Plot No. A -1, Tirora Gr	owth Centre, MIDC – Tirora, Dist. C	Sondia - 441 911
Sample Collection Date	09.02.2022	Analysis Starting Date	09.02.2022
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APML

TEST REPORT

	728 X				R	sults
Sr na	Parameter (NABL SCOPE)	Unit	Test Methods	MPCB Standards	N-pit	ETP Outlet
1	pH Value	77 44	APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	8.3	7.8
2	TSS	mg/l	APHA-23rd - 2540 D	100.0	27	39
3	TDS	mg/I	APHA-23rd - 2540 C	2100.0	235	490
4	COD	mg/l	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	65	120
5	BOD at 27°C for 3 days	mg / I	IS: 3025 (P-44)-1993 R- 1999 Ad 1 BOD 3-days at 27 °C	30.0	15	22
6	Oil & Grease	mg/1	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	2.8

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

0 01 Authorized Signator (Technical Manager)

Page 1 Of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

RL No : TC51932200000	00211F		Date: 28.02.2022
Issued To:	APML,Plot No. A -1, Tirora	Growth Centre, MIDC – Tirora, D	ist. Gondia – 441 911
Sample Collection Date	09,02.2022	Analysis Starting Date	09.02.2022

			TEST R	EPORT		
Sr no	Parameter	Unit	Test Methods	MPCB Standards	Results	
	(NABL SCOPE)				STP-1	STP-2
1	TSS	mg / I	APHA-23rd - 2540 D	50	22	29
2	COD	mg / 1	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	70	55
3	BOD at 27°C for 3 days	mg / I	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	12	21

End of the Report

Note Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

63 Authorized Signatory (Technical Manager)

Page 1 Of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

TO-6193

Format No: APML/ENV-LB/7.8/F01

JRL No.	: TC519322000000223F	Date: 28.02.2022 APML,Plot No. A -1, Tirora Growth Centre, MIDC - Tirora, Dist. Gondia - 441 911 Ambient Noise Level (Plant) Environment Dept. APML 19.02.2022 Test Report Day Time in dB (A) Night Time in dB (A) (6.00 a.m. to 10.00 p.m.) (10.00 p.m. to 06.00 a.m.) 58.0 48.2 60.4 50.2 61.5 51.0		
ssued T	o:	APML, Plot No. A -1, Tirora Grown MIDC – Tirora, Dist. Gondia – 44	th Centre, 1 911	
Sample	Particulars :	Ambient Noise Level (Plant)		
Sample	Collected by :	Environment Dept. APML		
Date of \$	Sampling:	19.02.2022		
		Test Report		
		Day Time in dB (A)	Night Time in dB (A)	
S. No	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)	
1	Near Shanti Niketan I II & III	58.0	48.2	
2	Near Labour Hutment	60.4	50.2	
3	Near Store Area	61.5	51.0	
4	Gate No.1	49.9	41.8	
5	Gate No.2	61.6	51.8	
6	Gate No.3	67.9	62.2	
7	Near OHC	48.8	42.7	
8	Railway Siding	58.5	52.2	
9	Near Reservoir 2	50.2	43.0	
10	Near Ash Water Recovery Pump House	59.3	42.8	
11	In China Colony	38.0	37.2	
C	PCB Standards (Industrial Area)	75	70	

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory 03 (Technical Manager)

TOLOGIES

adani environmental LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

rC519	32200000336F			Date: 27	.03.2022	
			TEST REPORT			
	Issued To:	APML,Plot No. A Dist. Gondia - 44	-1, Tirora Growth Centr 41 911	re, MIDC Tirora,		
Sample Particulars : Stack Monitoring		g				
Sam	ple Collected by :	Environment De	pt. APML			
1 5	ampling Location	:	Unit -	-5		
2 0	Date of Sampling	4	23.03.2	022		
3 T	ime of Sampling	:	3:05 F	PM		
4 L	.oad (MW)	:	660			
5 F	leight of Stack (Me	ter) :	275			
6 C	Diameter of Stack (N	Meter) :	7.4			
7 T	Type of Fuel	:	Coa	1		
8 F	lue Gas Temperatu	ıre (°C) :	130	1		
9 F	Flue Gas Velocity (N	//sec) :	24.0	24.05		
10 F	low of Exit Gas at	NTP (NM ³ /Hr) :	26490	04		
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results	
1	PM	IS 11255 (Part-1): 1985	50	Mg/Nm ³	45.0	

IS 11255 (Part 2) 793 2# SO, 200 Mg/Nm³ 1985 IS 11255 (Part 7) 3 NOx 450 264 Mg/Nm³ 2005 4## **USEPA - 0060** 0.030 Mg/Nm² 0.0171 Mercury

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager)

Page 1 of 1

VD:+SIT

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

TC-6193

Format No: APML/ENV-LB/7.8/F01

C519322000000335F				Date: 27	.03.2022
			TEST REPORT		
Issued To: APML,Plot No. A -1. Dist. Gondia - 441		1, Tirora Growth Centr I 911	e, MIDC – Tirora,		
Sample Particulars : Stack Monitoring					
Sa	mple Collected by :	Environment Dep	t. APML		
1	Sampling Location		Unit -	4	
2	Date of Sampling	1	23.03.2	022	
3	Time of Sampling	4	2:15 P	M	
4	Load (MW)		654		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (I	Meter) :	7.4		
7	Type of Fuel	:	Coal		
8	Flue Gas Temperatu	ıre (° C) :	133		
9	Flue Gas Velocity (M	//sec) :	23.9	8	
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	26224	31	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	41.0
		IC AADEE (Durat O)			

2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	786
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	318
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0169

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager)

Page 1 of 1

-Salar

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

°C51	9322000000334F			Date: 27	.03.2022
	Issued To:	APML,Plot No. A - Dist. Gondia - 44*	1, Tirora Growth Centr I 911	re, MIDC – Tirora	
Sample Particulars : Stack Monito		Stack Monitoring			
Sar	nple Collected by :	Environment Dep	ot. APML		
1	Sampling Location	22	Unit -	3	
2	Date of Sampling	\$	23.03.2	022	
3	Time of Sampling	•	12:50 PM		
4	Load (MW)	4	609		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (f	Meter) :	7.4		
7	Type of Fuel	5	Coal		
8	Flue Gas Temperati	ıre (° C) :	131		
9	Flue Gas Velocity (M	Alsec) :	24.27		
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	26668	05	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	36.5

4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0163
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ²	310.0
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	800.8
15	1972/3772 1	(Part- 1):1985	0.5953		

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law. 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on guaterly basis through third party.

Authorized Signator (Technical Manager)

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C51	19322000000333F			Date: 27	7.03.2022	
	Issued To:	APML,Plot No. A -1 Dist. Gondia – 441	, Tirora Growth Centr 911	e, MIDC – Tirora,	<u> </u>	
Sa	ample Particulars :	Stack Monitoring				
Sa	mple Collected by :	Environment Dept	. APML			
1	Sampling Location		Unit	2		
2	Date of Sampling	:	23.03.2	022		
3	Time of Sampling	4	12:05	PM		
4	Load (MW)		632			
5	Height of Stack (Me	ter) :	275			
6	Diameter of Stack (N	Meter) :	7.4			
7	Type of Fuel	:	Coal			
8	Flue Gas Temperatu	re (^a C) :	129			
9	Flue Gas Velocity (N	Msec) :	23.69			
10	Flow of Exit Gas at I	NTP (NM ³ /Hr) :	26157	97		
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *	
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	42.7	
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	849.7	
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	306.0	
4##	Mercury	USEPA - 0060	0.030	Ma/Nm ³	0.0175	

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager)

Page 1 of 1

Mg/Nm³

adani environmental LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C5	19322000000332F			Date: 27	.03.2022
Issued To: APML,Plot No. A -1, Dist. Gondia – 441 9		, Tirora Growth Centr 911	re, MIDC – Tirora,		
Sa	Sample Particulars : Stack Monitoring				
Sa	mple Collected by :	Environment Depl	L APML		
1	Sampling Location		Unit -	1	
2	Date of Sampling	3	23.03.20	022	
3	Time of Sampling		11:35 /	AM	
4	Load (MW)	:	635		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (I	Vieter) :	7.4		
7	Type of Fuel	:	Coal		
8	Flue Gas Temperati	ure (° C) :	130		
9	Flue Gas Velocity (M/sec) :	22.89	3	
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	25218	93	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50.0	Mg/Nm ³	33.9
2#	SO2	IS 11255 (Part 2) 1985	200.0	Mg/Nm ³	816.6
		IS 11255 (Part 7)	1000	21250 (222015 1 0)	

* Results are corrected with 6% oxygen

3

4##

NOx

Mercury

End of the Report

450.0

0.030

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

2005

USEPA - 0060

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024) 5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third part

03/2 Authorized Signatory (Technical Manager) Page 1 of 1

Mg/Nm³

Mg/Nm³

298.2

0.0166

(Accredited by NABL)

adani

ADANI POWER MAHARASHTRA LIMITED, TIRODA

TD-S103

Format No: APML/ENV-LB/7.8/F01

JRL No	.: TC519322000000327F	Da	te: 31.03.2022		
Issued '	То:	APML, Plot No. A -1, Tirora Grow MIDC – Tirora, Dist. Gondia – 44	th Centre, 1 911		
Sample	Particulars :	Ambient Noise Level (Plant)			
Sample	Collected by :	Date: 31.03.2022 APML,Plot No. A -1, Tirora Growth Centre, MIDC - Tirora, Dist. Gondia - 441 911 Ambient Noise Level (Plant) Environment Dept. APML 12.03.2022 Test Report Day Time in dB (A) Night Time in dB (A) (6.00 a.m. to 10.00 p.m.) (10.00 p.m. to 06.00 a.m. 58.9 49.8 64.5 54.8 61.6 50.5 61.7 54.4 64.7 52.2 73.3 65.5 56.6	Environment Dept. APML		
Date of	Sampling:	12.03.2022			
		Test Report			
- N		Day Time in dB (A)	Night Time in dB (A)		
5. NO	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)		
1	Near Shanti Niketan I II & III	56.9	49.8		
2	Near Labour Hutment	64.5	54.8		
3	Near Store Area	61.6	50.5		
4	Gate No.1	61.7	54.4		
5	Gate No.2	64.7	52.2		
6	Gate No.3	73.3	65.5		
7	Near OHC	56.6	48.7		
8	Railway Siding	65.4	55.7		
9	Near Reservoir 2	52,9	41.1		
10	Near Ash Water Recovery Pump House	62.0	52.4		
11	In China Colony	39.4	36.0		
C	PCB Standards (Industrial Area)	75	70		

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519322000000317F

Date: 31.03.2022

Issued To:	APML,Plot No. A -1, Tiroł	a Growth Centre, MIDC – Tirora	, Dist	. Gondia – 441 911
Sample Collection Date	23.03.2022	Analysis Starting Date		23.03.2022
Quantity received	1 Ltr / Sample	Sampled by	:	Environment Dept. APML
Sample Particulars : Co	ondenser Cooling Water	(Waste Water)		(f

TEST REPORT

Sr	Parameter	Italt	Test Mathada	MPCB	B Results				
no	Farameter	Unit	Test methods	Standards	U#1	U#2	U#3	U#4	U#5
1	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.2	8.3	8.0	8.4	8.4
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5'C than that of intake water	36.0	35.0	34.0	35.0	34.0
3	Free Available Chlorine	РРМ	APHA-23rd – 4500-CI G, DPD Colorimetric Method	0.5	0.1	0.1	0.1	0.2	0.2

""End of the Report""

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

1AR Authorized Signatory

(Technical Manager)

Page 1 Of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APMIL/ENV-LB/7.8/F01

Date 31 63 2622

URL No : TC519322000000301F

	1110212-0021021					2007 2000 000		
	Issued To:	APML, Plot No. A	-1, Tirora Growth Cer	itre, MIDC - 1	'irora, Dist. Go	ndia - 441 911		
San	nple Particulars :	Ambient Air Qua	lity (Plant)					
Sam	ple Collected by :	Environment Dep	pt, APML					
			Test Report					
T					Para	meters		
Station	Sampling Location	Sampling Date	Analysis Starting	PM 10	PM 2.5	SO2	NOx	
		Constant and the provide a little	Date -	µg/m3	µg/m3	µg/m3	µg/m3	
		04.03.2022	05.03.2022	63.7	21.7	15.6	26.7	
- 1		07.03.2022	08.03.2022	57.2	30.2	13.1	26.1	
- 1		11.03.2022	12.03.2022	49.3	16.7	10.2	14.3	
440.4	Near AWRS	14.03.2022	15.03.2022	60.2	29.9	15.0	22.2	
MAQ 1		21.03.2022	22.03.2022	67.6	22.4	11.1	19.6	
		25.03.2022	26.03.2022	57.2	24.6	6.3	18.3	
		28.03.2022	29.03.2022	58.6	26.9	10.7	18.3	
		30.03.2022	31.03.2022	64.2	20.3	10.2	17.0	
		04.03.2022	05.03.2022	56.4	21.9	10.2	19.6	
		07.03.2022	08.03.2022	53.7	39.3	8.2	18.9	
		11.03.2022	12.03.2022	66.0	30.1	6.9	14.3	
440.2	Moor Dalek Blank	14.03.2022	15.03.2022	59.4	21.1	14.5	25.4	
ANG Z	Near Drick Plant	21.03.2022	22.03.2022	59.9	28.5	11.1	19.6	
		25.03.2022	26.03.2022	57.9	25.0	7.8	15.0	
		28.03.2022	29.03.2022	68.3	28.9	6.8	16.3	
		30.03.2022	31.03.2022	59.3	28.5	6.3	17.0	
		04.03.2022	05.03.2022	68.1	38.2	17.5	22,8	
		07.03.2022	08.03.2022	67.4	30.0	15.6	20.4	
		11.03.2022	12.03.2022	65.7	37.1	14.3	22.2	
440.2	China Coloru	14.03.2022	15.03.2022	61.6	34.6	10.2	17.4	
MAGE 3	crina colony	21.03.2022	22.03.2022	56.1	32.5	8.2	18.0	
		25.03.2022	26.03.2022	51.1	26.7	14.1	25.9	
		28.03.2022	29.03.2022	61.5	27.3	15.0	19.8	
		30.03.2022	31.03.2022	64.8	35.9	9.7	21.5	
	NAAG	MS Standard		100	60	80	80	

End of the Report

Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

1. The report is referring only to the tested sample and for applicable parameter.

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

2 31 Authorized Signatory (Technical Manager)

Page 1 of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519322000000318F

adani

Date: 31.03.2022

Issued To:	APML, Plot No. A -1, Tirora	Growth Centre, MIDC - Tirora, Dist. C	Sondia - 441 911
Sample Collection Date	23.03.2022	Analysis Starting Date :	23.03.2022
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APML
Sample Particulars : Coolin	g tower blowdown (Waste	Water)	19
.ocation of sample : Unit1,U	Init-2,Unit-3,Unit-4 & Unit-5.		

TEST REPORT

	Description			MPCB		Results						
Sr no	(NABL SCOPE) Unit Test Methods		Standards	U∦1	U#2	U#3	U#4	U#5				
1	Free Available Chlorine mg/l APHA-23rd - 4500- Cl G, DPD Colorimetric Method Phosphate as (PO4) mg/l APHA-23rd - 4500-P D Stannous Chloride Method		0.5	0,1	0.1	0.1	0.2	0.2				
2			5	2.2	2.3	2,4	1.6	1.5				
3	Zinc as (Zn)	mg/l		1	BDL	BDL	BDL	BDL	BOL			
4	Total Chromium as (Cr)	mg/l	-	0.2	BDL	BDL	BDL	BDL	BDL			

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.,

Authorized Signatory (Technical Manager)

Page 1 Of 1

(Accredited by NABL)

adani

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To: APML,Plot.No. A -1, Tirora Growth Centre, MiDC – Tirora, Dist. Gondia – 441 911									
Sample Collection Date	23.03.2022	Analysis Starting Date	23.03.2022						
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APML						

TEST	REPORT
------	--------

	Status Status				Results			
Sr no	(NABL SCOPE)		Test Methods	MPCB Standards	N-pit	ETP Outlet		
1	1 pH Value		APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	8.4	8.1		
2	TSS	mg/1	APHA-23/d - 2540 0	100.0	36	42		
3	TDS	mg/1	APHA-23rd - 2540 C	2100.0	280	395		
4	сов	mg/l	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	55	105		
5	BOD at 27 ⁹ C for 3 days	mg/I	IS: 3025 (P-44)-1993 R- 1999 Ad. 1 BOD 3-days at 27 °C	30.0	18	20		
6	Oil & Grease	mg/1	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	2.5		

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

4. # Indicates this parameter is not covered in our NABL scope

Authorized Signatory (Technical Manager)

adani environmental laboratory

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

10-0195

	00321F		Date: 31.03.2022						
Issued To:	APML, Plot No. A -1, Tirora	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911							
Sample Collection Date	23.03.2022	Analysis Starting Date	23.03.2022						
Quantity received	3 Lit /Sample	Sampled by	Environment Dept.						

			TEST R	EPORT			
Sr	Parameter	Unit	Test Methods	MPCB Standards	Results		
no (NABL SCOPE)	(NABL SCOPE)	C.III	FRANK MARKEN		STP-1	STP-2	
1	TSS	mg/l	APHA-23rd - 2540 D	50	25	32	
2	COD	mg / 1	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	70	50	
3	BOD at 27 ⁰ C for 3 days	mg/l	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	-11	20	

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

31/09/22 Authorized Signatory (Technical Manager)

Page 1 Of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Date:

URL No : TC519322000000331F

Format No: APML/ENV-LB/7.8/F01

31.03.2022

	en e		
17.03.2022	Analysis Starting Date	:	17.03,2022
1 Ltr / Sample	: Environment De APML		
lown (Waste Water)			N
	17.03.2022 1 Ltr / Sample own (Waste Water)	17.03.2022 Analysis Starting Date 1 Ltr / Sample Sampled by own (Waste Water)	17.03.2022 Analysis Starting Date : 1 Ltr / Sample Sampled by : own (Waste Water)

TEST REPORT

	Parameter			MPCB	Results
Sr no	(NABL SCOPE)	Unit	Test Methods	Standards	U#3
а	TSS	mg / I	APHA-22nd - 2540 D	100	25.0
2	Oil & Grease	mg/l	APHA-22nd Ed 2012-5520 B Liquid Liquid Partition Gravemetric method	10	BDL
3	Copper (Total)	mg/l		4	BOL
4	Iron (Total)	mg/l	APHA-22nd- 3500-Fe-B	1	BDL

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

Page 1 Of 1

R+(1111

	ADANI POWER MAHARASHTRA LIMITED												
				5 x 66	O MW T	'hermal	Power	Plant , T	'irora, Go	ondia			
	Station:	AAQMS	1 AAQMS	2 AAQMS	53	Report Type: Mean Time Base: 1Hr					Mo	onth- OCT	-21
		AA	QMS-1 (La	bour Hutme	nt)	AAQMS-2 (China Colony)					AAQMS-3 (Gate no -2)	
Month		PM 10	PM 2.5	S02	NOx	PM10	PM2.5	S02	NOX	PM10	PM2.5	S02	NOX
		ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ppm
	Max	76.2	44.6	6.8	10.5	74.4	54.8	17.0	20.7	76.8	45.2	7.4	11.1
1-0ct-21	Min	48.9	9.2	4.3	5.2	47.1	19.4	14.5	15.4	49.5	9.8	4.9	5.8
	AVG	62.6	26.9	5.6	7.9	60.8	37.1	15.8	18.1	63.2	27.5	6.2	8.5
	Max	76.5	44.9	7.1	10.8	74.7	53.1	15.3	19.0	77.1	45.5	7.7	11.4
2-0ct-21	Min	49.2	9.5	4.6	5.5	47.4	17.7	12.8	13.7	49.8	10.1	5.2	6.1
	AVG	62.9	27.2	5.9	8.2	61.1	35.4	14.1	16.4	63.5	27.8	6.5	8.8
	Max	72.1	48.8	11.0	14.7	70.3	46.7	8.9	12.6	72.7	42.1	4.3	8.0
3-Oct-21	Min	44.8	13.4	8.5	9.4	43.0	11.3	6.4	7.3	45.4	6.7	2.8	2.7
	AVG	58.5	31.1	9.8	12.1	56.7	29.0	7.7	10.0	59.1	24.4	3.6	5.4
	Max	72.0	45.0	7.2	10.9	70.2	48.6	10.8	14.5	72.6	47.1	9.3	13.0
4-0ct-21	Min	44.7	9.6	4.7	5.6	42.9	13.2	8.3	9.2	45.3	11.7	6.8	7.7
	AVG	58.4	27.3	6.0	8.3	56.6	30.9	9.6	11.9	59.0	29.4	8.1	10.4
	Max	73.7	44.5	6.7	10.4	71.9	47.3	9.5	13.2	74.3	48.7	10.9	14.6
5-0ct-21	Min	46.4	9.1	6.8	10.2	44.6	11.9	7.0	7.9	47.0	13.3	8.4	9.3
	AVG	60.1	26.8	6.8	10.3	58.3	29.6	8.3	10.6	60.7	31.0	9.7	12.0
	Max	76.1	45.7	7.9	11.6	74.3	48.7	10.9	14.6	76.7	43.2	5.4	9.1
6-0ct-21	Min	48.8	10.3	5.4	6.3	47.0	13.3	8.4	9.3	49.4	7.8	2.9	3.8
	AVG	62.5	28.0	6.7	9.0	60.7	31.0	9.7	12.0	63.1	25.5	4.2	6.5
	Max	73.5	42.7	4.9	8.6	71.7	46.1	8.3	12.0	74.1	43.9	6.1	9.8
7-0ct-21	Min	46.2	7.3	2.4	3.3	44.4	10.7	5.8	6.7	46.8	8.5	3.6	4.5
	AVG	59.9	25.0	3.7	6.0	58.1	28.4	7.1	9.4	60.5	26.2	4.9	7.2
	Max	75.7	42.1	4.3	8.0	73.9	45.6	7.8	11.5	75.1	44.3	6.5	10.2
8-0ct-21	Min	48.4	6.7	1.8	2.7	46.6	10.2	5.3	6.2	47.8	8.9	4.0	4.9
	AVG	62.1	24.4	3.1	5.4	60.3	27.9	6.6	8.9	61.5	26.6	5.3	7.6
	Max	72.6	43.2	5.4	9.1	70.8	40.2	2.4	6.1	73.2	42.8	5.0	8.7
9-0ct-21	Min	45.3	7.8	2.9	3.8	43.5	4.8	9.2	4.8	39.8	7.4	2.5	3.4
	AVG	59.0	25.5	4.2	6.5	57.2	22.5	5.8	5.5	56.5	25.1	3.8	6.1
	Max	75.0	41.4	3.6	7.3	73.9	43.8	6.0	9.7	70.8	30.8	3.7	7.4
10-0ct-21	Min	47.7	6.0	1.1	2.0	46.6	19.5	14.6	4.4	36.6	6.5	2.6	2.1
	AVG	61.4	23.7	2.4	4.7	60.3	31.7	10.3	7.1	53.7	18.7	3.2	4.8
	Max	76.8	46.2	17.2	20.9	75.0	53.4	15.6	19.3	77.4	47.0	19.2	22.9
11-0ct-21	Min	49.5	20.6	16.8	15.6	47.7	18.0	13.1	14.0	40.2	27.7	16.5	17.6
	AVG	63.2	33.4	17.0	18.3	61.4	35.7	14.4	16.7	58.8	37.4	17.9	20.3
	Max	78.9	47.2	9.4	13.1	77.1	55.5	17.7	21.4	79.5	47.9	10.1	13.8
12-Oct-21	Min	51.6	11.8	6.9	7.8	49.8	20.1	15.2	16.1	42.3	12.5	7.6	8.5
	AVG	65.3	29.5	8.2	10.5	63.5	37.8	16.5	18.8	60.9	30.2	8.9	11.2
	Max	71.6	48.9	11.1	14.8	73.4	47.8	10.0	13.7	75.8	42.8	5.0	8.7
13-0ct-21	Min	44.3	13.5	8.6	9.5	46.1	12.4	7.5	8.4	42.1	7.4	3.0	3.4
	AVG	58.0	31.2	9.9	12.2	59.8	30.1	8.7	11.1	59.0	25.1	4.0	6.1
	Max	74.6	51.2	11.4	16.1	72.8	46.2	14.9	18.6	75.2	49.3	11.5	15.2
14-0ct-21	Min	47.3	15.8	10.9	15.9	45.5	16.8	11.9	13.3	47.9	13.9	9.0	9.9
	AVG	61.0	33.5	11.2	16.0	59.2	31.5	13.4	16.0	61.6	31.6	10.3	12.6
	Max	78.6	47.0	9.2	12.9	76.8	55.2	32.5	36.2	79.2	47.6	9.8	13.5
15-0ct-21	Min	51.3	11.6	6.7	7.6	49.5	39.8	28.7	30.9	51.9	12.2	7.3	8.2
	AVG	65.0	29.3	8.0	10.3	63.2	47.5	23.5	33.6	65.6	29.9	8.6	10.9
L								1					

	Max	70.5	48.9	11.1	14.8	68.7	47.1	20.9	24.6	71.1	42.7	4.9	8.6
16-Oct-21	Min	43.2	13.5	8.6	9.5	41.4	23.5	22.8	19.3	43.8	7.3	2.4	3.3
	AVG	56.9	31.2	9.9	12.2	55.1	35.3	21.9	22.0	57.5	25.0	3.7	6.0
	Max	74.5	54.3	14.5	18.2	76.3	46.7	8.9	12.6	78.7	47.2	7.4	11.1
17-Oct-21	Min	47.2	18.9	14.0	12.9	49.0	11.3	6.4	7.3	51.4	11.8	6.9	5.8
	AVG	60.9	36.6	14.3	15.6	62.7	29.0	7.7	10.0	65.1	29.5	7.2	8.5
	Max	75.8	54.2	16.4	20.1	74.0	52.4	14.6	18.3	76.4	44.8	7.0	10.7
18-Oct-21	Min	48.5	18.8	13.9	14.8	46.7	17.0	12.1	13.0	49.1	9.4	4.5	5.4
	AVG	62.2	36.5	15.2	17.5	60.4	34.7	13.4	15.7	62.8	27.1	5.8	8.1
	Max	76.9	47.4	9.6	13.3	75.1	46.8	22.0	25.7	77.5	44.5	6.7	10.4
19-0ct-21	Min	49.6	12.0	7.1	8.0	47.8	16.4	11.5	20.4	50.2	9.1	4.2	5.1
	AVG	63.3	29.7	8.4	10.7	61.5	31.6	16.8	23.1	63.9	26.8	5.5	7.8
	Max	72.4	50.2	12.4	16.1	70.6	43.0	5.2	8.9	73.0	48.2	10.4	14.1
20-0ct-21	Min	45.1	14.8	9.9	10.8	43.3	7.6	2.7	3.6	45.7	12.8	7.9	8.8
	AVG	58.8	32.5	11.2	13.5	57.0	25.3	4.0	6.3	59.4	30.5	9.2	11.5
	Max	78.4	41.7	3.9	7.6	76.6	55.0	17.2	20.9	79.0	47.4	5.1	8.8
21-0ct-21	Min	51.1	6.3	1.4	2.3	49.3	19.6	14.7	15.6	51.7	12.0	2.8	2.2
	AVG	64.8	24.0	2.7	5.0	63.0	37.3	16.0	18.3	65.4	29.7	3.9	5.5
	Max	71.3	44.6	6.8	10.5	69.5	34.3	16.5	20.2	71.9	39.2	16.9	20.6
22-Oct-21	Min	44.0	9.2	4.3	5.2	42.2	13.9	9.0	14.9	44.6	13.8	4.6	14.0
	AVG	57.7	26.9	5.6	7.9	55.9	24.1	12.8	17.6	58.3	26.5	10.7	17.3
	Max	76.8	47.3	16.5	20.2	75.0	46.7	18.4	22.1	77.4	45.8	8.0	11.7
23-Oct-21	Min	49.5	11.9	10.6	14.9	47.7	16.7	14.8	16.8	50.1	10.4	5.5	6.4
	AVG	63.2	29.6	13.6	17.6	61.4	31.7	16.6	19.5	63.8	28.1	6.8	9.1
	Max	78.5	46.9	9.1	12.8	76.7	55.1	17.3	21.0	79.1	47.5	9.7	13.4
24-0ct-21	Min	51.2	11.5	6.6	7.5	49.4	19.7	14.8	15.7	51.8	12.1	7.2	8.1
	AVG	64.9	29.2	7.9	10.2	63.1	37.4	16.1	18.4	65.5	29.8	8.5	10.8
	Max	71.5	44.7	6.9	10.6	67.3	45.7	7.9	11.6	66.4	44.8	7.0	10.7
25-Oct-21	Min	44.2	9.3	4.4	5.3	40.0	10.3	5.4	6.3	39.1	9.4	4.5	5.4
	AVG	57.9	27.0	5.7	8.0	53.7	28.0	6.7	9.0	52.8	27.1	5.7	8.0
	Max	73.1	39.5	11.7	15.4	72.0	36.6	8.8	12.5	74.4	34.4	19.1	22.8
26-0ct-21	Min	45.8	4.1	3.9	10.1	44.7	11.2	6.3	7.2	40.2	15.0	13.8	17.5
	AVG	59.5	21.8	7.8	12.8	58.4	23.9	7.6	9.9	57.3	24.7	16.5	20.2
	Max	79.8	49.2	11.4	15.1	78.0	56.4	18.6	22.3	78.8	47.2	9.4	13.1
27-Oct-21	Min	52.5	13.8	8.9	9.8	50.7	21.0	16.1	17.0	51.5	11.8	6.9	7.8
	AVG	66.2	31.5	10.2	12.5	64.4	38.7	17.4	19.7	65.2	29.5	8.2	10.5
	Max	72.7	45.8	17.0	19.7	70.9	47.3	9.5	13.2	73.3	45.2	7.4	11.1
28-Oct-21	Min	45.4	10.4	5.5	14.4	43.6	11.9	7.0	7.9	39.6	9.8	3.4	5.8
	AVG	59.1	28.1	11.3	17.1	57.3	29.6	8.3	10.6	56.5	27.5	5.4	8.5
	Max	75.0	53.8	16.0	19.7	73.2	49.6	11.8	15.5	75.6	52.1	14.3	18.0
29-0ct-21	Min	47.7	18.4	13.5	14.4	45.9	13.2	8.3	10.2	48.3	16.7	11.8	12.7
	AVG	61.4	36.1	14.8	17.1	59.6	31.4	10.1	12.9	62.0	34.4	13.1	15.4
70.0-1.04	Max	//.8	51.1	10.5	15.0	/6.0	40.8	22.2	25.9	/8.4	49.1	21.5	28.0
30-0CC-21	Min	50.5	15./	10.6	9.7	48.7	20.5	19.5	20.6	51.1	25.7	18.8	20.7
	AVG	04.2 70.6	53.4	17.1	12.4	σ2.4 77.0	5U.7	20.8	23.3	04.8 70.0	4.0 C	20.1	27.4
71.0+ 31	Max	79.6	52.9	1.61	27.2	//.8	42.6	24.0	27.7	/0.2	40.9	10.1	19.8
51-000-21	Min	52.5	17.5	22.4	21.9	50.5	22.5	21.1	22.4	42.9	15.5	10.6	18.5
	AVG	66.0	55.2	17.8	24.6	64.2	32.5	22.6	25.1	56.6	28.2	11.9	19.2

	ADANI POWER MAHARASHTRA LIMITED												
				5 x 66	50 MW T	'hermal	Power	Plant , T	'irora, Go	ondia			
	Station:	AAQMS '	1 AAQMS	2 AAQMS	53	Report T	ype: Mear	n	Time Bas	e: 1Hr	Mo	onth- NOV	-21
		AA	QMS-1 (Lal	bour Hutme	nt)		AAQMS-2 (0	China Colon	y)		AAQMS-3 ((Gate no -2)	
Month		PM 10	PM 2.5	S02	NOx	PM10	PM2.5	S02	NOX	PM10	PM2.5	S02	NOX
		ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ppm
	Max	72.3	50.7	12.9	16.6	70.5	50.9	13.1	16.8	72.9	51.3	13.5	17.2
MonthMax1-Nov-21Max1-Nov-21MinAVGMax2-Nov-21MinAVGMax3-Nov-21MinAVGMax3-Nov-21MinAVGMax5-Nov-21MinAVGMax6-Nov-21MinAVGMax6-Nov-21MinAVGMax7-Nov-21MinAVGMax7-Nov-21MinAVGMax10-Nov-21MinAVGMax10-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMax11-Nov-21MinAVGMaxMaxMax </th <th>45.0</th> <th>15.3</th> <th>10.4</th> <th>11.3</th> <th>43.2</th> <th>15.5</th> <th>10.6</th> <th>11.5</th> <th>45.6</th> <th>15.9</th> <th>11.0</th> <th>11.9</th>	45.0	15.3	10.4	11.3	43.2	15.5	10.6	11.5	45.6	15.9	11.0	11.9	
	AVG	58.7	33.0	11.7	14.0	56.9	33.2	11.9	14.2	59.3	33.6	12.3	14.6
	Max	75.3	53.7	15.9	19.6	73.5	51.9	14.1	17.8	75.9	54.3	16.5	20.2
2-Nov-21	Min	48.0	18.3	13.4	14.3	46.2	16.5	11.6	12.5	48.6	18.9	14.0	14.9
	AVG	61.7	36.0	14.7	17.0	59.9	34.2	12.9	15.2	62.3	36.6	15.3	17.6
	Max	76.3	48.8	11.0	14.7	71.5	47.9	10.1	13.8	73.9	52.1	14.3	18.0
3-Nov-21	Min	49.0	13.4	8.5	9.4	44.2	12.5	7.6	8.5	46.6	16.7	11.8	12.7
	AVG	62.7	31.1	9.8	12.1	57.9	30.2	8.9	11.2	60.3	34.4	13.1	15.4
	Max	77.4	51.3	13.5	17.2	75.6	54.0	16.2	19.9	78.0	57.1	19.3	23.0
4-Nov-21	Min	50.1	15.9	11.0	11.9	48.3	18.6	13.7	14.6	50.7	21.7	16.8	17.7
5-Nov-21	AVG	63.8	33.6	12.3	14.6	62.0	36.3	15.0	17.3	64.4	39.4	18.1	20.4
	Max	79.6	44.5	6.7	10.4	77.8	53.2	15.4	19.1	80.2	54.6	16.8	20.5
5-Nov-21	Min	52.3	9.1	6.8	10.2	50.5	17.8	12.9	13.8	52.9	19.2	14.3	15.2
	AVG	66.0	26.8	6.8	10.3	64.2	35.5	14.2	16.5	66.6	36.9	15.6	17.9
6-Nov-21	Max	74.8	44.4	6.6	10.3	73.0	47.4	9.6	13.3	75.4	53.2	15.4	19.1
	Min	47.5	12.0	7.1	9.0	45.7	12.0	7.1	8.0	48.1	17.8	12.9	13.8
	AVG	61.2	28.2	6.9	9.7	59.4	29.7	8.4	10.7	61.8	35.5	14.2	16.5
7-Nov-21	Max	80.2	49.4	11.6	15.3	78.4	52.8	15.0	18.7	80.8	50.6	12.8	16.5
	Min	52.9	14.0	9.1	10.0	51.1	17.4	12.5	18.4	53.5	15.2	10.3	11.2
	AVG	66.6	31.7	10.4	12.7	64.8	35.1	13.8	18.6	67.2	32.9	11.6	13.9
	Max	81.3	47.7	9.9	13.6	79.5	51.2	13.4	17.1	80.7	54.3	16.5	20.2
8-Nov-21	Min	54.0	12.3	7.4	8.3	52.2	15.8	10.9	11.8	53.4	18.9	14.0	14.9
	AVG	67.7	30.0	8.7	11.0	65.9	33.5	12.2	14.5	67.1	36.6	15.3	17.6
	Max	79.5	50.1	12.3	16.0	77.7	47.1	9.3	13.0	80.1	49.7	11.9	15.6
9-Nov-21	Min	52.2	14.7	9.8	10.7	50.4	11.7	6.8	9.8	46.7	14.3	9.4	10.3
	AVG	65.9	32.4	11.1	13.4	64.1	29.4	8.1	11.4	63.4	32.0	10.7	13.0
	Max	80.7	47.1	9.3	13.0	79.6	49.5	11.7	15.4	75.6	35.6	8.5	12.2
10-Nov-21	Min	53.4	11.7	6.8	7.7	52.3	25.2	17.5	10.1	41.4	11.3	6.4	6.9
	AVG	67.1	29.4	8.1	10.4	66.0	37.4	14.6	12.8	58.5	23.5	7.4	9.5
	Max	72.6	42.0	15.2	18.9	70.8	49.2	11.4	15.1	73.2	42.8	15.0	18.7
11-Nov-21	Min	45.3	16.4	12.6	13.6	43.5	13.8	8.9	9.8	36.0	23.5	12.3	13.4
	AVG	59.0	29.2	13.9	16.3	57.2	31.5	10.2	12.5	54.6	33.2	13.7	16.1
	Max	73.9	48.6	10.8	14.5	72.1	50.5	12.7	16.4	74.5	52.9	15.1	18.8
12-Nov-21	Min	46.6	13.2	8.3	9.2	44.8	15.1	10.2	11.1	37.3	17.5	12.6	13.5
	AVG	60.3	30.9	9.6	11.9	58.5	32.8	11.5	13.8	55.9	35.2	13.9	16.2
	Max	77.7	48.9	11.1	14.8	79.5	51.2	13.4	17.1	79.5	52.8	15.0	18.7
13-Nov-21	Min	50.4	13.5	8.6	9.5	52.2	15.8	10.9	11.8	45.8	17.4	11.0	13.4
	AVG	64.1	31.2	9.9	12.2	65.9	33.5	12.2	14.5	62.7	35.1	13.0	16.1
	Max	79.1	47.2	7.4	12.1	77.3	45.6	14.3	18.0	79.7	49.3	11.5	15.2
14-Nov-21	Min	51.8	11.8	6.9	11.9	50.0	16.2	11.3	12.7	52.4	13.9	9.0	9.9
	AVG	65.5	29.5	7.2	12.0	63.7	30.9	12.8	15.4	66.1	31.6	10.3	12.6
	Max	81.2	52.4	14.6	18.3	79.4	53.4	12.5	16.2	81.8	60.2	19.2	22.9
15-Nov-21	Min	53.9	17.0	12.1	13.0	52.1	38.0	17.2	10.9	54.5	24.8	19.9	17.6
	AVG	67.6	34.7	13.4	15.7	65.8	45.7	13.5	13.6	68.2	42.5	14.7	20.3

16-Nov-21	Max	80.2	53.4	15.6	19.3	78.4	54.7	18.5	22.2	80.8	52.7	14.9	18.6
16-Nov-21	Min	52.9	18.0	13.1	14.0	51.1	31.1	12.8	16.9	53.5	17.3	12.4	13.3
	AVG	66.6	35.7	14.4	16.7	64.8	42.9	15.7	19.6	67.2	35.0	13.7	16.0
	Max	78.9	49.6	14.8	18.5	80.7	51.1	13.3	17.0	79.4	47.2	7.4	11.1
17-Nov-21	Min	51.6	14.2	9.3	13.2	53.4	15.7	10.8	11.7	52.1	11.8	6.9	5.8
16-Nov-21 17-Nov-21 18-Nov-21 19-Nov-21 20-Nov-21 21-Nov-21 23-Nov-21 24-Nov-21 25-Nov-21 26-Nov-21 27-Nov-21 28-Nov-21 29-Nov-21 30-Nov-21	AVG	65.3	31.9	12.1	15.9	67.1	33.4	12.1	14.4	65.8	29.5	7.2	8.5
	Max	71.3	49.7	11.9	15.6	69.5	47.9	10.1	13.8	71.9	49.7	11.9	15.6
18-Nov-21	Min	44.0	14.3	9.4	10.3	42.2	12.5	7.6	10.3	44.6	14.3	9.4	10.3
	AVG	57.7	32.0	10.7	13.0	55.9	30.2	8.9	12.1	58.3	32.0	10.7	13.0
	Max	81.7	52.2	17.4	21.1	79.8	51.5	16.7	20.4	81.9	54.5	16.7	20.4
19-Nov-21	Min	48.6	21.3	15.4	19.4	52.5	21.1	16.2	15.1	54.6	19.1	14.2	15.1
	AVG	65.2	36.8	16.4	20.3	66.2	36.3	12.2	17.8	68.3	36.8	15.5	17.8
	Max	80.3	48.6	10.8	14.5	78.5	50.9	13.1	16.8	80.9	48.2	10.4	14.1
20-Nov-21	Min	53.0	13.2	8.3	9.2	51.2	15.5	10.6	11.5	53.6	12.8	7.9	8.8
	AVG	66.7	30.9	9.6	11.9	64.9	33.2	11.9	14.2	67.3	30.5	9.2	11.5
	Max	74.3	47.6	9.8	13.5	72.5	50.9	13.1	16.8	74.9	53.3	11.0	14.7
21-Nov-21	Min	47.0	12.2	7.3	8.2	45.2	15.5	10.6	11.5	47.6	17.9	8.7	8.1
	AVG	60.7	29.9	8.6	10.9	58.9	33.2	11.9	14.2	61.3	35.6	9.8	11.4
	Max	79.6	52.9	15.1	18.8	77.8	42.6	14.8	36.5	80.2	47.5	15.2	30.9
22-Nov-21	Min	52.3	17.5	12.6	13.5	50.5	22.2	17.3	31.2	52.9	22.1	12.9	24.3
	AVG	66.0	35.2	13.9	16.2	64.2	32.4	16.1	33.9	66.6	34.8	14.0	27.6
23-Nov-21	Max	77.4	47.9	13.2	31.7	75.6	47.3	19.0	22.7	78.0	56.4	18.6	22.3
	Min	50.1	12.5	11.2	26.4	48.3	17.3	15.4	17.4	50.7	21.0	16.1	17.0
	AVG	63.8	30.2	12.2	29.1	62.0	32.3	17.2	20.0	64.4	38.7	17.4	19.7
	Max	78.3	56.7	14.5	18.2	76.5	54.9	17.1	18.9	78.9	57.3	19.5	23.2
24-Nov-21	Min	51.0	21.3	16.4	36.8	49.2	19.5	14.6	13.6	51.6	21.9	17.0	17.9
	AVG	64.7	39.0	14.2	27.5	62.9	37.2	15.9	16.3	65.3	39.6	18.3	20.6
	Max	74.6	47.8	10.0	13.7	70.4	48.8	11.0	14.7	69.5	47.9	10.1	13.8
25-Nov-21	Min	47.3	12.4	7.5	8.4	43.1	13.4	8.5	9.4	42.2	12.5	7.6	8.5
	AVG	61.0	30.1	8.8	11.1	56.8	31.1	9.7	12.1	55.9	30.2	8.8	11.2
	Max	79.8	46.2	15.4	19.1	78.7	43.3	15.5	19.2	81.1	41.1	15.8	30.2
26-Nov-21	Min	52.5	10.8	10.6	13.8	51.4	17.9	13.0	13.9	46.9	21.7	10.5	24.9
	AVG	66.2	28.5	13.0	16.5	65.1	30.6	14.3	16.6	64.0	31.4	13.2	27.6
	Max	76.4	45.8	8.0	11.7	74.6	53.0	15.2	18.9	75.4	53.8	16.0	19.7
27-Nov-21	Min	49.1	10.4	5.5	6.4	47.3	17.6	12.7	13.6	48.1	18.4	13.5	14.4
	AVG	62.8	28.1	6.8	9.1	61.0	35.3	14.0	16.3	61.8	36.1	14.8	17.1
	Max	77.3	50.1	12.3	35.2	75.5	53.9	16.1	19.8	77.9	56.3	14.0	17.7
28-Nov-21	Min	49.0	14.7	9.8	29.9	48.2	18.5	13.6	14.5	50.6	20.9	11.7	11.1
	AVG	63.2	32.4	11.1	32.6	61.9	36.2	14.9	17.2	64.3	38.6	12.8	14.4
	Max	78.6	51.4	13.6	17.3	76.8	55.2	17.4	11.2	79.2	57.6	15.3	19.0
29-Nov-21	Min	50.3	16.0	11.1	12.0	49.5	19.8	14.9	5.9	51.9	22.2	13.0	12.4
	AVG	64.5	33.7	12.4	14.7	63.2	37.5	16.2	8.6	65.6	39.9	14.1	15.7
	Max	81.4	54.2	16.4	32.0	79.6	58.0	17.5	12.1	82.0	60.4	18.1	33.5
30-Nov-21	Min	53.1	18.8	13.9	26.7	52.3	22.6	17.7	6.8	54.7	25.0	15.8	26.9
30-1100-21	AVG	67.3	36.5	15.2	29.4	66.0	40.3	17.6	9.5	68.4	42.7	16.9	30.2

	ADANI POWER MAHARASHTRA LIMITED												
				5 x 66	0 MW 0	'hermal	Power	Plant , T	'irora, Go	ondia			
	Station:	AAQMS '	1 AAQMS	2 AAQMS	53	Report T	ype: Mear	n	Time Bas	e: 1Hr	Mo	onth- Dec	·21
		AAQMS 1 AAQMS 2 AAQMS 3 AAQMS-1 (Labour Hutment) PM 10 PM 2.5 SO2 NOx ug/m3 ug/m3 ug/m3 ug/m3 76.4 41.0 3.2 6.9 49.1 5.6 4.7 1.6 62.8 23.3 4.0 4.3 78.3 42.3 4.5 8.2 51.0 6.9 2.0 2.9 64.7 24.6 3.3 5.6 74.9 43.2 5.4 9.1 47.6 7.8 2.9 3.8 61.3 25.5 4.2 6.5 79.8 40.2 2.4 6.1 52.5 4.8 4.5 1.8 66.2 22.5 3.5 4.0 75.8 42.2 4.4 8.1 48.5 6.8 8.0 2.8 62.2 24.5 6.2 5.5					AAQMS-2 (0	China Colon	y)		AAQMS-3 ((Gate no -2)	
Month		PM 10	PM 2.5	S02	NOx	PM10	PM2.5	S02	NOX	PM10	PM2.5	S02	NOX
Station: AA Month PM 1-Dec-21 Max 7 Month AVG 66 2-Dec-21 Min 5 AVG 66 2-Dec-21 Min 5 AVG 66 3-Dec-21 Min 4 AVG 66 6 3-Dec-21 Min 4 AVG 66 5 3-Dec-21 Min 4 AVG 66 5 3-Dec-21 Min 4 AVG 66 5 3-Dec-21 Min 4 AVG 66 6 3-Dec-21 Min	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ppm	
	Max	76.4	41.0	3.2	6.9	74.6	55.0	17.2	20.9	77.0	55.4	17.6	21.3
1-Dec-21	Min	49.1	5.6	4.7	1.6	47.3	19.6	14.7	15.6	49.7	20.0	15.1	16.0
	AVG	62.8	23.3	4.0	4.3	61.0	37.3	16.0	18.3	63.4	Month- Dec-2I AAQMS-3 (base of colspan="2") PM2.5 SO2 NOX ug/m3 ug/m3 ppm 55.4 17.6 21.3 20.0 15.1 16.0 37.7 16.4 18.7 55.3 17.5 21.2 19.9 15.0 15.9 37.6 16.3 18.6 53.9 16.1 19.8 18.5 13.6 14.5 36.2 14.9 17.2 58.8 21.0 22.1 50.8 13.0 16.7 36.2 14.9 17.2 58.8 21.0 22.1 50.8 13.0 16.7 33.1 11.8 14.1 49.1 11.3 15.0 13.7 8.8 9.7 31.4 10.1 12.4 48.0 10.2 13.9 12.6 7.7 <th>18.7</th>	18.7	
-	Max	78.3	42.3	4.5	8.2	76.5	54.9	17.1	20.8	78.9	55.3	17.5	21.2
2-Dec-21	Min	51.0	6.9	2.0	2.9	49.2	19.5	14.6	15.5	51.6	19.9	15.0	15.9
	AVG	64.7	24.6	3.3	5.6	62.9	37.2	15.9	18.2	65.3	37.6	16.3	18.6
	Max	74.9	43.2	5.4	9.1	73.1	53.5	15.7	19.4	75.5	53.9	16.1	19.8
3-Dec-21	Min	47.6	7.8	2.9	3.8	45.8	18.1	13.2	14.1	48.2	18.5	13.6	14.5
	AVG	61.3	25.5	4.2	6.5	59.5	35.8	14.5	16.8	61.9	36.2	14.9	17.2
	Max	79.8	40.2	2.4	6.1	78.0	58.4	20.6	24.3	80.4	58.8	21.0	24.7
4-Dec-21	Min	52.5	4.8	4.5	1.8	50.7	23.0	18.1	19.0	53.1	23.4	18.5	19.4
5-Dec-21	AVG	66.2	22.5	3.5	4.0	64.4	40.7	19.4	21.7	66.8	41.1	19.8	22.1
-	Max	75.8	42.2	4.4	8.1	74.0	58.4	20.6	24.3	76.4	50.8	13.0	16.7
5-Dec-21	Min	48.5	6.8	8.0	2.8	46.7	23.0	18.1	19.0	49.1	15.4	10.5	11.4
	AVG	62.2	24.5	6.2	5.5	60.4	40.7	19.4	21.7	62.8	33.1	11.8	14.1
	Max	71.1	49.5	11.7	15.4	69.3	48.7	10.9	14.6	71.7	49.1	11.3	15.0
6-Dec-21	Min	43.8	14.1	9.2	10.1	42.0	13.3	8.4	11.3	44.4	13.7	8.8	9.7
		57.5	31.8	10.5	12.8	55.7	31.0	9.7	13.0	58.1	31.4	10.1	12.4
	AVG	77.6	46.8	9.0	12.7	75.8	50.2	12.4	16.1	78.2	48.0	10.2	13.9
7-Dec-21	///dX	48.3	11.4	85	7.4	48.5	14.8	9.9	18.4	50.9	12.6	77	8.6
	//////	63.0	29.1	8.8	10.1	62.2	32.5	11.2	17.3	64.6	30.3	9.0	11 3
	AVG	80.6	47.0	9.0	12 9	78.8	50.5	12.7	16.4	80.0	54.3	16.5	20.2
8-Dec-21	Max	53 3	11.6	6.7	7.6	51.5	15.1	10.2	11 1	52.7	18.9	14.0	14.9
		67.0	29.3	7.9	10.3	65.2	32.8	11.5	13.8	66.4	36.6	15.3	17.6
	AVG	74.9	45.5	7.5	11.4	73.1	42.5	47	8.4	75.5	45.1	73	11.0
9-Dec-21	X6M	47.6	10.1	5.2	61	45.8	71	22	9.8	42.1	97	4.8	5.7
	/viin	613	27.8	6.5	8.8	59.5	24.8	3.5	9.0	58.8	27.4	61	8.4
	AVG	75.3	41.0	3.2	6.9	73.5	52.9	15.1	18.8	75.9	53.3	15.5	19.2
10-Dec-21	X6/VI	48.0	14.0	9.1	1.6	46.2	17.5	12.6	13.5	48.6	17.9	13.0	13.0
	/viin		27.5	6.2	4.3	59.9	35.2	13.9	16.2	62.3	35.6	14.3	16.6
	AVG	72.5	31.9	5.1	8.8	70.7	49.1	11 3	15.0	73.1	42.7	14.9	18.6
11-Dec-21	X6W	45.2	63	25	35	43.4	13.7	8.8	97	35.9	23.4	12.2	13.3
		58.9	19.1	3.8	6.2	571	31.4	10.1	12.4	54.5	33.1	13.6	16.0
	AVG	77.6	44.0	62	9.9	75.8	55.2	17.4	21.1	78.2	55.6	17.8	21.5
12-Dec-21	X6W	503	82	33	4.6	48.5	19.8	14.9	15.8	50.9	20.2	13.3	16.2
	//////	64.0	26.1	4.8	73	62.2	37.5	16.2	18.5	64.6	37.9	15.6	18.9
	AVG	74.6	42.0	4.2	7.9	76.4	51.2	13.4	17.1	78.2	51.2	13.4	17 1
13-Dec-21	X6IVI	473	14.2	93	2.5	, 0.4 До 1	15.8	10.9	11.8	50.2	15.8	10.9	11.8
		61 0	28.1	6.8	53	62.8	33.5	12.2	14.5	64.6	33.5	12.2	14.5
	AVG	78.0	<u>20.1</u> <u>41.2</u>	3.4	71	77 1	25.5 45.6	1/ 3	18.0	79.5	 	9.5	17.2
14-Dec-21	Max	51.6	5.9	10	1.1	10.9	16.2	11 3	12.0	500	11 0	7.0	70
14-060-21	//lin	653	27.5	27	1.0	49.0 63.5	30.0	12.9	15 /	52.2 65.0	20.6	7.0 8 3	10.6
	AVG	71 0	2.5	2./ 1/ /	4.2	70.0	JU.9 AE 6	12.0	12.4	72 4	29.0	0.0	12.6
15-Dec-21	Max	/1.0	15.6	14.4	12.0	10.0	16.2	14.2	10.0	/ 2.4 / E 1	40.7	6.9	7 7
15-Dec-21	Min	44.5	0.01	17.4	12.8	42.7	10.2	12.0	12.7	40.1	20.0	0.4	10.0
	AVG	50.Z	20.4	1.5.1	19.5	50.4	50.9	12.8	15.4	20.8	29.0	1.1	10.0

	Max	71.8	41.2	14.4	18.1	74.6	53.0	15.2	18.9	77.0	42.7	11.9	15.6
16-Dec-21	Min	44.5	15.6	11.8	12.8	47.3	17.6	12.7	13.6	49.7	12.3	7.4	10.3
	AVG	58.2	28.4	13.1	15.5	61.0	35.3	14.0	16.3	63.4	27.5	9.7	13.0
	Max	77.9	47.3	20.5	24.2	80.7	59.1	21.3	25.0	83.1	49.3	11.5	15.2
17-Dec-21	Min	50.6	21.7	17.9	18.9	53.4	23.7	18.8	19.7	55.8	13.9	9.0	9.9
	AVG	64.3	34.5	19.2	21.6	67.1	41.4	20.1	22.4	69.5	31.6	10.3	12.6
	Max	78.8	45.8	15.0	18.7	77.0	56.4	18.6	22.3	79.4	56.8	19.0	22.7
18-Dec-21	Min	51.5	15.4	10.5	13.4	49.7	21.0	16.1	17.0	52.1	21.4	16.5	17.4
	AVG	65.2	30.6	12.8	16.1	63.4	38.7	17.4	19.7	65.8	39.1	17.8	20.1
	Max	79.1	43.9	12.1	14.8	76.3	54.7	16.9	20.6	78.7	57.1	14.8	18.5
19-Dec-21	Min	50.8	8.5	3.6	9.5	49.0	19.3	14.4	18.3	51.4	21.7	12.5	13.9
	AVG	65.0	26.2	7.9	12.2	62.7	37.0	15.7	19.5	65.1	39.4	13.6	16.2
	Max	74.9	42.7	10.9	13.6	72.1	50.5	12.7	16.4	74.5	52.9	10.6	14.3
20-Dec-21	Min	46.6	7.3	2.4	8.3	44.8	15.1	10.2	14.1	47.2	17.5	8.3	9.7
	AVG	60.8	25.0	6.7	11.0	58.5	32.8	11.5	15.3	60.9	35.2	9.4	12.0
	Max	77.8	42.6	10.8	13.5	75.0	53.4	15.6	19.3	77.4	55.8	13.5	17.2
21-Dec-21	Min	49.5	7.2	2.3	8.2	47.7	18.0	13.1	17.0	50.1	20.4	11.2	12.6
	AVG	63.7	24.9	6.6	10.9	61.4	35.7	14.4	18.2	63.8	38.1	12.3	14.9
	Max	78.5	43.2	11.4	14.1	75.7	54.1	16.3	20.0	78.1	56.5	14.2	17.9
22-Dec-21	Min	50.2	7.8	2.9	8.8	48.4	18.7	13.8	17.7	50.8	21.1	11.9	13.3
	AVG	64.4	25.5	7.2	11.5	62.1	36.4	15.1	18.9	64.5	38.8	13.0	15.6
	Max	82.7	47.2	15.4	18.1	79.9	58.3	20.5	24.2	82.3	57.7	15.4	19.1
23-Dec-21	Min	54.4	11.8	6.9	12.8	52.6	22.9	18.0	21.9	55.0	22.3	13.1	14.5
	AVG	68.6	29.5	11.2	15.5	66.3	40.6	19.3	23.1	68.7	40.0	14.2	16.8
	Max	78.8	34.2	2.4	5.1	76.0	54.4	16.6	20.3	78.4	56.8	14.5	18.2
24-Dec-21	Min	50.5	22.0	17.1	4.2	48.7	19.0	14.1	18.0	51.1	21.4	12.2	13.6
	AVG	64.7	28.1	9.8	4.7	62.4	36.7	15.4	19.2	64.8	39.1	13.3	15.9
	Max	80.6	33.4	5.8	9.5	78.8	57.2	19.4	23.1	81.2	59.6	17.3	21.0
25-Dec-21	Min	37.0	22.0	17.1	4.2	51.5	21.8	16.9	17.8	53.9	24.2	15.0	14.4
	AVG	58.8	27.7	11.5	6.9	65.2	39.5	18.2	20.5	67.6	41.9	16.2	17.7
	Max	76.8	49.6	11.8	15.5	75.0	53.4	15.6	19.3	77.4	55.8	13.5	17.2
26-Dec-21	Min	38.8	14.2	9.3	10.2	47.7	18.0	13.1	14.0	50.1	20.4	11.2	10.6
	AVG	57.8	31.9	10.6	12.9	61.4	35.7	14.4	16.7	63.8	38.1	12.3	13.9
	Max	81.2	36.0	4.2	6.9	78.4	56.8	19.0	22.7	80.8	59.2	16.9	20.6
27-Dec-21	Min	52.9	24.8	19.9	1.6	51.1	21.4	16.5	20.4	53.5	23.8	14.6	16.0
	AVG	67.1	30.4	12.1	4.3	64.8	39.1	17.8	21.6	67.2	41.5	15.7	18.3
	Max	83.0	45.8	8.0	11.7	81.2	56.6	18.8	22.5	83.6	59.0	16.7	20.4
28-Dec-21	Min	39.4	10.4	5.5	6.4	53.9	21.2	16.3	17.2	56.3	23.6	14.4	13.8
	AVG	61.2	28.1	6.8	9.1	67.6	38.9	17.6	19.9	70.0	41.3	15.6	17.1
	Max	79.2	42.0	4.2	7.9	77.4	55.8	18.0	21.7	79.8	58.2	15.9	19.6
29-Dec-21	Min	41.2	6.6	1.7	2.6	50.1	20.4	15.5	16.4	52.5	22.8	13.6	15.0
	AVG	60.2	24.3	3.0	5.3	63.8	38.1	16.8	19.1	66.2	40.5	14.7	17.3
	Max	76.5	41.3	9.5	12.2	73.7	52.1	14.3	18.0	76.1	54.5	12.2	15.9
30-Dec-21	Min	48.2	22.0	17.1	6.9	46.4	16.7	11.8	15.7	48.8	19.1	9.9	11.3
	AVG	62.4	31.7	13.3	9.6	60.1	34.4	13.1	16.9	62.5	36.8	11.0	13.6
	Max	78.3	41.1	3.3	7.0	76.5	56.8	19.0	22.7	78.9	57.3	15.0	18.7
31-Dec-21	Min	34.7	20.2	15.3	1.7	49.2	21.4	16.5	17.4	51.6	21.9	12.7	12.1
	AVG	56.5	30.7	9.3	4.4	62.9	39.1	17.8	20.1	65.3	39.6	13.9	15.4

	ADANI POWER MAHARASHTRA LIMITED														
				5 x 66	50 MW T	'hermal	Power	Plant , T	'irora, Go	ondia					
	Station:	AAQMS '	1 AAQMS	2 AAQMS	53	Report T	уре: Меа	n	Time Bas	e: 1Hr	M	Month- Jan-22			
		AA	QMS-1 (Lal	bour Hutme	nt)		AAQMS-2 (China Colon	y)		AAQMS-3 (Gate no -2)			
Month		PM 10	PM 2.5	S02	NOx	PM10	PM2.5	S02	NOX	PM10	PM2.5	S02	NOX		
MonthMax1-Jan-22MinAVGMax1-Jan-22MinAVGMax2-Jan-22MinAVGMax3-Jan-22MinAVGMax4-Jan-22MinAVGMax5-Jan-22MinAVGMax6-Jan-22MinAVGMax7-Jan-22MinAVGMax7-Jan-22MinAVGMax7-Jan-22MinAVGMax9-Jan-22MinAVGMax9-Jan-22MinAVGMax10-Jan-22MinAVGMax11-Jan-22MinAVGMax12-Jan-22MinAVGMax13-Jan-22MinAVGMax14-Jan-22MinAVGMax15-Jan-22MinAVGMax15-Jan-22Min	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ppm			
	Max	79.8	38.2	13.0	16.7	78.0	47.2	9.4	13.1	80.4	57.8	20.0	23.7		
1-Jan-22	Min	52.5	2.8	7.6	11.4	50.7	11.8	6.9	7.8	53.1	22.4	17.5	18.4		
	AVG	66.2	20.5	10.3	14.1	64.4	29.5	8.2	10.5	66.8	40.1	18.8	21.1		
	Max	77.0	39.2	16.2	19.9	75.2	53.6	15.8	19.5	77.6	54.0	16.2	19.9		
2-Jan-22	Min	49.7	3.8	5.6	14.6	47.9	18.2	13.3	14.2	50.3	18.6	13.7	14.6		
	AVG	63.4	21.5	10.9	17.3	61.6	35.9	14.6	16.9	64.0	36.3	15.0	17.3		
	Max	72.9	39.0	12.4	16.1	71.1	51.5	13.7	17.4	73.5	51.9	14.1	17.8		
3-Jan-22	Min	45.6	3.6	6.6	10.8	43.8	16.1	11.2	12.1	46.2	16.5	11.6	12.5		
3-Jan-22 M 4-Jan-22 M 4-Jan-22 M 5-Jan-22 M 6-Jan-22 M 7-Jan-22 M 7-Jan-22 M 8-Jan-22 M 9-Jan-22 M 9-Jan-22 M An A	AVG	59.3	21.3	9.5	13.5	57.5	33.8	12.5	14.8	59.9	34.2	12.9	15.2		
	Max	75.8	34.2	13.0	16.7	74.0	54.4	16.6	20.3	76.4	54.8	17.0	20.7		
4-Jan-22	Min	48.5	5.4	3.4	11.4	46.7	19.0	14.1	15.0	49.1	19.4	14.5	15.4		
	AVG	62.2	19.8	8.2	14.1	60.4	36.7	15.4	17.7	62.8	37.1	15.8	18.1		
	Max	79.1	37.5	17.8	21.5	77.3	51.7	13.9	17.6	79.7	54.1	16.3	20.0		
5-Jan-22	Min	51.8	2.1	4.7	16.2	50.0	16.3	11.4	12.3	52.4	18.7	13.8	14.7		
	AVG	65.5	19.8	11.3	18.9	63.7	34.0	12.7	15.0	66.1	36.4	15.1	17.4		
6-Jan-22	Max	77.2	38.9	16.2	19.9	75.4	54.8	17.0	20.7	77.8	55.2	17.4	21.1		
	Min	49.9	3.5	7.8	14.6	48.1	19.4	14.5	17.4	50.5	19.8	14.9	15.8		
	AVG	63.6	21.2	12.0	17.3	61.8	37.1	15.8	19.1	64.2	37.5	16.2	18.5		
7-Jan-22	Max	81.3	38.2	15.4	19.1	79.5	53.9	16.1	19.8	81.9	51.7	13.9	17.6		
	Min	52.0	2.8	2.5	13.8	52.2	18.5	13.6	18.4	54.6	16.3	11.4	12.3		
	AVG	66.7	20.5	9.0	16.5	65.9	36.2	14.9	19.1	68.3	34.0	12.7	15.0		
	Max	79.8	46.2	14.7	18.4	78.0	49.7	11.9	15.6	79.2	54.3	16.5	20.2		
8-Jan-22	Min	52.5	10.8	5.9	13.1	50.7	14.3	9.4	10.3	51.9	18.9	14.0	14.9		
	AVG	66.2	28.5	10.3	15.8	64.4	32.0	10.7	13.0	65.6	36.6	15.3	17.6		
	Max	78.0	48.6	10.8	14.5	76.2	45.6	7.8	11.5	78.6	48.2	10.4	14.1		
7-Jan-22 8-Jan-22 9-Jan-22	Min	50.7	13.2	13.2	9.2	48.9	10.2	5.3	9.8	45.2	12.8	7.9	8.8		
	AVG	64.4	30.9	12.0	11.9	62.6	27.9	6.6	10.7	61.9	30.5	9.2	11.5		
	Max	73.6	32.0	15.8	19.5	71.8	51.2	13.4	17.1	74.2	51.6	13.8	17.5		
10-Jan-22	Min	46.3	10.9	6.0	14.2	44.5	15.8	10.9	11.8	46.9	16.2	11.3	12.2		
	AVG	60.0	21.5	10.9	16.9	58.2	33.5	12.2	14.5	60.6	33.9	12.6	14.9		
	Max	75.8	45.2	18.4	22.1	74.0	52.4	14.6	18.3	76.4	46.0	18.2	21.9		
11-Jan-22	Min	48.5	19.6	15.8	16.8	46.7	17.0	12.1	13.0	39.2	26.7	15.5	16.6		
	AVG	62.2	32.4	17.1	19.5	60.4	34.7	13.4	15.7	57.8	36.4	16.9	19.3		
	Max	79.8	38.2	14.2	17.9	78.0	57.4	19.6	23.3	80.4	57.8	20.0	23.7		
12-Jan-22	Min	52.5	2.8	5.2	12.6	50.7	22.0	17.1	18.0	53.1	22.4	15.5	18.4		
	AVG	66.2	20.5	9.7	15.3	64.4	39.7	18.4	20.7	66.8	40.1	17.8	21.1		
	Max	80.1	37.5	15.2	18.9	81.9	51.2	13.4	17.1	76.8	55.2	17.4	21.1		
13-Jan-22	Min	52.8	2.1	4.8	13.6	54.6	15.8	10.9	11.8	49.5	19.8	14.9	15.8		
	AVG	66.5	19.8	10.0	16.3	68.3	33.5	12.2	14.5	63.2	37.5	16.2	18.5		
	Max	77.9	35.5	12.3	16.0	79.7	51.2	13.4	17.1	76.7	55.1	17.3	21.0		
14-Jan-22	Min	50.6	2.1	6.8	10.7	52.4	15.8	10.9	11.8	49.4	19.7	14.8	15.7		
	AVG	64.3	18.8	9.6	13.4	66.1	33.5	12.2	14.5	63.1	37.4	16.1	18.4		
	Max	75.2	32.6	15.2	18.9	77.0	51.2	13.4	17.1	74.0	52.4	14.6	18.3		
15-Jan-22	Min	47.9	2.8	9.7	13.6	49.7	15.8	10.9	11.8	46.7	17.0	12.1	13.0		
	AVG	61.6	17.7	12.5	16.3	63.4	33.5	12.2	14.5	60.4	34.7	13.4	15.7		

		1			1								
	Max	79.8	37.2	16.0	19.7	81.6	51.2	13.4	17.1	78.6	57.0	19.2	22.9
16-Jan-22	Min	52.5	1.8	5.1	14.4	54.3	15.8	10.9	11.8	51.3	21.6	16.7	17.6
	AVG	66.2	19.5	10.6	17.1	68.0	33.5	12.2	14.5	65.0	39.3	18.0	20.3
	Max	81.4	37.4	14.0	17.7	83.2	51.2	13.4	17.1	80.2	58.6	20.8	24.5
17-Jan-22	Min	54.1	2.0	4.9	12.4	55.9	15.8	10.9	11.8	52.9	23.2	18.3	19.2
	AVG	67.8	19.7	9.5	15.1	69.6	33.5	12.2	14.5	66.6	40.9	19.6	21.9
	Max	77.4	34.0	13.8	17.5	79.2	51.2	13.4	17.1	76.2	54.6	16.8	20.5
18-Jan-22	Min	50.1	2.4	8.3	12.2	51.9	15.8	10.9	11.8	48.9	19.2	14.3	15.2
	AVG	63.8	18.2	11.1	14.9	65.6	33.5	12.2	14.5	62.6	36.9	15.6	17.9
	Max	79.0	56.4	18.6	22.3	80.8	51.2	13.4	17.1	77.8	56.2	18.4	22.1
19-Jan-22	Min	51.7	21.0	14.1	17.0	53.5	15.8	10.9	11.8	50.5	20.8	15.9	16.8
	AVG	65.4	38.7	16.4	19.7	67.2	33.5	12.2	14.5	64.2	38.5	17.2	19.5
	Max	77.6	36.0	17.2	20.9	75.8	55.2	17.4	21.1	78.2	55.6	17.8	21.5
20-Jan-22	Min	50.3	1.6	4.3	15.6	48.5	19.8	14.9	15.8	50.9	20.2	13.3	16.2
	AVG	64.0	18.8	10.8	18.3	62.2	37.5	16.2	18.5	64.6	37.9	15.6	18.9
	Max	74.3	39.1	7.3	10.0	71.5	49.9	12.1	15.8	73.9	52.3	10.0	13.7
21-Jan-22	Min	66.0	3.7	2.2	4.7	44.2	14.5	9.6	13.5	46.6	16.9	7.7	9.1
	AVG	70.2	21.4	4.8	7.4	57.9	42.2	10.9	14.7	60.3	34.6	8.8	11.4
	Max	76.6	34.0	13.8	17.5	78.4	41.0	3.2	6.9	75.4	53.8	16.0	19.7
22-Jan-22	Min	49.3	8.9	4.8	12.2	51.1	5.6	0.7	1.6	48.1	18.4	13.5	14.4
	AVG	63.0	21.5	9.3	14.9	64.8	23.3	2.0	4.3	61.8	36.1	14.8	17.1
	Max	77.9	32.7	15.4	18.1	75.1	41.0	3.2	6.9	77.5	52.9	10.6	14.3
23-Jan-22	Min	49.6	5.4	4.2	12.8	47.8	5.6	0.7	4.6	50.2	17.5	8.3	9.7
	AVG	63.8	19.1	9.8	15.5	61.5	23.3	2.0	5.8	63.9	35.2	9.4	12.0
	Max	72.9	37.2	15.4	18.1	70.1	48.5	10.7	14.4	72.5	50.9	8.6	12.3
24-Jan-22	Min	44.6	1.8	3.1	12.8	42.8	13.1	8.2	12.1	45.2	15.5	6.3	7.7
	AVG	58.8	19.5	9.3	15.5	56.5	30.8	9.5	13.3	58.9	33.2	7.4	10.0
	Max	78.4	41.2	13.4	17.1	76.6	55.0	17.2	20.9	79.0	57.4	15.1	18.8
25-Jan-22	Min	41.2	15.2	10.3	11.8	49.3	19.6	14.7	15.6	51.7	22.0	12.8	12.2
	AVG	59.8	28.2	11.9	14.5	63.0	37.3	16.0	18.3	65.4	39.7	13.9	15.5
	Max	76.8	39.6	11.8	15.5	75.0	53.4	15.6	19.3	77.4	55.8	13.5	17.2
26-Jan-22	Min	46.6	14.2	9.3	10.2	47.7	18.0	13.1	14.0	50.1	20.4	11.2	10.6
	AVG	61.7	26.9	16.0	12.9	61.4	35.7	14.4	16.7	63.8	38.1	12.3	13.9
	Max	76.9	34.2	13.6	17.3	78.7	51.2	13.4	17.1	75.7	54.1	16.3	20.0
27-Jan-22	Min	49.6	5.2	2.7	12.0	51.4	15.8	10.9	11.8	48.4	18.7	13.8	14.7
	AVG	63.3	19.7	8.2	14.7	65.1	33.5	12.2	14.5	62.1	36.4	15.1	17.4
	Max	79.3	46.7	17.5	21.2	81.1	41.2	3.4	7.1	78.1	56.5	18.7	22.4
28-Jan-22	Min	52.0	11.3	4.4	15.9	53.8	5.8	0.9	1.8	50.8	21.1	16.2	17.1
	AVG	65.7	29.0	11.0	18.6	67.5	23.5	2.2	4.5	64.5	38.8	17.5	19.8
	Max	71.9	40.3	2.5	6.2	70.1	49.5	11.7	15.4	72.5	49.9	12.1	15.8
29-Jan-22	Min	44.6	14.9	10.0	1.9	42.8	14.1	9.2	10.1	45.2	14.5	7.6	10.5
	AVG	58.3	27.6	6.3	4.1	56.5	31.8	10.5	12.8	58.9	32.2	9.9	13.2
	May	72.9	37.7	15.9	18.6	70.1	48.5	10.7	14.4	72.5	50.9	8.6	12.3
30-Jan-22	Min	44.6	12.3	7.4	13.3	42.8	13.1	8.2	12.1	45.2	15.5	6.3	7.7
	A\/G	58.8	25.0	11.7	16.0	56.5	30.8	9.5	13.3	58.9	33.2	7.4	10.0
	May	76.6	39.4	16.2	19.9	74.8	50.2	12.4	16.1	77.2	55.6	13.3	17.0
31-Jan-22	Mio	44.0	10.0	5.1	14.6	47.5	14.8	9.9	10.8	49.9	20.2	11.0	10.4
		60.3	24.7	10.7	17.3	61.2	32.5	11.2	13.5	63.6	37.9	12.1	13.7
	AVG	00.5	L T./	10.7	د	01.2	22.2	11.6	ر.ر.	0.0	21.2	16.1	، ر.

	ADANI POWER MAHARASHTRA LIMITED													
				5 x 66	50 MW T	Thermal	Power	Plant , T	'irora, Go	ondia				
	Station:	AAQMS '	1 AAQMS	2 AAQMS	53	Report T	уре: Меа	n	Time Bas	e: 1Hr	Mo	onth- Feb-	22	
		AA	QMS-1 (Lal	bour Hutme	nt)		AAQMS-2 (0	China Colon	y)		Jia Month-Fet AAQMS-3 (Gate no -2 PM10 PM2.5 SO2 Pg/m3 ug/m3 ug/m3 85.6 33.0 14.8 58.3 10.2 5.3 72.0 21.6 10.1 80.1 36.5 13.1 52.8 11.2 6.3 66.5 23.9 9.7 86.6 35.0 12.8 59.3 5.4 4.5 73.0 20.2 8.7 80.4 38.8 11.0 53.1 13.4 8.5 66.8 26.1 19.8 86.0 41.2 13.4 58.7 15.8 10.9 72.4 28.5 12.2 81.3 38.8 12.0 54.0 13.4 8.5 67.7 26.1 10.3 85.3 35.1 12.7 58.0 4.3 4.6 71.7 19.7			
Station: A/ Month F 1-Feb-22 Min AVG AVG 2-Feb-22 Min AVG Max 3-Feb-22 Min AVG Max 3-Feb-22 Min AVG Max 3-Feb-22 Min AVG Max 4-Feb-22 Min AVG Max 5-Feb-22 Min Max Max 6-Feb-22 Min Max Max 7-Feb-22 Min AVG Max AVG M		PM 10	PM 2.5	S02	NOx	PM10	PM2.5	S02	NOX	PM10	PM2.5	S02	NOX	
	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ppm		
	Max	85.0	43.2	15.4	19.1	83.2	42.6	14.2	17.9	85.6	33.0	14.8	18.5	
1-Feb-22	Min	57.7	17.8	12.9	13.8	55.9	7.2	8.2	12.6	58.3	10.2	5.3	13.2	
	AVG	71.4	30.5	14.2	16.5	69.6	24.9	11.2	15.3	72.0	21.6	10.1	15.9	
	Max	79.5	39.2	14.2	17.9	77.7	36.1	15.2	18.9	80.1	36.5	13.1	16.8	
2-Feb-22	Min	52.2	13.8	8.9	12.6	50.4	10.2	7.5	13.6	52.8	11.2	6.3	11.5	
	AVG	65.9	26.5	11.6	15.3	64.1	23.2	11.4	16.3	66.5	23.9	9.7	14.2	
	Max	86.0	44.2	6.4	10.1	84.2	41.2	13.4	17.1	86.6	35.0	12.8	16.5	
3-Feb-22	Min	58.7	18.8	13.9	4.8	56.9	15.8	10.9	11.8	59.3	5.4	4.5	11.2	
A 3-Feb-22 N A N 4-Feb-22 N A N 5-Feb-22 N A N 6-Feb-22 N A N 7-Feb-22 N A N 8-Feb-22 N A N 9-Feb-22 N A N 10-Feb-22 N	AVG	72.4	31.5	10.2	7.5	70.6	28.5	12.2	14.5	73.0	20.2	8.7	13.9	
	Max	79.8	42.8	15.0	18.7	78.0	39.5	17.5	21.2	80.4	38.8	11.0	14.7	
4-Feb-22	Min	52.5	17.4	12.5	13.4	50.7	14.1	9.2	15.9	53.1	13.4	8.5	9.4	
	AVG	66.2	30.1	13.8	16.1	64.4	26.8	13.4	18.6	66.8	26.1	19.8	12.1	
	Max	85.4	43.8	16.0	19.7	83.6	35.2	12.5	16.2	86.0	41.2	13.4	17.1	
5-Feb-22	Min	58.1	18.4	13.5	14.4	56.3	12.4	7.5	10.9	58.7	15.8	10.9	11.8	
	AVG	71.8	31.1	14.8	17.1	70.0	23.8	10.0	13.6	72.4	28.5	12.2	14.5	
6-Feb-22	Max	80.7	47.2	19.4	23.1	78.9	38.3	15.5	19.2	81.3	38.8	12.0	15.7	
	Min	53.4	11.8	6.9	17.8	51.6	12.9	8.0	15.9	54.0	13.4	8.5	10.4	
	AVG	67.1	29.5	13.2	20.5	65.3	25.6	11.8	17.6	67.7	26.1	10.3	13.1	
7-Feb-22	Max	84.7	43.2	15.4	19.1	82.9	37.3	14.8	18.5	85.3	35.1	12.7	16.4	
	Min	55.4	17.8	14.9	13.8	55.6	1.9	5.4	18.4	58.0	4.3	4.6	11.1	
	AVG	70.1	30.5	15.2	16.5	69.3	19.6	10.1	18.5	71.7	19.7	8.7	13.8	
	Max	85.1	41.5	13.7	17.4	83.3	45.0	17.2	20.9	84.5	34.3	13.5	17.2	
8-Feb-22	Min	57.8	16.1	11.2	12.1	56.0	9.6	4.7	15.6	57.2	8.3	3.4	11.9	
	AVG	71.5	28.8	12.5	14.8	69.7	27.3	11.0	18.3	70.9	21.3	8.5	14.6	
	Max	88.2	42.5	14.7	18.4	86.4	42.8	15.0	18.7	88.8	38.4	16.0	19.7	
9-Feb-22	Min	60.9	17.1	12.2	13.1	59.1	7.4	2.5	9.8	55.4	13.0	8.1	14.4	
	AVG	74.6	29.8	13.5	15.8	72.8	25.1	8.8	14.3	72.1	25.7	12.1	17.1	
	Max	84.2	43.2	15.4	19.1	82.4	45.8	18.0	21.7	84.8	36.2	11.6	15.3	
10-Feb-22	Min	56.9	17.8	12.9	13.8	55.1	10.4	5.5	16.4	57.5	4.8	3.4	10.0	
	AVG	70.6	30.5	14.2	16.5	68.8	28.1	11.8	19.1	71.2	20.5	7.5	12.7	
	Max	79.4	42.2	15.4	19.1	77.6	46.0	18.2	21.9	80.0	39.6	11.8	15.5	
11-Feb-22	Min	52.1	16.6	12.8	13.8	50.3	10.6	5.7	16.6	42.8	20.3	9.1	10.2	
	AVG	65.8	29.4	14.1	16.5	64.0	28.3	12.0	19.3	61.4	30.0	10.5	12.9	
	Max	80.3	41.5	13.7	17.4	78.5	47.3	19.5	23.2	80.9	38.3	4.5	8.2	
12-Feb-22	Min	53.0	16.1	11.2	12.1	51.2	11.9	7.0	17.9	53.6	12.9	6.0	2.9	
	AVG	66.7	28.8	12.5	14.8	64.9	29.6	13.3	20.6	67.3	25.6	15.4	5.6	
	Max	87.3	44.2	16.4	20.1	89.1	42.5	14.7	18.4	78.9	37.3	15.3	19.0	
13-Feb-22	Min	60.0	18.8	11.9	14.8	61.8	7.1	2.2	13.1	51.6	5.4	0.5	13.7	
L	AVG	73.7	31.5	14.2	17.5	75.5	24.8	8.5	15.8	65.3	21.4	7.9	16.4	
	Max	80.3	42.7	14.9	18.6	82.1	44.0	16.2	19.9	79.1	37.5	13.3	17.0	
14-Feb-22	Min	53.0	17.3	10.4	13.3	54.8	8.6	3.7	14.6	51.8	4.5	4.3	11.7	
L	AVG	66.7	30.0	12.7	16.0	68.5	26.3	10.0	17.3	65.5	21.0	8.8	14.4	
	Max	82.2	41.8	14.0	17.7	84.0	43.2	15.4	19.1	81.0	39.4	14.6	18.3	
15-Feb-22	Min	54.9	16.4	9.5	12.4	56.7	7.8	4.8	13.8	53.7	14.0	9.1	13.0	
	AVG	68.6	29.1	11.8	15.1	70.4	25.5	10.1	16.5	67.4	26.7	11.9	15.7	

	Max	80.3	42.7	14.9	18.6	82.1	43.2	15.4	19.1	79.1	37.5	13.3	17.0
16-Feb-22	Min	53.0	17.3	10.4	13.3	54.8	7.8	2.9	13.8	51.8	12.1	7.2	11.7
	AVG	66.7	30.0	12.7	16.0	68.5	25.5	9.2	16.5	65.5	24.8	10.3	14.4
	Max	84.1	43.2	15.4	19.1	85.9	43.2	14.8	18.5	82.9	37.3	15.5	19.2
17-Feb-22	Min	56.8	17.8	10.9	13.8	58.6	7.8	8.3	13.2	55.6	11.9	7.0	13.9
17-Feb-22	AVG	70.5	30.5	13.2	16.5	72.3	25.5	11.6	15.9	69.3	24.6	11.3	16.6
	Max	81.6	41.2	13.4	17.1	83.4	42.2	14.4	18.1	80.4	38.8	11.5	15.2
18-Feb-22	Min	54.3	15.8	8.9	11.8	56.1	6.8	3.5	12.8	53.1	13.4	8.5	9.9
	AVG	68.0	28.5	11.2	14.5	69.8	24.5	9.0	15.5	66.8	26.1	10.0	12.6
	Max	77.6	45.0	17.2	20.9	79.4	41.2	13.4	17.1	76.4	42.8	15.0	18.7
19-Feb-22	Min	50.3	19.6	12.7	15.6	52.1	5.8	3.4	11.8	49.1	7.4	4.5	13.4
	AVG	64.0	32.3	15.0	18.3	65.8	23.5	8.4	14.5	62.8	25.1	9.8	16.1
	Max	79.6	42.5	14.7	18.4	77.8	45.2	17.4	21.1	80.2	47.6	19.8	23.5
20-Feb-22	Min	52.3	17.1	12.2	13.1	50.5	9.8	4.9	15.8	52.9	12.2	5.3	18.2
	AVG	66.0	29.8	13.5	15.8	64.2	27.5	11.2	18.5	66.6	29.9	12.6	20.9
	Max	76.9	42.8	12.0	14.7	74.1	42.5	14.7	18.4	76.5	44.9	12.6	16.3
21-Feb-22	Min	48.6	17.4	12.5	9.4	46.8	7.1	4.2	16.1	49.2	9.5	4.5	11.7
	AVG	62.8	30.1	12.3	12.1	60.5	24.8	9.5	17.3	62.9	27.2	8.6	14.0
	Max	79.9	37.3	15.5	19.2	81.7	41.2	13.4	17.1	78.7	37.1	17.0	20.7
22-Feb-22	Min	52.6	18.9	12.0	13.9	54.4	5.8	4.9	11.8	51.4	11.7	6.8	15.4
	AVG	66.3	28.1	13.8	16.6	68.1	23.5	9.2	14.5	65.1	24.4	11.9	18.1
	Max	80.6	42.0	12.4	15.1	77.8	46.2	18.4	22.1	80.2	45.6	13.3	17.0
23-Feb-22	Min	52.3	16.2	11.3	9.8	50.5	10.8	5.9	19.8	52.9	10.2	1.0	12.4
	AVG	66.5	29.1	11.9	12.5	64.2	28.5	12.2	21.0	66.6	27.9	7.1	14.7
	Max	79.2	34.0	12.2	14.9	76.4	44.8	17.0	20.7	78.8	47.2	14.9	18.6
24-Feb-22	Min	50.9	10.2	5.3	9.6	49.1	9.4	4.5	18.4	51.5	11.8	2.6	14.0
	AVG	65.1	22.1	8.8	12.3	62.8	27.1	10.8	19.6	65.2	29.5	8.7	16.3
	Max	77.4	35.8	12.0	15.7	75.6	44.0	16.2	19.9	78.0	36.4	15.9	19.6
25-Feb-22	Min	37.4	12.5	8.3	10.4	48.3	8.6	5.7	14.6	50.7	11.0	4.2	13.0
	AVG	57.4	24.2	10.2	13.1	62.0	26.3	11.0	17.3	64.4	23.7	10.1	16.3
	Max	79.1	31.9	15.9	19.6	77.3	45.7	17.9	21.6	79.7	38.1	14.2	17.9
26-Feb-22	Min	35.6	10.2	12.3	14.3	50.0	10.3	5.4	16.3	52.4	12.7	3.5	11.3
	AVG	57.3	21.1	14.1	17.0	63.7	28.0	11.7	19.0	66.1	25.4	8.8	14.6
	Max	80.2	37.8	17.2	20.9	82.0	43.2	15.4	19.1	79.0	37.4	14.4	18.1
27-Feb-22	Min	52.9	12.4	15.5	15.6	54.7	7.8	7.9	13.8	51.7	12.0	7.1	12.8
	AVG	66.6	25.1	16.4	18.3	68.4	25.5	11.7	16.5	65.4	24.7	10.8	15.5
	Max	75.2	42.6	14.8	18.5	77.0	41.2	13.4	17.1	74.0	32.4	15.4	19.1
28-Feb-22	Min	47.9	10.2	8.3	13.2	49.7	5.8	4.2	11.8	46.7	13.0	8.1	13.8
20-F00-22	AVG	61.6	26.4	11.6	15.9	63.4	23.5	8.8	14.5	60.4	22.7	11.8	16.5
	ADANI POWER MAHARASHTRA LIMITED												
-----------	---------------------------------	---------	-------------	------------	--------	----------	------------	-------------	------------	--------	---------	--------------	------
				5 x 66	0 MW T	'hermal	Power	Plant , T	'irora, Go	ondia			
	Station:	AAQMS '	1 AAQMS	2 AAQMS	53	Report T	ype: Mear	n	Time Bas	e: 1Hr	Mo	nth- Mar -	· 22
		AA	QMS-1 (Lal	bour Hutme	nt)		AAQMS-2 (0	China Colon	y)		AAQMS-3	(Gate no -2)	
Month		PM 10	PM 2.5	S02	NOx	PM10	PM2.5	S02	NOX	PM10	PM2.5	S02	NOX
		ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ppm
	Max	81.2	39.6	23.0	26.7	79.4	38.8	17.2	20.9	81.8	39.2	14.0	17.7
1-Mar-22	Min	53.9	28.2	15.0	21.4	52.1	13.4	10.2	15.6	54.5	23.8	10.2	12.4
	AVG	67.6	33.9	19.0	24.1	65.8	26.1	13.7	18.3	68.2	31.5	12.1	15.1
	Max	79.8	38.2	24.0	27.7	78.0	36.4	14.8	18.5	80.4	36.2	16.2	19.9
2-Mar-22	Min	52.5	14.5	17.8	22.4	50.7	11.0	9.8	13.2	53.1	31.8	11.2	14.6
	AVG	66.2	26.4	20.9	25.1	64.4	23.7	12.3	15.9	66.8	34.0	13.7	17.3
	Max	87.4	35.8	22.0	25.7	85.6	36.0	18.2	21.9	88.0	36.4	14.2	17.9
3-Mar-22	Min	60.1	14.4	9.5	20.4	58.3	16.0	11.1	16.6	60.7	31.0	12.4	12.6
	AVG	73.8	25.1	15.8	23.1	72.0	26.0	14.7	19.3	74.4	33.7	13.3	15.3
	Max	81.3	36.7	21.1	24.8	79.5	39.6	18.1	21.8	81.9	34.3	13.2	16.9
4-Mar-22	Min	54.0	11.3	6.4	19.5	52.2	14.2	9.3	16.5	54.6	18.2	10.3	11.6
	AVG	67.7	24.0	13.8	22.2	65.9	26.9	13.7	19.2	68.3	26.3	11.8	14.3
	Max	80.9	39.9	22.1	25.8	79.1	37.2	16.0	19.7	81.5	35.9	12.8	16.5
5-Mar-22	Min	53.6	14.4	9.5	20.5	51.8	18.2	13.3	14.4	54.2	20.5	7.5	11.2
	AVG	67.3	27.2	15.8	23.2	65.5	27.7	14.7	17.1	67.9	28.2	10.2	13.9
	Max	84.6	38.0	22.4	26.1	82.8	35.2	12.6	16.3	85.2	36.6	18.9	22.6
6-Mar-22	Min	57.3	12.6	7.0	20.8	55.5	11.5	6.6	13.0	57.9	21.1	16.2	17.3
	AVG	71.0	25.3	14.7	23.5	69.2	23.4	9.6	14.7	71.6	28.9	17.6	20.0
	Max	82.6	31.8	26.0	29.7	80.8	40.5	12.7	16.4	83.2	33.0	18.4	22.1
7-Mar-22	Min	53.3	13.6	10.7	24.4	53.5	15.1	10.2	18.4	55.9	24.0	19.1	16.8
/-IMar-22	AVG	68.0	22.7	18.4	27.1	67.2	27.8	11.5	17.4	69.6	28.5	18.8	19.5
	Max	81.2	37.6	22.0	25.7	79.4	41.1	13.3	17.0	80.6	34.5	14.8	18.5
8-Mar-22	Min	53.9	12.2	7.3	20.4	52.1	15.7	10.8	11.7	53.3	24.5	9.6	13.2
	AVG	67.6	24.9	14.7	23.1	65.8	28.4	12.1	14.4	67.0	29.5	12.2	15.9
	Max	74.9	35.5	23.7	27.4	73.1	42.5	20.7	24.4	75.5	40.2	17.4	21.1
9-Mar-22	Min	47.6	14.1	9.2	22.1	45.8	14.1	13.2	9.8	42.1	19.8	8.9	15.8
	AVG	61.3	24.8	16.5	24.8	59.5	28.3	17.0	17.1	58.8	30.0	13.2	18.5
	Max	89.8	38.2	24.4	28.1	88.0	37.4	14.2	17.9	90.4	37.2	16.0	19.7
10-Mar-22	Min	62.5	12.8	7.9	22.8	60.7	20.0	8.2	12.6	63.1	30.0	11.0	14.4
	AVG	76.2	25.5	16.2	25.5	74.4	28.7	11.2	15.3	76.8	33.6	13.5	17.1
	Max	82.9	32.3	21.2	24.9	81.1	39.5	17.0	20.7	83.5	33.1	15.3	19.0
11-Mar-22	Min	55.6	16.7	12.9	19.6	53.8	14.1	9.2	15.4	46.3	13.8	12.6	13.7
	AVG	69.3	24.5	17.1	22.3	67.5	26.8	13.1	18.1	64.9	23.5	14.0	16.4
	Max	85.6	37.0	22.2	25.9	83.8	45.2	17.2	20.9	86.2	36.6	15.2	18.9
12-Mar-22	Min	58.3	11.6	16.7	20.6	56.5	19.8	14.9	15.6	58.9	21.1	14.2	13.6
	AVG	72.0	24.3	19.5	23.3	70.2	32.5	16.1	18.3	72.6	28.9	14.7	16.3
	Max	80.9	38.3	14.5	18.2	82.7	41.5	13.7	17.4	76.8	35.2	16.2	19.9
13-Mar-22	Min	53.6	12.9	12.0	12.9	55.4	16.1	11.2	12.1	49.5	19.8	14.9	14.6
	AVG	67.3	25.6	13.3	15.6	69.1	28.8	12.5	14.8	63.2	27.5	15.6	17.3
	Max	81.9	39.3	15.0	18.7	83.7	41.2	13.4	17.1	80.7	39.0	15.2	18.9
14-Mar-22	Min	54.6	13.9	16.0	13.4	56.4	10.8	5.9	11.8	53.4	27.0	22.1	13.6
	AVG	68.3	26.6	15.5	16.1	70.1	26.0	9.7	14.5	67.1	33.0	18.7	16.3
	Max	76.9	34.3	15.2	18.9	78.7	41.2	15.7	19.4	75.7	34.1	13.7	17.4
15-Mar-22	Min	49.6	11.5	4.6	13.6	51.4	15.8	10.9	14.1	48.4	29.1	9.2	12.1
	AVG	63.3	22.9	9.9	16.3	65.1	28.5	13.3	16.8	62.1	31.6	11.5	14.8

	Max	81.3	38.7	19.0	22.7	83.1	40.0	17.2	20.9	80.1	38.5	17.2	20.9
16-Mar-22	Min	54.0	13.3	6.4	17.4	55.8	4.6	9.0	15.6	52.8	23.1	14.1	15.6
	AVG	67.7	26.0	12.7	20.1	69.5	22.3	13.1	18.3	66.5	30.8	15.7	18.3
	Max	89.8	37.2	26.0	29.7	91.6	41.0	20.4	24.1	88.6	37.0	18.0	21.7
17-Mar-22	Min	62.5	11.8	4.9	24.4	64.3	15.6	10.7	18.8	61.3	31.6	12.2	16.4
	AVG	76.2	24.5	15.5	27.1	78.0	28.3	15.6	21.5	75.0	34.3	15.1	19.1
	Max	80.2	37.6	22.2	25.9	82.0	43.2	15.4	19.1	79.0	37.4	14.2	17.9
18-Mar-22	Min	52.9	17.8	10.9	20.6	54.7	17.8	12.9	13.8	51.7	21.4	10.2	12.6
	AVG	66.6	27.7	16.6	23.3	68.4	30.5	14.2	16.5	65.4	29.4	12.2	15.3
	Max	77.6	35.0	22.8	26.5	79.4	41.2	13.4	17.1	76.4	34.8	23.0	26.7
19-Mar-22	Min	50.3	14.0	7.1	21.2	52.1	15.8	10.9	11.8	49.1	16.0	11.1	21.4
	AVG	64.0	24.5	15.0	23.9	65.8	28.5	12.2	14.5	62.8	25.4	17.1	24.1
	Max	89.3	37.7	20.2	23.9	87.5	36.9	19.0	22.7	89.9	37.3	24.2	27.9
20-Mar-22	Min	62.0	12.3	7.4	18.6	60.2	15.1	10.2	17.4	62.6	19.1	12.2	22.6
	AVG	75.7	25.0	23.4	21.3	73.9	26.0	14.6	20.1	76.3	28.2	18.2	25.3
	Max	85.2	31.0	15.0	17.7	82.4	40.8	13.0	16.7	84.8	36.2	26.5	30.2
21-Mar-22	Min	56.9	14.6	9.7	12.4	55.1	25.4	10.5	14.4	57.5	27.8	18.6	25.6
	AVG	71.1	22.8	12.4	15.1	68.8	33.1	11.8	15.6	71.2	32.0	22.5	27.9
	Max	88.8	36.2	21.6	25.3	90.6	40.5	12.7	16.4	87.6	36.0	24.0	27.7
22-Mar-22	Min	61.5	14.2	7.3	20.0	63.3	25.2	10.3	11.1	60.3	30.6	12.0	22.4
	AVG	75.2	25.2	14.5	22.7	77.0	32.9	11.5	13.8	74.0	33.3	18.0	25.1
	Max	79.3	34.1	23.4	26.1	76.5	34.9	12.9	16.6	78.9	34.3	18.0	21.7
23-Mar-22	Min	51.0	11.3	26.4	20.8	49.2	15.7	10.8	14.3	51.6	18.9	9.7	17.1
	AVG	65.2	22.7	24.9	23.5	62.9	25.3	11.9	15.5	65.3	26.6	13.8	19.4
	Max	74.6	39.4	17.6	20.3	71.8	40.2	14.2	17.9	74.2	32.6	19.7	23.4
24-Mar-22	Min	46.3	14.0	9.1	15.0	44.5	14.8	9.9	15.6	46.9	12.8	13.6	18.8
	AVG	60.5	26.7	13.4	17.7	58.2	27.5	12.1	16.8	60.6	22.7	16.7	21.1
	Max	87.2	30.0	17.8	21.5	85.4	33.8	14.0	17.7	87.8	36.6	15.7	19.4
25-Mar-22	Min	32.8	15.4	10.5	16.2	58.1	16.5	11.6	12.4	60.5	31.2	12.0	12.8
	AVG	60.0	22.7	14.2	18.9	71.8	25.2	12.8	15.1	74.2	33.9	13.9	16.1
	Max	80.9	33.7	24.1	27.8	79.1	37.5	13.0	16.7	81.5	39.9	14.2	17.9
26-Mar-22	Min	45.4	11.7	6.8	22.5	51.8	17.2	8.2	11.4	54.2	24.5	5.3	11.3
	AVG	63.1	22.7	15.5	25.2	65.5	27.4	10.6	14.1	67.9	32.2	9.8	14.6
	Max	87.5	34.9	22.9	26.6	89.3	35.7	14.2	17.9	86.3	34.7	13.1	16.8
27-Mar-22	Min	60.2	15.0	8.1	21.3	62.0	15.2	10.3	12.6	59.0	27.0	11.0	11.5
	AVG	73.9	25.0	15.5	24.0	75.7	25.5	12.3	15.3	72.7	30.9	12.1	14.2
	Max	77.3	34.7	23.1	26.8	79.1	41.2	13.4	17.1	76.1	34.2	16.3	20.0
28-Mar-22	Min	55.0	17.0	10.1	21.5	51.8	20.2	15.3	11.8	48.8	32.0	7.1	14.7
	AVG	66.2	25.9	16.6	24.2	65.5	30.7	14.4	14.5	62.5	33.1	11.7	17.4
20 44-4 22	Max	91.2	39.6	18.1	21.8	89.4	40.0	14.2	17.9	91.8	39.2	14.1	17.8
29-Mar-22	Min	63.9	14.2	9.3	16.5	62.1	20.2	15.3	12.6	64.5	35.8	10.2	12.5
	AVG	77.0	20.9	10.2	19.2	/ 5.8	50.1 745	14.8	10.0	78.2	20.5	12.2	10.2
20.00 22	Max	78.9	ر در 15 ۵	19.2	21.9	/0.1	24.5 26.2	15.2	18.9	78.5	20.9	15.4	19.1
50-10181-22	Min	50.6	15.2	10.5	10.0	48.8	20.2	8.5 11.0	10.0	51.2	20.5	11.5	14.5
	AVG	04.8	24.5	14.8 10 F	14.2	75.0	30.4	17.1	17.8 20.9	04.9 79.0	20.7	12.2 17 5	10.8
31-00-0-22	Max	77.0	24.U	10.5	14.2	/ 2.8	29.5	17.1	2U.8	/ 0.2	40.2	0.5	17.2
51-10101-22	Min	27.1 57.7	11.4	5.0 م.	8.9	48.5	24.5	9.6	10.5	50.9	20.5	9.5	10.6
	AVG	57.3	22.7	8.5	11.6	62.2	52.0	13.4	18.2	64.6	52.9	11.5	13.9

Annexure - III

Online Continuous Emission Monitoring System (October 2021 – March 2022)

<u>UNIT #1 (CEMs)</u>

S NO	DATE	UNIT# 1 LOAD(MW)	UNIT#	‡ 1 SOX(mg	g/nm3)	UNIT#	† 1 NOX(mg	g/nm3)	UNIT#	1 DUST(m	ig/nm3)			
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX			
1	01-Oct-21	436.91	855.26	786.68	900.94	392.4	371.08	407.18	37.1	32.98	40.05			
2	02-0ct-21	485.54	867.31	801.1	899.39	395.11	374.07	406.61	37.71	33.54	39.93			
3	03-0ct-21	491.81	871.05	832.02	893.46	396.32	383.69	405.11	37.91	35.76	39.19			
4	04-0ct-21	553.08	898.64	873.52	930.09	404.4	394.55	416.12	39.47	37.49	41.78			
5	05-0ct-21	554.1	899.16	868.03	933.78	404.79	393.87	416.98	39.54	37.37	41.95			
6	06-0ct-21	537.24	885.85	856.14	921.51	400.2	389.77	412.44	38.62	36.57	41.04			
7	07-Oct-21	568.02	905.01	868.63	931.13	406.33	392.99	415.95	39.84	37.35	41.85			
8	08-0ct-21	533.45	888.24	811.18	930.96	401.42	376.99	415.26	38.85	33.87	41.59			
9	09-0ct-21	557.19	895.35	867.96	929.89	402.98	393.51	413.93	39.16	37.29	41.31			
10	10-0ct-21	573.6	905.26	863.79	935.6	406.19	392.04	417.49	39.75	37.01	42.04			
11	11-Oct-21	564.3	905.77	883.36	926.24	406.91	397.75	414.83	39.94	37.62	41.53			
12	12-Oct-21	567.64	899.74	876.9	928.81	404.24	395.79	415	39.44	37.73	41.38			
13	13-Oct-21	552.18	896.24	873.03	924.97	403.68	394.62	413.81	39.33	37.99	41.43			
14	14-Oct-21	555.59	900.66	868.84	928.15	405.2	393.32	414.9	39.62	37.25	41.9			
15	15-Oct-21	509.12	879.18	808	929.99	399.04	376.11	415	38.42	33.93	41.54			
16	16-Oct-21	487.53	873.19	821.39	914.7	396.98	380.98	411.44	37.99	34.68	40.87			
17	17-Oct-21	522.08	881.19	857.7	907.17	399.02	391.36	408.98	38.42	36.88	40.39			
18	18-Oct-21	518.89	885.01	830.21	921.73	400.59	382.02	412.26	38.74	35.06	41.04			
19	19-0ct-21	538.56	886.35	841.49	931.2	400.28	385.6	415.48	38.63	35.76	41.64			
20	20-0ct-21	530.88	883.09	829.04	929.35	399.3	382.27	415.3	38.43	35.13	41.61			
21	21-Oct-21	538.91	889.21	857.18	920.46	401.49	391.87	413.14	38.87	37.02	41.2			
22	22-Oct-21	460.13	861.52	798.81	918.27	393.91	373	411.49	37.45	33.31	40.86			

23	23-0ct-21	517.05	880.41	850.5	925.5	398.85	389.46	414.77	38.35	36.14	41.52
24	24-0ct-21	506.68	869.65	834.52	917.04	394.97	385.03	412.19	37.59	35.65	41.02
25	25-0ct-21	509.18	879.96	816.1	916.64	398.72	378.15	411.95	38.28	34.32	40.97
26	26-0ct-21	527.96	880.59	832	939.55	398.34	382.44	418.82	38.25	35.14	42.3
27	27-Oct-21	508.23	880	826.85	921.39	399	381.07	413.02	38.42	34.88	41.17
28	28-Oct-21	487.83	873.93	823.49	900.86	397.51	382.02	406.3	38.12	35.11	39.77
29	29-0ct-21	475.13	870.05	828.73	925.91	396.51	382.17	414.09	37.89	35.1	41.03
30	30-0ct-21	464.81	857.58	824.97	894.77	391.87	380.96	404.35	37.05	34.86	39.47
31	31-0ct-21	452.04	855.71	820.31	893.05	391.83	379.66	404.3	37.05	34.95	39.47

CEMS DAYWISE VALUES FOR THE MONTH OF NOV '2021													
S NO	DATE	UNIT# 1 LOAD(MW)	UNIT#	t 1 SOX(mg	g/nm3)	UNIT#	‡ 1 NOX(mg	g/nm3)	UNIT# [·]	1 DUST(m	g/nm3)		
5.110.		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX		
1	01-Nov-21	441.88	850.48	811.05	887.67	390.25	376.16	403.03	36.7	33.93	39.23		
2	02-Nov-21	456.05	852.52	818.88	883.23	390.4	380.74	402.36	36.71	34.9	39.12		
3	03-Nov-21	422.49	844.79	809.65	883.3	388.71	377.28	401.29	36.36	34.17	38.57		
4	04-Nov-21	400.78	837.47	803.47	872.3	386.86	374.98	399.13	35.99	33.29	38.12		
5	05-Nov-21	413.4	840.17	815.98	864.32	387.22	378.3	396.81	36.16	34.35	38.04		
6	06-Nov-21	427.47	848.38	807.97	895.59	389.95	376.71	405.3	36.66	34.32	39.67		
7	07-Nov-21	431.63	845.94	801.72	902.16	388.81	373.97	405.79	36.43	33.51	39.73		
8	08-Nov-21	454.5	860.06	811.58	922.03	393.28	376.75	413.47	37.28	34.49	41.26		
9	09-Nov-21	469.7	861.58	810.04	907.67	393.15	376.42	407.48	37.31	33.99	40.39		
10	10-Nov-21	508.63	868.58	741.71	933.38	384.04	302.06	416.29	37.98	32.13	41.81		
11	11-Nov-21	489.65	793.92	718.22	852.48	317.08	293.13	336.25	35.01	30.35	38.8		
12	12-Nov-21	415.73	757.37	713.66	811.16	306.04	291.37	323.56	32.9	30	36.32		
13	13-Nov-21	529.4	810.5	736.51	844.73	321.88	298.8	334.52	35.98	31.46	38.47		
14	14-Nov-21	563	821.42	791.37	851.55	325.24	313.64	336.1	36.67	34.3	38.77		
15	15-Nov-21	570.69	823.51	798.31	850.2	325.78	316.27	335.97	36.73	34.83	38.75		

16	16-Nov-21	586.5	829.8	794.18	863.3	327.42	314.83	339.91	37.03	34.66	39.52
17	17-Nov-21	582.79	827.42	788.54	857.31	326.62	313.75	337.55	36.86	34.35	39.3
18	18-Nov-21	586.68	826.58	749.24	864.25	326.27	303.36	339.54	36.79	32.36	39.43
19	19-Nov-21	560.02	815.12	765.61	844.57	322.8	309.47	333.46	36.17	33.31	38.24
20	20-Nov-21	504.48	799.79	740.98	858.86	318.86	299.88	338.24	35.44	31.65	39.18
21	21-Nov-21	447.2	778.96	725.6	863.75	313.27	294.72	338.95	34.3	30.65	39.3
22	22-Nov-21	481.81	791.28	738.78	854.82	316.51	298.97	334.99	34.97	31.82	38.5
23	23-Nov-21	521.27	804.69	749.87	872.99	320.5	303.48	342.21	35.66	32.13	39.82
24	24-Nov-21	564.06	817.13	732.77	873.37	323.3	296.83	342.12	36.18	31.06	39.8
25	25-Nov-21	572.89	826.12	729.82	890.92	323.55	296.09	341.26	36.7	30.91	40.76
26	26-Nov-21	554.58	835.67	767.65	893.75	323.62	303.36	341.79	37.33	33.35	40.85
27	27-Nov-21	522.97	826.66	748.91	891.16	320.87	295.99	342.06	36.76	31.9	40.93
28	28-Nov-21	499.98	821.12	754.3	881.71	319.72	298.08	338.69	36.55	32.34	40.26
29	29-Nov-21	527.33	834.86	762.6	888.07	323.65	302.18	340.5	37.3	33.24	40.62
30	30-Nov-21	548.85	841.44	773.62	896.55	325.35	303.73	343.66	37.64	33.41	41.24

	CEMS DAYWISE VALUES FOR THE MONTH OF DEC '2021												
S NO	DATE	UNIT# 1 LOAD(MW)	UNIT#	# 1 SOX(mg	j/nm3)	UNIT#	† 1 NOX(m	g/nm3)	UNIT# '	1 DUST(m	g/nm3)		
5.10.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX		
1	01-Dec-21			Unit	: in shutdov	wn conditio	n						
2	02-Dec-21			Unit	: in shutdov	wn conditio	n						
3	03-Dec-21		Unit in shutdown condition										
4	04-Dec-21		Unit in shutdown condition										
5	05-Dec-21			Unit	: in shutdov	wn conditio	n						
6	06-Dec-21			Unit	: in shutdov	wn conditio	n						
7	07-Dec-21	68.78	798.19	757.46	856.46	313.15	298.58	331.33	35.29	32.4	38.84		
8	08-Dec-21	484.91	484.91 814.7 759.73 879.38 317.76 298.88 338.23 36.15 32.45 40.18										
9	09-Dec-21	506.29	817.84	747.66	900.94	317.9	295.35	344.95	36.22	31.77	41.49		
10	10-Dec-21	479.69	811.02	751.31	891.57	316.62	297.8	341.51	36.01	32.28	40.81		

11	11-Dec-21	514.19	825.86	740	891.67	320.67	293.47	342.31	36.65	31.41	40.98
12	12-Dec-21	490.14	811.83	744.57	877.25	316.3	294.71	337.69	35.86	31.65	40.08
13	13-Dec-21	501.75	818.42	745.75	881.74	318.33	295.11	339	36.28	31.73	40.33
14	14-Dec-21	512.48	819.15	746.14	884.23	318.11	295.97	339.73	36.23	31.91	40.47
15	15-Dec-21	509.45	827.06	747.91	886.01	321.31	297.07	340.16	36.85	32.14	40.35
16	16-Dec-21	507.57	825.95	741.13	887.09	321.11	293.51	340.61	36.79	31.41	40.64
17	17-Dec-21	501.92	818.27	752.81	880.94	318.4	297.85	338.49	36.26	32.28	40.22
18	18-Dec-21	482.44	815.15	751.06	878.76	317.95	297.24	337.61	36.26	31.96	40.1
19	19-Dec-21	400.56	773.36	735.55	829.24	305.3	292	322.74	33.76	31.12	37.16
20	20-Dec-21	455.75	800.14	747.63	862.65	313.19	295.94	332.37	35.31	31.9	39.02
21	21-Dec-21	472.65	809.56	754.02	876.08	316.12	297.51	337.09	35.87	32.19	39.95
22	22-Dec-21	528.74	831	748.39	883.5	322.01	295.85	339.83	37.01	31.87	40.49
23	23-Dec-21	514.55	827.28	746.73	890.5	321.26	295.05	341.65	36.8	31.71	40.84
24	24-Dec-21	521.35	828.08	753.29	873.85	321.27	297.62	336.96	36.87	32.22	39.94
25	25-Dec-21	538.04	837.28	753.35	885.46	324.13	297.57	340.36	37.4	32.06	40.6
26	26-Dec-21	541.57	835.21	753.56	881.76	323.24	297.39	339.39	37.22	32.27	39.93
27	27-Dec-21	527.27	832.09	743.89	877.54	322.55	294.6	337.21	37.13	31.63	40.37
28	28-Dec-21	568.06	848.02	760.55	891.34	327.14	300.15	341.95	38.01	32.71	40.9
29	29-Dec-21	534.2	839.28	765.53	891.45	325.09	303.44	342.16	37.66	33.74	40.95
30	30-Dec-21	506.01	816.93	738.71	884.98	317.52	293.29	339.65	36.12	31.15	40.45
31	31-Dec-21	492.62	813.88	738.71	878.54	316.87	293.22	337.27	35.97	31.37	40.18

	CEMS DAYWISE VALUES FOR THE MONTH OF JAN '2022													
S.NO.	DATE	UNIT# 1 LOAD(MW)	UNIT#	# 1 SOX(mg	g/nm3)	UNIT#	† 1 NOX(mg	g/nm3)	UNIT# 1	DUST(mg	g/nm3)			
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX			
1	01-Jan-22	632.28	848.08	825.22	894.91	327.65	310.55	344.4	41.04	38.46	43.54			
2	02-Jan-22	633.51	832.61	802.99	859.59	331.92	303.25	346.83	41	39.28	43.02			
3	03-Jan-22	594.54	817.04	727.21	868.22	335.41	319.91	345.22	40.15	37.45	42.74			
4	04-Jan-22	642.68	848.41	814.21	877.82	313.74	302.06	323.01	41.26	38.93	43.1			

5	05-Jan-22	612.7	838.74	792.2	875.73	348.54	328.94	376.84	40.19	38.34	41.91
6	06-Jan-22	621.43	843.5	820.74	871.16	313	300.38	323.52	41.11	38.61	43.2
7	07-Jan-22	606.88	853.29	818.55	871.98	331.48	328.77	360.24	40.86	38.3	42.61
8	08-Jan-22	611.42	850.27	786.11	879.6	333.13	313.58	345.86	40.75	38.89	42.8
9	09-Jan-22	641.06	843.51	814.31	877.52	336.31	324.46	347.35	41.45	38.61	43.53
10	10-Jan-22	607.51	857.17	817.1	882.64	319.45	295.25	344.27	40.48	38.65	42.18
11	11-Jan-22	539.44	824.36	806.85	851.25	323.73	315.72	345.11	39.3	33.86	42.94
12	12-Jan-22	510.57	837.51	800.82	874.74	338.21	313.58	398.21	38.27	33.43	42.11
13	13-Jan-22	517.82	822.52	795.78	856.11	350.03	305.41	391.96	38.62	33.79	43.13
14	14-Jan-22	445.22	823.94	799.39	853.94	361.96	303.17	397.12	37.05	33.35	40.9
15	15-Jan-22	493.91	831.29	802.62	873.29	357.12	304.63	395	38.09	33.65	41.37
16	16-Jan-22	538.82	826.87	795.76	876.87	350.67	312.36	385.46	35.88	33.13	39.56
17	17-Jan-22	550.57	825.99	737.44	849.62	321.21	292.71	341.72	36.84	31.27	40.87
18	18-Jan-22	452.84	831.29	779.14	824.9	322.42	306.37	336.22	37.08	33.95	39.78
19	19-Jan-22	406.43	842.03	753.33	891.31	325.23	297.65	342.14	37.64	32.23	40.94
20	20-Jan-22	395.02	826.1	750.76	892.76	320.33	296.22	342.19	36.71	32.34	40.95
21	21-Jan-22	367.12	824.47	744.46	886.43	330.18	294.94	359.98	36.62	32.05	40.51
22	22-Jan-22	393.54	811.69	762.23	895.05	316.77	301.04	343.25	35.97	32.81	41.16
23	23-Jan-22	476.03	802.69	741.34	869.99	313.53	294.27	335	35.31	31.58	39.54
24	24-Jan-22	468.69	833.43	772.35	877.06	322.85	304.53	337.6	37.16	33.59	40.06
25	25-Jan-22	448.63	826.2	746.86	872.15	319.81	295.16	335.52	36.55	31.73	39.64
26	26-Jan-22	441.76	804.04	740.64	876.54	313.98	293.75	336.98	35.4	31.47	39.93
27	27-Jan-22	482.97	820.73	748.43	883.77	319	296.89	339.87	36.41	32.29	40.5
28	28-Jan-22	462.05	826.38	759.24	888.15	318.49	300.1	340.5	36.67	32.72	40.61
29	29-Jan-22	474.29	833.62	757.13	888.11	342.65	299.11	371.08	37.2	32.52	40.74
30	30-Jan-22	465.57	833.37	741.86	890.83	323.18	293.77	341.62	37.28	31.79	40.95
31	31-Jan-22	472.34	835.99	810.78	867.33	335	337.81	367.29	37.64	32.23	40.94

	CEMS DAYWISE VALUES FOR THE MONTH OF FEB '2022													
	DATE	UNIT# 1 LOAD(MW)	UNIT#	# 1 SOX(mg	g/nm3)	UNIT#	# 1 NOX(mg	g/nm3)	UNIT# [·]	1 DUST(m	g/nm3)			
5.NU.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX			
1	01-Feb-22	542.92	832.01	750.06	896.65	322.32	296.19	343.42	37.03	31.93	41.19			
2	02-Feb-22	538.51	834.24	755.48	892.58	322.89	298.58	342.38	37.2	32.89	40.99			
3	03-Feb-22	462.02	800.89	742.81	889.75	313.24	293.96	341.52	35.29	31.5	40.82			
4	04-Feb-22	539.34	834.83	769.48	887.88	323.13	303.83	341.03	37.2	33.44	40.73			
5	05-Feb-22	552.6	839.03	751.4	889.94	324.12	297.1	341.64	37.4	32.12	40.85			
6	06-Feb-22	529.64	830.27	759.97	887.05	321.78	300.39	340.13	36.94	32.75	40.54			
7	07-Feb-22	534.73	833.86	751.62	893.26	322.95	296.66	342.57	37.17	32.03	41.03			
8	08-Feb-22	570.87	848.93	762.17	892.72	327.36	301.04	342.38	37.98	32.54	40.99			
9	09-Feb-22	515.69	822.41	755.77	879.26	319.28	298.15	337.1	36.45	32.59	39.93			
10	10-Feb-22	536.85	828.29	754.85	883.93	320.68	298.15	339.42	36.74	32.58	40.41			
11	11-Feb-22	522.55	827.99	775.6	889.54	321.18	304.36	341.69	36.85	33.53	40.86			
12	12-Feb-22	518.32	821.75	763.72	872.82	319.01	300.38	336.63	36.42	32.75	39.87			
13	13-Feb-22	546.61	838.84	761.92	880.7	324.47	301.1	339.12	37.47	32.9	40.36			
14	14-Feb-22	577.82	855.99	794.24	892.38	329.79	311	342.24	38.48	34.85	40.71			
15	15-Feb-22	587.98	849.59	744.3	885.85	327.4	294.34	340.29	38.03	31.57	40.58			
16	16-Feb-22	556.53	838.28	766.11	879.56	323.91	300.73	338.28	37.35	32.81	40.19			
17	17-Feb-22	574.84	849.38	780.9	886.51	327.16	305.4	340.64	37.99	33.72	40.65			
18	18-Feb-22	563.42	842.59	770.67	886.89	325.47	302.68	340.19	37.67	33.07	40.55			
19	19-Feb-22	553.06	841.78	770.26	879.87	325.41	303.95	338.1	37.67	33.48	40.15			
20	20-Feb-22	516.19	824.5	754.04	889.85	320.36	297.5	341.42	36.72	32.19	40.71			
21	21-Feb-22	579.92	848.84	778.64	879.7	326.7	307.76	337.62	38.98	33.55	42.51			
22	22-Feb-22	626.28	868.33	837.27	895.07	333.1	322.1	343.33	34.59	28.31	41.34			
23	23-Feb-22	636.21	869.01	833.79	893.82	332.93	320.13	342.88	36.97	33.84	40.69			
24	24-Feb-22	610.39	860.89	785.02	891.78	330.97	307	341.14	36.02	33.48	39.31			
25	25-Feb-22	570.57	850.76	803.04	882.52	328.23	311.96	339.34	35.9	33.52	38.71			
26	26-Feb-22	585.09	850.7	799.19	880.76	327.73	310.55	338.97	35.26	33.31	37.75			

27	27-Feb-22	593.96	856.73	803.52	879.5	329.98	312.21	338.28	38.55	35.05	40.18
28	28-Feb-22	586.18	853.18	788.64	888.02	328.62	311.57	341.27	38.28	35	40.58

	CEMS DAYWISE VALUES FOR THE MONTH OF MAR '2022 S.NO. DATE UNIT# 1 LOAD(MW) UNIT# 1 SOX(mg/nm3) UNIT# 1 NOX(mg/nm3) UNIT# 1 DUST(mg/nm3) S.NO. DATE UNIT# 1 LOAD(MW) UNIT# 1 SOX(mg/nm3) UNIT# 1 DUST(mg/nm3)													
S.NO.	DATE	UNIT# 1 LOAD(MW)	UNIT#	# 1 SOX(mg	g/nm3)	UNIT#	# 1 NOX(mg	g/nm3)	UNIT#	1 DUST(m	g/nm3)			
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX			
1	01-Mar-22	595.76	826.1	750.76	892.76	320.33	296.22	342.19	40.95	36.71	32.34			
2	02-Mar-22	605.51	824.47	744.46	886.43	330.18	294.94	359.98	40.51	36.62	32.05			
3	03-Mar-22	532.61	811.69	762.23	895.05	316.77	301.04	343.25	41.16	35.97	32.81			
4	04-Mar-22	546.26	802.69	741.34	869.99	313.53	294.27	335	39.54	35.31	31.58			
5	05-Mar-22	612.7	832.61	802.99	859.59	318.62	308.11	329.33	40.33	38.82	43.22			
6	06-Mar-22	523.12	826.16	801.2	867.46	316.62	308.34	331.98	39.67	36.8	42.86			
7	07-Mar-22	549.06	836.33	804.86	868.85	320.31	308.39	332.39	39.81	36.9	41.87			
8	08-Mar-22	567.15	850.49	819.37	879.06	336.31	324.46	347.35	38.23	35.82	40.44			
9	09-Mar-22	547.26	843.5	820.74	871.16	333.45	325.25	344.27	37.67	36.15	39.82			
10	10-Mar-22	549.09	853.29	818.55	871.98	337.75	324.23	345.07	38.53	35.77	39.9			
11	11-Mar-22	554.67	850.27	786.11	879.6	336.62	316.29	347.33	38.29	33.96	40.44			
12	12-Mar-22	589.12	837.51	800.82	874.74	338.21	313.58	398.21	42.11	38.27	33.43			
13	13-Mar-22	621.47	822.52	795.78	856.11	350.03	305.41	391.96	43.13	38.62	33.79			
14	14-Mar-22	605.73	823.94	799.39	853.94	361.96	303.17	397.12	40.9	37.05	33.35			
15	15-Mar-22	596.76	831.29	802.62	873.29	357.12	304.63	395	41.37	38.09	33.65			
16	16-Mar-22	549.93	813.01	810.71	864.87	315.98	305.09	329.69	41.77	37.84	43.13			
17	17-Mar-22	550.57	811.83	800.66	824.09	316.98	305.91	329.73	32.26	30.23	42.63			
18	18-Mar-22	595.76	822.07	810.53	834.92	350.49	305.65	386.2	38.03	33.31	42.24			
19	19-Mar-22	605.51	821.48	810.06	834.86	352.03	308.06	389.09	43.13	38.62	33.79			
20	20-Mar-22	532.61	842.87	814.84	877.85	345.66	309.49	379.91	40.9	37.05	33.35			
21	21-Mar-22	546.26	835.63	804.4	867.48	351.38	307.7	389.97	41.37	38.09	33.65			
22	22-Mar-22	587.98	848.93	762.17	892.72	327.36	301.04	342.38	37.98	32.54	40.99			
23	23-Mar-22	556.53	822.41	755.77	879.26	319.28	298.15	337.1	36.45	32.59	39.93			

24	24-Mar-22	574.84	828.29	754.85	883.93	320.68	298.15	339.42	36.74	32.58	40.41
25	25-Mar-22	534.73	827.99	775.6	889.54	321.18	304.36	341.69	36.85	33.53	40.86
26	26-Mar-22	570.87	824.36	806.85	851.25	323.73	315.72	345.11	42.94	39.3	33.86
27	27-Mar-22	515.69	837.51	800.82	874.74	338.21	313.58	398.21	42.11	38.27	33.43
28	28-Mar-22	521.09	822.52	795.78	856.11	350.03	305.41	391.96	43.13	38.62	33.79
29	29-Mar-22	510.78	836.93	793.95	875.04	323.24	310.24	335	40.35	38.23	42.22
30	30-Mar-22	538.84	848.41	814.21	877.82	332.49	302.06	334.78	41.11	39.19	43.25
31	31-Mar-22	532.33	838.74	792.2	875.73	313.33	301.48	325.6	39.35	38.02	42.73

<u>UNIT #2 (CEMs)</u>

		CEMS DAY	WISE VALU	ES FOR TH	IE MONTH	OF OCT '2	021				
S NO	DATE	UNIT# 2 LOAD(MW)	UNIT#	‡ 2 SOX(mg	j/nm3)	UNIT#	2 NOX(mg	g/nm3)	UNIT# :	2 DUST(n	ng/nm3)
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Oct-21	484.25	912.56	877.74	936.39	387.31	374.02	395.27	41.78	38.58	43.43
2	02-0ct-21	511.17	920.46	887.14	962.04	389.38	377.67	403.95	41.96	39.79	45.21
3	03-0ct-21	518.06	918.79	893.62	945.28	388.61	378.93	398.36	41.67	39.37	43.92
4	04-0ct-21	570.65	939.97	908.44	971.36	395.02	383.84	406.87	42.74	39.95	45.48
5	05-0ct-21	557.91	938.49	909.51	970.54	395.05	384	406.72	42.89	40.28	45.48
6	06-0ct-21	538.8	924.39	901.49	952.62	389.98	381.71	401.26	41.82	39.48	44.6
7	07-Oct-21	549.8	932.6	897.97	958.63	392.81	380.58	402.17	42.36	39.78	44.59
8	08-0ct-21	571.85	941.34	914.32	968.86	395.53	385.3	406.12	42.79	40.43	45.35
9	09-0ct-21	567.12	944.42	925.26	961.78	396.99	389.02	404.17	43.27	41.17	45.11
10	10-0ct-21	568.68	947.8	908.43	968.37	398.33	383.61	405.78	43.56	40.2	45.22
11	11-Oct-21	546.13	929	906.71	956.05	391.61	383.36	402.24	42.13	40.04	44.76
12	12-Oct-21	569.47	945.99	924.02	966.97	397.45	388.12	405.62	43.28	40.79	45.3
13	13-Oct-21	566.62	937.69	910.49	965.76	394.4	384.05	404.58	42.61	40.2	44.88
14	14-Oct-21	555.66	935	898.09	963.34	393.68	382.69	404.59	42.53	40.19	45.16
15	15-Oct-21	524.93	923.13	871.66	982.23	390.27	372.43	410.36	42.13	38.42	46.09
16	16-Oct-21	526.36	930.5	903.61	957.42	392.7	383.39	402.85	42.48	40.54	44.9
17	17-Oct-21	533.68	927.72	904.16	951.93	391.6	382.25	401.24	42.28	39.94	44.68
18	18-0ct-21	523.86	922.6	880.02	957.44	389.89	375.41	402.32	41.93	38.76	44.73
19	19-0ct-21	553.06	930.33	902.02	966.17	391.91	382.32	404.33	42.12	39.96	44.69
20	20-0ct-21	563.63	935.46	891.66	983.04	393.69	379.58	410.23	42.51	39.96	45.93
21	21-Oct-21	534.18	927.72	880.11	958.71	391.65	375	402.99	42.28	38.83	44.84
22	22-Oct-21	463.67	903.3	839.83	974.06	384.4	362.68	407.74	41.22	36.85	45.62
23	23-0ct-21	542.96	929.39	903.65	963.29	392.01	382.43	404.42	42.29	40.12	45.08
24	24-0ct-21	536.1	931.09	898.86	968.61	392.86	381.88	406.07	42.52	39.63	45.35

25	25-Oct-21	528.05	928.63	889.84	968.14	392.01	378.19	406.17	42.36	39.43	45.46
26	26-0ct-21	544.91	930.51	873.59	966.89	392.21	372.95	404.12	42.29	38.48	44.93
27	27-Oct-21	514.95	916.59	875.44	958.93	387.83	373.37	402.43	41.52	38.49	44.55
28	28-0ct-21	548.21	938.14	886.98	986.44	395.02	376.78	411.46	42.91	39	46.36
29	29-0ct-21	522.56	925.55	893.23	959.09	391.08	378.81	403.23	42.26	39.37	44.92
30	30-0ct-21	486.6	913.07	872.92	966.22	387.28	373.9	405.43	41.64	39.05	45.28
31	31-0ct-21	522.59	925.52	886.98	967.03	390.98	376.9	405.63	42.22	39.1	45.29

	CEMS DAYWISE VALUES FOR THE MONTH OF NOV '2021 UNIT# 2 LOAD(MW) UNIT# 2 SOX(ma/nm3) UNIT# 2 NOX(ma/nm3) UNIT# 2 DUST(ma/nm3)													
S NO	DATE	UNIT# 2 LOAD(MW)	UNIT#	‡ 2 SOX(mg	g/nm3)	UNIT#	2 NOX(mg	g/nm3)	UNIT# 3	2 DUST(r	ng/nm3)			
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX			
1	01-Nov-21	457.05	899.35	850.8	939.34	383.01	366.01	397.41	40.89	37.37	44.07			
2	02-Nov-21	480.28	908.21	866.97	954.28	385.65	370.67	401.85	41.35	38.02	44.73			
3	03-Nov-21	474.26	907.82	868.93	936.72	385.74	371.28	396.37	41.44	38.12	43.81			
4	04-Nov-21	491.87	909.23	859.4	955.98	385.66	369.43	402.02	41.15	38.42	44.63			
5	05-Nov-21	446.74	896.89	852.65	916.37	382.33	367.43	389.75	40.81	37.73	42.68			
6	06-Nov-21	493.55	913.07	864.68	980.31	386.87	371.68	409.27	41.43	38.82	45.72			
7	07-Nov-21	519.04	926.81	885.66	973.11	391.53	378.83	407.42	42.33	40.1	45.45			
8	08-Nov-21	526.93	925.34	885.87	959.45	390.77	376.7	403.41	42.1	39.08	44.97			
9	09-Nov-21	550.18	932.29	895.19	974.31	392.78	380.74	407.95	42.35	40.03	45.71			
10	10-Nov-21	571.67	911.65	765.04	968.69	377.9	299.76	405.84	41.38	33.67	45.22			
11	11-Nov-21	528.04	796.91	730.97	826.32	311.48	289.94	322.24	36.33	32.32	38.69			
12	12-Nov-21	514.8	795.86	759.43	822.4	311.23	299.25	321.14	36.26	33.7	38.57			
13	13-Nov-21	542.72	802.2	777.32	831.38	312.78	303.63	324.02	36.4	34.29	39.08			
14	14-Nov-21	565.91	807.85	788.55	829.76	314.37	306.38	323.2	36.62	34.52	38.62			
15	15-Nov-21	575.57	812.76	787.31	849.91	316.04	306.42	329.56	36.92	34.69	39.92			
16	16-Nov-21	596.92	820.7	790.1	842.33	318.39	307.15	326.29	37.27	34.76	39.32			
17	17-Nov-21	593.85	821.64	780.06	846.14	318.9	304.31	328.08	37.43	34.39	39.48			
18	18-Nov-21	589.6	823.15	720.96	863.92	319.7	286.43	333.7	37.69	31.58	40.59			

19	19-Nov-21	410.36	753.75	717.28	798.51	298.39	284.84	312.36	34.23	31.15	37.27
20	20-Nov-21	554.99	800.99	765.98	838.16	312.06	300.08	326.01	36.15	33.73	39.37
21	21-Nov-21	599.2	823.66	773.77	847.83	319.44	303.15	328.78	37.5	34.49	39.83
22	22-Nov-21	612.42	829.01	805.37	860.43	321.17	311.5	332.52	37.8	35.34	40.31
23	23-Nov-21	613.03	830.17	807.17	863.65	321.6	312.31	333.77	37.9	35.57	40.61
24	24-Nov-21	634.36	837.82	793.86	865.98	323.92	308.12	334.61	38.26	34.85	40.79
25	25-Nov-21	628.65	837.68	799	869.64	322.48	310.21	334.94	37.97	35.19	40.85
26	26-Nov-21	622.85	839.14	804.49	867.61	320.93	308.53	331.12	37.64	35	39.88
27	27-Nov-21	619.75	840.64	804.29	873.02	321.57	308.38	333.5	37.8	34.94	40.25
28	28-Nov-21	602.94	836.01	771.98	863.06	320.3	300.82	329.51	37.65	34.46	39.54
29	29-Nov-21	588.13	827.31	756.11	878.3	317.15	294.31	335.24	36.99	32.75	40.86
30	30-Nov-21	613.48	835.4	740.58	875.07	319.54	289.23	334.21	37.35	31.98	40.68

		CEMS DAYV	VISE VALU	ES FOR TH	IE MONTH	OF DEC '2	2021				
S NO	DATE	UNIT# 2 LOAD(MW)	UNIT#	‡ 2 SOX(mg	g/nm3)	UNIT#	[‡] 2 NOX(m	g/nm3)	UNIT#	2 DUST(r	ng/nm3)
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Dec-21	588.28	825.59	748.68	868.95	316.72	293.81	332.29	37	32.68	40.35
2	02-Dec-21	546.85	813.64	759.36	871.19	312.92	296.14	332.24	36.31	33.53	40.06
3	03-Dec-21	599.23	828.89	781.48	868.23	317.67	301.32	331.16	37.12	33.77	40.04
4	04-Dec-21	630.89	845.92	785.01	868.39	323.31	302.4	331.77	38.18	33.94	40.13
5	05-Dec-21	619.83	839.75	810.06	871.5	321.24	310.17	332.21	37.78	35.23	40.13
6	06-Dec-21	617.46	839.33	807.58	882.96	321.09	309.51	336.59	37.75	35.17	41.05
7	07-Dec-21	616.25	838.11	810.96	859.84	320.68	310.12	329.19	37.64	35.1	39.78
8	08-Dec-21	630.46	840.39	814.68	868.18	321	311.43	331.47	37.58	35.65	40
9	09-Dec-21	632.58	839.04	797.9	867.59	320.43	306.23	331.25	37.44	34.52	40.05
10	10-Dec-21	632.58	849.52	819.66	874.41	324.56	313.06	333.91	38.44	35.69	40.6
11	11-Dec-21	607.95	837.35	806.16	856.5	320.76	308.81	328.64	37.8	34.95	39.82
12	12-Dec-21	600.64	836.24	800.46	872.97	320.51	307.48	333.56	37.75	34.9	40.14
13	13-Dec-21	604.31	834.6	807.97	864.35	319.64	309.88	330.95	37.54	35.32	39.8

14	14-Dec-21	631.84	844.63	811.7	873.58	322.74	310.63	333.63	38.01	35.3	40.54
15	15-Dec-21	621.56	842.1	818.69	867.55	322.04	312.48	331.13	37.94	35.48	40.26
16	16-Dec-21	620.1	836.15	781.55	875.89	319.76	301.55	334.06	37.36	33.88	40.5
17	17-Dec-21	578.46	829.89	787.32	852.9	318.76	305.24	327.14	37.57	35.3	39.43
18	18-Dec-21	609.63	836.2	803.68	865.82	320.19	308.65	331.34	37.65	35.11	40.24
19	19-Dec-21	545.61	806.16	719.53	846.48	310.64	282.56	324.75	35.94	30.82	38.89
20	20-Dec-21	542.09	809.88	743.64	848.62	312.1	290.25	325.18	36.29	32.1	38.87
21	21-Dec-21	613.23	838.24	808.61	865.03	320.72	310.91	329.81	37.65	35.39	39.51
22	22-Dec-21	613.58	838.76	791.78	873.78	320.98	304.54	333.8	37.73	34.31	40.61
23	23-Dec-21	621.35	842.06	808.63	871.99	321.96	309.52	333.27	37.83	35.05	40.53
24	24-Dec-21	601.17	827.74	799.07	862.72	317.13	307.5	330.29	36.95	35.05	39.99
25	25-Dec-21	611.19	836.07	806.07	867.23	319.97	308.76	331.41	37.49	34.94	40.08
26	26-Dec-21	603.11	832.48	807.9	861.77	318.92	309.67	329.5	37.33	35.22	39.68
27	27-Dec-21	603.53	834.26	809.25	868.41	319.53	311.18	332.23	37.51	35.72	40.38
28	28-Dec-21	616.38	839.63	784.34	873.96	321.29	303.84	333.91	37.79	35.2	40.65
29	29-Dec-21	605.33	836.17	793.35	864.84	320.08	305.14	330.82	37.6	34.34	40.03
30	30-Dec-21	549.14	815.89	731.6	869	314.26	287.58	332.05	36.72	32.12	40.22
31	31-Dec-21	533.12	810.48	751.49	870.87	312.19	292.52	332.93	36.22	32.49	40.48

		CEMS DAY	NISE VALU	IES FOR TH	IE MONTH	I OF Jan '2	022				
S NO	DATE	UNIT# 2 LOAD(MW)	UNIT#	‡ 2 SOX(mg	g/nm3)	UNIT#	2 NOX(mg	g/nm3)	UNIT# 3	2 DUST(n	ng/nm3)
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Jan-22	549.07	811.73	739.32	861.74	312.64	289.19	329.86	39.8	41.53	43.39
2	02-Jan-22	596.09	827.32	718.12	868.68	317.03	282.14	331.64	39.98	41.26	42.98
3	03-Jan-22	620.04	838.78	820.32	864.86	320.57	313.05	330.68	40.24	41.98	43.71
4	04-Jan-22	617.77	840.56	808.24	866.95	321.56	310.01	331.69	40.53	41.61	43.68
5	05-Jan-22	615.53	834.67	809.55	866.44	319.32	309.84	331.7	39.94	42.08	43.71
6	06-Jan-22	615.63	839.38	805.31	862.5	321.29	309.39	329.93	40.33	40.91	43.37
7	07-Jan-22	612.52	832.61	802.99	859.59	318.62	308.11	329.33	40.33	38.82	43.22

8	08-Jan-22	596	826.16	801.2	867.46	316.62	308.34	331.98	39.67	36.8	42.86
9	09-Jan-22	603.11	836.33	804.86	868.85	320.31	308.39	332.39	39.81	36.9	41.87
10	10-Jan-22	598.56	833.08	775.72	855.79	319.19	300.36	328.46	39.64	39.12	42.36
11	11-Jan-22	610.82	841.85	812.09	866.68	322.38	311.72	331.68	40.15	40.45	43.15
12	12-Jan-22	607.63	833.75	770.8	871.36	319.17	298.43	332.57	39.93	40.4	43.38
13	13-Jan-22	622.63	842.87	814.84	877.85	322.29	311.94	334.94	40.11	39.78	42.89
14	14-Jan-22	595.76	839.21	807.89	865.81	321.79	309.91	331.31	40.91	40.88	42.95
15	15-Jan-22	605.51	834.83	787.09	863.73	319.76	307.62	330.49	40.06	39.72	43.48
16	16-Jan-22	532.61	806.16	718.19	851.11	311.2	282.1	326.25	39.76	42	43.01
17	17-Jan-22	546.26	817.04	727.21	868.22	314.27	285.52	331.64	39.74	37.8	43.53
18	18-Jan-22	619.97	836.93	793.95	875.04	320.07	307.05	334.32	39.43	36.8	42.86
19	19-Jan-22	632.68	848.41	814.21	877.82	324.19	311.28	335.13	40.26	36.9	41.87
20	20-Jan-22	621.47	838.74	792.2	875.73	320.68	305.06	334.45	40.03	36.71	43.13
21	21-Jan-22	605.73	835.29	757.01	868.39	319.88	294.69	331.97	40.34	37.39	43.05
22	22-Jan-22	596.76	828.18	755.61	876.27	317.48	294.43	334.32	39.99	36.51	42.6
23	23-Jan-22	549.93	817.8	736.16	867.04	314.71	289.14	331.1	40.34	37.41	43
24	24-Jan-22	578.87	829.78	733.28	867.89	318.25	287.12	331.69	39.91	38.9	41
25	25-Jan-22	629.6	843.15	811.47	876.48	322.21	310.59	334.29	39.96	37.08	43.68
26	26-Jan-22	581.44	823.86	729.16	859.23	316.31	286.72	329.47	40.01	39.74	43.75
27	27-Jan-22	541.06	811.9	724.19	870.63	312.47	284.41	332.78	40.13	40.79	42.63
28	28-Jan-22	580.18	828	741.92	862.97	317.96	289.43	330.38	40.01	40.38	42.92
29	29-Jan-22	597.66	831.06	804.44	860.1	318.56	309.34	329.6	39.97	39.84	42.25
30	30-Jan-22	613.16	837.7	808.39	871.73	320.52	309.75	332.83	40.09	38.99	42.02
31	31-Jan-22	616.36	836.79	809.52	865.13	320.15	310.11	330.86	39.89	39.12	42.36

		CEMS DAY	NISE VALU	ES FOR TH	IE MONTH	OF FEB '2	022				
S NO	DATE	UNIT# 2 LOAD(MW)	UNIT#	t 2 SOX(mg	j/nm3)	UNIT#	2 NOX(mg	g/nm3)	UNIT#	2 DUST(n	ng/nm3)
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Feb-22	614.85	835.17	777.93	873.25	319.59	302.27	333	37.4	34.56	40.24
2	02-Feb-22	614.03	845.24	808.33	872.01	323.59	309.47	333.2	38.41	35.06	40.49
3	03-Feb-22	585.92	824.7	796.16	861.85	316.38	306.19	329.4	36.92	34.7	39.62
4	04-Feb-22	595.47	834.51	727.76	871.77	319.86	285.28	333.12	37.6	31.33	40.48
5	05-Feb-22	623.52	846.09	806.61	866.85	323.58	309.01	331.54	38.27	35.01	40.23
6	06-Feb-22	611.76	835.93	810.44	874.92	320.03	311.22	334.29	37.58	35.51	40.74
7	07-Feb-22	601.98	831.48	809.25	859.81	318.57	310.66	328.8	37.29	35.24	39.86
8	08-Feb-22	613.47	839.02	811.39	870.56	321.06	310.65	332.89	37.78	35.26	40.49
9	09-Feb-22	609.5	839.88	815.71	865.44	321.64	311.73	330.44	37.97	35.43	39.84
10	10-Feb-22	611.8	834.91	794.32	866.39	319.51	305.28	331.54	37.36	34.42	40.24
11	11-Feb-22	608.66	832.91	777.35	871.19	318.89	304.04	332.43	37.31	34.71	40.31
12	12-Feb-22	626.31	840.57	810.48	871.51	321.17	310.35	332.74	37.64	35.21	40.3
13	13-Feb-22	632.41	845.69	812.74	876.55	323.08	311.96	334.65	38.06	35.8	40.74
14	14-Feb-22	640.78	844.94	826.32	872.55	322.39	314.96	332.98	37.77	35.94	40.31
15	15-Feb-22	635.81	849.73	813.26	882.06	324.65	311.22	336.47	38.45	35.43	41.09
16	16-Feb-22	626.72	843.61	807.94	879.6	322.45	309.89	335.63	38	35.33	40.92
17	17-Feb-22	640.8	851.31	815.81	874.52	324.94	311.82	333.93	38.43	35.46	40.66
18	18-Feb-22	638.89	850.45	818.11	873.5	324.77	312.46	333.73	38.46	35.54	40.46
19	19-Feb-22	632.92	844.2	818.08	873.57	322.58	312.53	333.87	37.99	35.58	40.67
20	20-Feb-22	607.03	832.65	814.99	864.91	318.87	311.82	329.91	37.31	35.45	39.7
21	21-Feb-22	75.58	833.47	833.47	833.47	319.77	319.77	319.77	38.13	38.13	38.13
22	22-Feb-22			Unit	in shutdov	vn conditio	n				
23	23-Feb-22			Unit	in shutdov	vn conditio	n				
24	24-Feb-22			Unit	in shutdov	vn conditio	n				
25	25-Feb-22	398.95	829.49	725.75	872.67	318.26	286.89	333	37.38	32.43	40.56
26	26-Feb-22	646.51	851.83	825.84	877.47	325.08	316	334.71	38.41	36.35	40.76

27	27-Feb-22	648.06	846.83	819.97	875.6	323.09	313.11	334.48	37.95	35.67	40.76
28	28-Feb-22	646.02	839.59	778.98	875.95	324.44	310.22	335.61	40.34	37.41	43

		CEMS DAYV	VISE VALU	ES FOR TH	IE MONTH	OF MAR'2	022				
S.NO.	DATE	UNIT# 2 LOAD(MW)	UNIT#	‡ 2 SOX(mg	g/nm3)	UNIT#	2 NOX(m	g/nm3)	UNIT#	2 DUST(r	ng/nm3)
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Mar-22	632.91	841.66	817.19	868.54	321.54	311.99	331.76	37.71	35.4	40.11
2	02-Mar-22	631.75	843.6	806.16	870.92	322.22	309.2	332.58	37.88	35.13	40.28
3	03-Mar-22	642.85	848.77	823.9	880.45	324.05	314.18	335.91	38.26	35.8	40.97
4	04-Mar-22	641.89	846.66	819.95	872.63	323.19	313.04	333.28	38.02	35.71	40.46
5	05-Mar-22	652.28	850.71	832.04	878.11	324.4	316.69	335.07	38.25	36.21	41.03
6	06-Mar-22	650.11	857.48	820.52	880.69	327.24	313.25	336.03	38.94	35.45	41.01
7	07-Mar-22	645.43	856.67	825.45	875.01	326.99	314.79	334.16	38.93	35.95	40.66
8	08-Mar-22	642.48	851.05	820.99	874.58	324.93	313.25	333.55	38.44	35.64	40.38
9	09-Mar-22	650.34	847.47	800.71	878.6	323.27	307.38	335.16	37.95	34.39	40.63
10	10-Mar-22	631.22	842.89	812.27	866.18	322.08	311.08	331.53	37.87	35.62	40.26
11	11-Mar-22	639.61	846.52	808.99	877.95	323.18	309.62	335.16	38.01	35.06	40.86
12	12-Mar-22	639.85	846.26	814.77	874.97	323.02	311.8	333.97	37.94	35.36	40.56
13	13-Mar-22	639.06	849.34	824.15	871.28	324.37	314.3	332.47	38.33	35.84	40.18
14	14-Mar-22	638.32	844.77	819.07	872.69	322.59	312.6	333	37.91	35.5	40.44
15	15-Mar-22	645.65	847.38	817.48	873.87	323.31	312.22	333.13	38.01	35.48	40.23
16	16-Mar-22	645.26	853.1	828.74	873.8	325.6	316.25	333.91	38.6	36.3	40.66
17	17-Mar-22	648.94	851.03	822.21	877.25	324.67	313.74	334.83	38.32	35.69	40.76
18	18-Mar-22	631.88	840.14	792.28	881.3	321	305	336.16	37.58	34.18	41.01
19	19-Mar-22	628.93	840.96	815.89	865.26	321.48	313.24	329.87	37.76	35.68	39.9
20	20-Mar-22	626.62	841.61	805.77	877.32	321.75	310.62	334.64	37.81	35.67	40.65
21	21-Mar-22	644.65	844.6	824.6	866.57	322.3	314.63	331.08	37.77	35.81	39.97
22	22-Mar-22	628.72	835.76	769.87	872.1	319.39	299.31	333.45	37.2	33.95	40.34
23	23-Mar-22	647.85	848.91	827.95	868.46	323.89	315.34	331.81	38.1	35.95	40.15

24	24-Mar-22	643.3	845.06	823.91	873.42	322.47	314.16	333.67	37.85	35.79	40.58
25	25-Mar-22	643.09	846.88	820.94	869.26	323.18	313.27	331.76	38	35.65	40.03
26	26-Mar-22	650.55	853.89	829.68	877.02	325.76	315.79	334.93	38.62	36.11	40.84
27	27-Mar-22	645.55	849.47	827.7	877.03	324.13	315.89	334.69	38.23	36.23	40.71
28	28-Mar-22	660.11	855.18	828.8	878.26	325.93	315.65	334.97	38.52	36.03	40.72
29	29-Mar-22	643.45	843.28	801.09	869.49	321.87	307.36	332.15	37.68	34.76	40.22
30	30-Mar-22	634.71	846.93	819.91	870.36	323.58	313.08	332.49	38.19	35.67	40.41
31	31-Mar-22	647.88	851.85	831.8	883.4	325.05	316.53	336.74	38.44	36.15	41.08

<u>UNIT #3 (CEMs)</u>

CEEMS DAYUSE VALUES FOR THE MONTH FOCT 2021 S.NO. DATE UNIT# 3 LOAD(MW) UNIT# 3 SOX(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>											
S NO	DATE	UNIT# 3 LOAD(MW)	UNIT#	t 3 SOX(mg	g/nm3)	UNIT#	3 NOX(mg	g/nm3)	UNIT#	3 DUST(m	ig/nm3)
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Oct-21	504.02	916.12	880.57	943.75	379.38	366.33	389.5	39.62	36.96	41.68
2	02-0ct-21	512.69	920.36	900.86	948.81	380.71	374.36	391.16	39.93	38.6	42.03
3	03-0ct-21	524.68	928.07	889.79	964.32	383.43	369.76	396.28	40.48	37.65	43.1
4	04-0ct-21	582.03	945.32	914.74	982.89	388.39	377.12	402.25	41.5	38.98	44.36
5	05-0ct-21	573.15	943.56	898.23	973.3	388.02	371.64	399.21	41.43	38.09	43.67
6	06-0ct-21	544.66	933.31	905.28	959.08	384.82	374.7	394.83	40.81	38.7	42.78
7	07-0ct-21	570.12	942.56	912.14	973.11	387.6	376.4	398.83	41.38	39.08	43.49
8	08-0ct-21	530.39	950.99	921.49	977.4	390.29	378.9	399.64	41.95	39.64	43.85
9	09-0ct-21			Unit	in shutdov	vn conditio	n				
10	10-0ct-21			Unit	in shutdov	vn conditio	n				
11	11-Oct-21		Unit in shutdown condition								
12	12-Oct-21	64.57	890.24	868.62	918.09	371.11	365.28	378.14	38.03	36.58	39.93
13	13-Oct-21	557.31	938.1	915.16	966.12	386.16	377.24	396.68	41.07	39.27	43.19
14	14-Oct-21	553.42	936.07	900.75	967.63	385.72	372.87	397.11	40.96	38.33	43.6
15	15-Oct-21	522.13	916.36	870.92	973.34	379.05	364.38	398.36	39.61	36.55	43.58
16	16-Oct-21	524.65	927.77	885.88	961.97	383.13	368.11	395.62	40.4	37.34	42.96
17	17-Oct-21	551.93	933.65	891.98	960.28	384.76	369.84	393.81	40.76	37.7	42.64
18	18-Oct-21	543.92	933.51	876.7	969.36	384.94	365.37	397.83	40.8	36.74	43.43
19	19-0ct-21	574.25	946.5	912.77	982.82	389.11	377.18	401.2	41.66	39.21	44.28
20	20-0ct-21	563.1	933.91	876.54	978.96	384.59	364.9	400.76	40.75	36.66	44.06
21	21-Oct-21	548.15	933.48	887.47	980.66	384.98	369.03	401	40.77	37.5	44.34
22	22-0ct-21	467.86	899.3	840.34	965.6	373.94	353.89	396.22	38.45	34.31	43.11
23	23-0ct-21	564.77	938.19	880.54	976.83	386.19	366.95	399.65	41.11	37.05	44.2
24	24-0ct-21	518.74	921.14	883.69	964.16	380.78	367.47	396.51	39.92	37.19	43.13

25	25-0ct-21	557.17	941.17	889.99	970.52	387.38	369.46	398.01	41.31	37.51	43.81
26	26-0ct-21	563.87	939.35	888.25	980.72	386.58	368.64	401.49	41.14	37.45	44.2
27	27-Oct-21	557.1	933.43	906.21	968.65	384.51	375.24	397.19	40.72	38.4	43.32
28	28-Oct-21	553.2	935.8	903.88	977.17	385.45	373.67	400.13	40.97	38.45	43.93
29	29-0ct-21	536.15	930.35	896.02	952.38	383.94	371.55	392.14	40.59	38.04	42.24
30	30-0ct-21	540.89	931.27	897.27	975.76	384.1	372.93	399.64	40.6	37.95	43.83
31	31-0ct-21	547.63	930.95	902.88	962.35	383.77	373.74	395.34	40.56	38.5	42.92

	CEMS DAYWISE VALUES FOR THE MONTH OF NOV '2021 UNIT# 3 LOAD(MW) UNIT# 3 SOX(mg/nm3) UNIT# 3 NOX(mg/nm3) UNIT# 3 DUST(mg/nm3)												
S NO	DATE	UNIT# 3 LOAD(MW)	UNIT#	t 3 SOX(mg	g/nm3)	UNIT#	3 NOX(mg	g/nm3)	UNIT#	3 DUST(m	ig/nm3)		
5.110.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX		
1	01-Nov-21	457.08	895.5	861.24	928.43	372.73	361.38	383.88	38.26	35.85	40.6		
2	02-Nov-21	498.04	916.52	850.02	950.28	379.68	356.83	391.98	39.67	35.13	42.18		
3	03-Nov-21	506.14	916.24	882.61	949.66	379.29	367.31	391.64	39.61	37.15	42.12		
4	04-Nov-21	505.53	914.86	887.06	967.66	378.75	369.9	397.51	39.5	37.33	43.35		
5	05-Nov-21	446.96	896.77	861.62	950.46	373.51	360.31	392.23	38.38	35.68	42.22		
6	06-Nov-21	497.11	918.69	852.01	980.05	380.41	357.7	401.07	39.87	35.11	44.12		
7	07-Nov-21	541.86	932.49	875.47	987.69	384.35	365.88	403.36	40.67	36.8	44.61		
8	08-Nov-21	599.14	951.99	903.16	984.64	390.41	373.48	402.56	41.96	38.47	44.58		
9	09-Nov-21	620.04	965.8	928.26	997.96	395.26	380.94	406.87	42.97	40.06	45.34		
10	10-Nov-21	615.4	931.16	763.41	994.79	379.09	307.81	405.53	41.22	32.24	45.08		
11	11-Nov-21	592.43	830.48	740.53	873.79	330.06	301.33	345.48	36.88	31.08	39.83		
12	12-Nov-21	171.39	748.81	716.44	768.95	304.44	292.65	312.44	31.52	29.05	33.25		
13	13-Nov-21			Unit	in shutdov	vn conditio	n						
14	14-Nov-21			Unit	in shutdov	vn conditio	n						
15	15-Nov-21	318.47	819.18	728.34	852.06	326.68	296.78	338.91	36.1	29.53	38.65		
16	16-Nov-21	619.58	839.55	812.68	868.82	332.83	322.45	343.67	37.51	35.39	39.68		
17	17-Nov-21	592.27	832.66	784.57	865.79	330.91	314.05	343.04	37.02	33.86	39.53		
18	18-Nov-21	621.22	846.15	794.25	876.2	335.37	318.13	346.46	38.03	34.39	40.25		

19	19-Nov-21	598.85	833.72	801.61	866.02	331.18	318.94	343.13	37.11	34.64	39.55
20	20-Nov-21	600.66	833.64	796.37	855.23	331.02	317.31	339.25	37.12	34.65	38.75
21	21-Nov-21	611.16	840.87	776.18	862.74	333.6	312.29	341.73	37.6	33.16	39.27
22	22-Nov-21	626.43	844.93	814.55	872.49	334.69	323.59	345.08	37.93	35.55	39.97
23	23-Nov-21	635.61	847.26	803.2	874.15	335.35	319.39	345.78	38	34.98	40.11
24	24-Nov-21	645.47	853.18	821.49	883.93	337.36	325.2	348.82	38.45	35.97	40.75
25	25-Nov-21	645.13	847.36	818.68	878.71	335.14	324.27	347.16	38.02	35.48	40.4
26	26-Nov-21	646.22	848.11	811.59	879.3	335.41	322.23	347.12	38.04	35.33	40.41
27	27-Nov-21	642.54	851.02	810.56	875.57	336.65	322.12	346.02	38.24	35.16	40.17
28	28-Nov-21	610.21	832.95	804.17	856.3	330.45	321.14	338.5	37	35.09	38.47
29	29-Nov-21	598.59	830.82	762.85	875.14	329.79	310.6	345.58	36.83	32.73	40.09
30	30-Nov-21	620.37	840.87	771.41	876.03	333.18	311.18	346.28	37.52	32.9	40.22

CEMS DAYWISE VALUES FOR THE MONTH OF DEC '2021 S.NO. DATE UNIT# 3 LOAD(MW) UNIT# 3 SOX(mg/nm3) UNIT# 3 NOX(mg/nm3) UNIT# 3 DUST(m/nm3) 1 01-Dec-21 606.15 838.79 753.58 878.28 332.99 306.7 347.07 37.42 31.66 40.38 2 02-Dec-21 552.35 818.06 739.34 867.27 326.02 299.66 342.65 35.98 30.54 39.14 3 03-Dec-21 635.26 844.8 822.45 872.94 334.45 326.2 345.34 37.84 36.06 40.02 4 04-Dec-21 638.1 847.9 792.41 882.55 335.55 316.41 348.43 38.03 34.09 40.67 5 05-Dec-21 629.91 846.65 822.54 873.69 335.34 326.56 345.31 38.04 36.2 40.02 6 06-Dec-21 629.91 846.65 822.54 873.69 335.41 38.04 35.21 39.											
S NO	DATE	UNIT# 3 LOAD(MW)	UNIT#	* 3 SOX(mg	g/nm3)	UNIT#	3 NOX(m	g/nm3)	UNIT#	3 DUST(m	ng/nm3)
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Dec-21	606.15	838.79	753.58	878.28	332.99	306.7	347.07	37.42	31.66	40.38
2	02-Dec-21	552.35	818.06	739.34	867.27	326.02	299.66	342.65	35.98	30.54	39.14
3	03-Dec-21	635.26	844.8	822.45	872.94	334.45	326.2	345.34	37.84	36.06	40.02
4	04-Dec-21	638.1	847.9	792.41	882.55	335.55	316.41	348.43	38.03	34.09	40.67
5	05-Dec-21	629.91	846.65	822.54	873.69	335.34	326.56	345.31	38.04	36.2	40.02
6	06-Dec-21	624.22	839.79	815.88	872.26	332.71	323.39	344.96	37.43	35.41	39.95
7	07-Dec-21	622.29	841.94	813.95	863.18	333.65	323.17	342.24	37.68	35.52	39.36
8	08-Dec-21	619.3	838.15	791.12	877.58	332.31	315.59	346.45	37.37	33.94	40.27
9	09-Dec-21	638.14	851.72	830.76	872.8	337.02	330.25	344.69	38.37	36.44	39.91
10	10-Dec-21	631.45	845.57	813.04	875.97	334.75	323.37	345.91	37.9	35.54	40.16
11	11-Dec-21	643.14	851.23	830.65	876.38	336.64	327.95	346.13	38.22	36.56	40.2
12	12-Dec-21	647.1	847.43	823.08	870.27	335.09	325.59	343.68	37.93	36.06	39.71
13	13-Dec-21	644.88	844.13	817.55	871.25	333.88	324.05	344.31	37.69	35.72	39.83

14	14-Dec-21	643.61	849.99	814.77	879.21	336.19	323.35	347.23	38.2	35.56	40.42
15	15-Dec-21	645.29	847.52	819.41	878.02	335.08	324.66	346.8	38.01	36.12	40.33
16	16-Dec-21	635.53	844.24	804.84	874.97	334.18	322.69	345.69	37.76	35.69	40.11
17	17-Dec-21	624.98	836.48	791.67	869.07	331.29	315.83	344	37.15	34.1	39.74
18	18-Dec-21	628.65	846.1	792.44	868.99	335.17	316.27	343.9	37.94	34.07	39.59
19	19-Dec-21	569.12	816.52	723.7	862.01	325.29	295.07	341.54	35.92	29.31	39.39
20	20-Dec-21	575.75	826.8	720.83	873.62	329.15	293.78	345.08	36.67	29.3	39.99
21	21-Dec-21	606.86	833.43	790.14	864.91	330.76	316.13	341.49	37.03	34.01	39.14
22	22-Dec-21	637.11	844.83	816.51	873.16	334.3	323.7	345.38	37.84	35.65	40.24
23	23-Dec-21	638.21	850.26	824.54	874.47	336.38	325.99	345.82	38.18	36.15	40.12
24	24-Dec-21	640.6	849.84	823.54	873.84	336.23	326.44	345.36	38.17	36.2	39.9
25	25-Dec-21	640.68	849.1	823.6	881.14	335.88	326.03	347.97	38.11	36.14	40.57
26	26-Dec-21	626.91	841.08	811.74	873.89	333.12	322.24	345.56	37.53	35.34	40.07
27	27-Dec-21	618.69	838.78	802.89	870.39	332.54	319.87	344.3	37.43	34.82	39.81
28	28-Dec-21	636.85	848.1	812.87	873.7	335.55	324.61	345.12	38.03	35.88	40
29	29-Dec-21	619.91	846	787.36	876.91	335.19	316.88	346.53	37.96	34.07	40.18
30	30-Dec-21	553.07	817.02	742.25	876.91	325.96	302.14	346.54	35.96	30.98	40.27
31	31-Dec-21	547.57	819.33	755.43	873.5	326.74	306.91	345.3	36.15	32.01	40.02

		CEMS DAY	VISE VALU	ES FOR TH	IE MONTH	OF JAN '2	2022				
S NO	DATE	UNIT# 3 LOAD(MW)	UNIT#	* 3 SOX(mg	g/nm3)	UNIT#	3 NOX(mg	g/nm3)	UNIT#	3 DUST(m	ig/nm3)
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Jan-22	558.5	815.09	723.65	868.85	325.12	295.5	344.11	35.8	29.62	39.75
2	02-Jan-22	600.19	832.8	726.83	877.51	330.65	296.5	346.75	37.05	29.6	40.32
3	03-Jan-22	633.93	845.45	811.11	874	334.46	323.05	345.73	37.83	35.45	39.98
4	04-Jan-22	645.15	854.98	825.11	875.83	338.07	326.81	345.95	38.5	35.87	40.15
5	05-Jan-22	637.54	846.94	813.92	873.64	335.13	322.92	345.54	38.03	35.48	40.06
6	06-Jan-22	632.95	841.26	783.73	874.69	333.13	313.58	345.86	37.59	33.62	40.13
7	07-Jan-22	646.34	850.49	819.37	879.06	336.31	324.46	347.35	38.23	35.82	40.44

8	08-Jan-22	646.14	843.5	820.74	871.16	333.45	325.25	344.27	37.67	36.15	39.82
9	09-Jan-22	634.8	853.29	818.55	871.98	337.75	324.23	345.07	38.53	35.77	39.9
10	10-Jan-22	630.96	850.27	786.11	879.6	336.62	316.29	347.33	38.29	33.96	40.44
11	11-Jan-22	639.85	843.51	814.31	877.52	333.76	322.84	346.64	37.67	35.48	40.3
12	12-Jan-22	642.24	853.74	808.46	878.89	337.59	322.04	347.29	38.41	35.25	40.42
13	13-Jan-22	640.06	849.69	816.84	873.49	336.11	324.96	345.04	38.18	35.9	39.98
14	14-Jan-22	618.2	847.72	820.55	874.72	335.89	325.44	345.89	38.05	35.99	40.13
15	15-Jan-22	620.4	844.88	756.02	878.51	334.87	307.06	346.76	37.86	31.99	40.1
16	16-Jan-22	560.94	812.98	732.2	865.42	324.45	298.07	342.91	35.65	29.75	39.51
17	17-Jan-22	562.72	823.69	725.9	879.97	327.96	295.58	347.57	36.44	29.67	40.49
18	18-Jan-22	632.98	843.34	779.86	875.41	333.85	312.25	345.76	37.85	33.55	40.11
19	19-Jan-22	648.11	846.19	817.84	874.26	334.52	324.12	345.26	37.79	35.53	40.03
20	20-Jan-22	646.63	848.24	820.34	875.83	335.42	324.79	345.67	38.04	36.24	40.35
21	21-Jan-22	609.61	832.67	764.13	863.29	330.44	308.2	341.42	36.97	32.31	39.24
22	22-Jan-22	617.05	839.59	778.98	875.95	332.9	312.24	346.36	37.49	33.2	40.23
23	23-Jan-22	561.25	822.12	762.94	870.98	327.65	310.55	344.4	36.37	32.24	39.83
24	24-Jan-22	602.11	836.91	746.7	878.04	331.92	303.25	346.83	37.29	30.95	40.34
25	25-Jan-22	627.74	846.59	803.34	873.77	335.41	319.91	345.22	37.97	34.83	40.01
26	26-Jan-22	584.01	823.31	728.46	870.77	327.52	296.99	343.89	36.35	29.76	39.62
27	27-Jan-22	540.62	808.78	724.37	864.96	322.76	295.08	342.33	35.38	29.57	39.41
28	28-Jan-22	590.49	829.3	739.61	868.62	329.64	300.06	344.02	36.83	30.61	39.73
29	29-Jan-22	632.34	846.59	799.94	877.15	335.08	318.72	346.57	37.93	34.58	40.28
30	30-Jan-22	609.8	835.12	806.38	869.98	331.3	320.74	343.92	37.16	35.02	39.74
31	31-Jan-22	623.24	839.26	807.52	871.53	332.5	320.68	344.66	37.43	34.95	39.89

	CEEMS DAYWISE VALUES FOR THE MONTH OF FEB '2022 DATE UNIT# 3 LOAD(MW) UNIT# 3 SOX(mg/nm3) UNIT# 3 NOX(mg/nm3) UNIT# 3 DUST(mg/nm3) 01-Feb-22 620.51 836.66 811.74 873.15 331.65 323.4 345.4 37.23 35.57 40.03 02-Feb-22 622.76 842.79 817.32 863.02 333.97 326.04 341.79 37.71 35.9 39.04 03-Feb-22 612.28 838.44 782.98 875.95 332.55 315.1 346.25 37.4 33.72 40.21 04-Feb-22 602.55 839.88 754.8 878.2 333.35 306.13 346.91 43.1 41.26 38.93 05-Feb-22 625.96 841.23 814.48 869.9 333.24 323.73 315.72 41.91 40.19 38.34 06-Feb-22 629.84 844.84 797.93 877.41 334.5 350.03 305.41 42.61 40.86 38.3 07-Feb-22 629.84 84											
C N O	DATE	UNIT# 3 LOAD(MW)	UNIT#	‡ 3 SOX(mg	g/nm3)	UNIT#	3 NOX(mg	g/nm3)	UNIT#	3 DUST(m	ng/nm3)	
5.NU.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX	
1	01-Feb-22	620.51	836.66	811.74	873.15	331.65	323.4	345.4	37.23	35.57	40.03	
2	02-Feb-22	622.76	842.79	817.32	863.02	333.97	326.04	341.79	37.71	35.9	39.04	
3	03-Feb-22	612.28	838.44	782.98	875.95	332.55	315.1	346.25	37.4	33.72	40.21	
4	04-Feb-22	602.55	839.88	754.8	878.2	333.35	306.13	346.91	43.1	41.26	38.93	
5	05-Feb-22	625.96	841.23	814.48	869.9	333.24	323.73	315.72	41.91	40.19	38.34	
6	06-Feb-22	611.91	838.07	809.99	863.66	332.54	338.21	313.58	43.2	41.11	38.61	
7	07-Feb-22	629.84	844.84	797.93	877.41	334.5	350.03	305.41	42.61	40.86	38.3	
8	08-Feb-22	624.42	842.01	811.89	868.26	333.52	361.96	303.17	42.8	40.75	38.89	
9	09-Feb-22	622.92	842.53	820.8	865.85	333.91	357.12	304.63	43.53	41.45	38.61	
10	10-Feb-22	627.93	845.09	817.15	871.96	334.75	350.67	312.36	42.18	40.48	38.65	
11	11-Feb-22	606.99	835.77	741.26	868.25	331.74	300.73	343.47	37.23	30.74	39.84	
12	12-Feb-22	632.17	844.41	817.39	873.67	334.25	325.19	345.15	37.81	35.9	40	
13	13-Feb-22	412.07	839.58	729.47	875.12	332.88	296.79	345.79	37.55	29.92	40.12	
14	14-Feb-22			Unit	in shutdov	vn conditio	DN N					
15	15-Feb-22			Unit	in shutdov	vn conditio	n					
16	16-Feb-22			Unit	in shutdov	vn conditio	n					
17	17-Feb-22			Unit	in shutdov	vn conditio	DU					
18	18-Feb-22			Unit	in shutdov	vn conditio	n					
19	19-Feb-22			Unit	in shutdov	vn conditio	DU					
20	20-Feb-22			Unit	in shutdov	vn conditio	n					
21	21-Feb-22	188.66	826.79	751.89	867.39	329.08	306.71	343.54	36.61	31.87	39.63	
22	22-Feb-22	647.92	851.09	826.49	880.07	336.43	326.56	347.59	38.24	36.27	40.49	
23	23-Feb-22	654.77	849.92	827.75	882.81	335.82	326.98	348.46	38.11	36.36	40.68	
24	24-Feb-22	654.21	855.32	830.61	881.11	337.97	328.09	347.83	38.52	36.58	40.55	
25	25-Feb-22	649.4	854.38	825.47	879.5	337.75	326.48	347.43	38.46	36.24	40.36	
26	26-Feb-22	649.2	852.97	826.6	875	337.17	326.7	346.02	38.39	36.29	40.16	

27	27-Feb-22	644.74	851.69	826.54	872.06	336.87	326.77	344.52	38.37	36.3	40.01
28	28-Feb-22	640.82	849.5	818.89	876.32	336.02	325.38	346.49	38.19	35.95	40.26

	CEMS DAYWISE VALUES FOR THE MONTH OF MAR '2022										
S NO	DATE	UNIT# 3 LOAD(MW)	UNIT#	* 3 SOX(mg	g/nm3)	UNIT#	3 NOX(m	g/nm3)	UNIT#	3 DUST(m	ng/nm3)
5.100.	DATE	AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Mar-22	642.71	848.21	814.02	876.51	335.52	323.77	346.46	38.01	35.62	40.25
2	02-Mar-22	637.19	847.56	802.15	875.56	335.4	319.4	346.17	38.01	34.72	40.19
3	03-Mar-22	650.87	854.39	827.89	876.54	337.71	327.33	346.06	38.51	36.41	40.19
4	04-Mar-22	651.11	849.21	823.47	875.94	335.64	325.71	345.98	38.13	36.08	40.17
5	05-Mar-22	653.36	846.68	827.91	875.31	334.52	327.15	345.81	37.83	36.39	40.13
6	06-Mar-22	642.76	849.72	820.08	869.45	336.15	325.29	344.08	38.14	35.96	39.75
7	07-Mar-22	647.26	849.53	826.12	873.19	335.9	326.52	345.16	38.15	36.26	39.99
8	08-Mar-22	642.98	851.32	822.89	879.33	336.8	325.69	347.29	38.3	36.25	40.43
9	09-Mar-22	658.33	854.67	820.56	878.2	337.58	325.63	346.85	38.5	36.3	40.34
10	10-Mar-22	640.92	852.74	824.49	876.85	337.35	326.25	346.57	38.46	36.19	40.28
11	11-Mar-22	653.47	856.04	817.9	878.76	338.31	324.49	347.16	38.65	35.32	40.4
12	12-Mar-22	643.38	848.31	813.72	879.19	335.42	323.56	347.21	38.02	35.14	40.42
13	13-Mar-22	646.1	848.53	824.45	879.13	335.6	326.73	347.06	38.07	36.26	40.39
14	14-Mar-22	644.57	844.66	826.75	870.94	334	326.93	344.12	37.75	36.34	39.79
15	15-Mar-22	658.4	852.99	829.56	880.3	336.9	327.52	347.74	38.32	36.47	40.52
16	16-Mar-22	352.76	850.78	828.79	871.41	336.18	327.81	344.43	38.16	36.22	40.17
17	17-Mar-22			Unit	in shutdov	wn conditio	nc				
18	18-Mar-22	Unit in shutdown condition									
19	19-Mar-22	235.1	828.95	731.3	868.12	329.6	297.51	343.64	36.83	30.54	39.67
20	20-Mar-22	642.84	844.47	825.01	876.15	333.96	326.29	346.27	37.75	36.21	40.22
21	21-Mar-22	643.49	850.85	825.29	875.4	336.54	326.2	346.06	38.33	36.19	40.17
22	22-Mar-22	641.74	851.2	820.86	872.08	336.74	327.43	344.59	38.3	36.47	39.9
23	23-Mar-22	625.68	641.74 851.2 820.86 872.08 550.74 527.45 544.59 50.5 50.47 55.5 625.68 847.73 821.25 868.5 335.98 326.71 343.6 38.09 36.2 39.77								

24	24-Mar-22	638.77	849.43	825.5	872.88	336.15	326.52	345.27	38.19	36.25	39.96
25	25-Mar-22	654.25	855.96	831.98	877.49	338.17	328.83	346.4	38.57	36.72	40.26
26	26-Mar-22	647.18	846.63	818.42	873.96	334.77	324.09	345.9	37.92	35.74	40.13
27	27-Mar-22	658.59	855.47	829.09	879.73	337.85	327.41	347.51	38.52	36.45	40.47
28	28-Mar-22	660.17	858.38	830.97	881.22	338.97	328.23	347.87	38.75	36.61	40.56
29	29-Mar-22	640.39	848.32	817.43	875.52	335.72	326.01	345.77	38.08	36.02	40.13
30	30-Mar-22	639.75	843.93	822.45	871.44	333.92	325.44	344.89	37.74	36.14	39.92
31	31-Mar-22	636.87	846.14	816.96	870.7	334.92	324.83	343.98	37.98	35.83	39.76

<u>UNIT #4 (CEMs)</u>

	CEMS DAYWISE VALUES FOR THE MONTH OF OCT '2021												
S.NO.	DATE	UNIT# 4 LOAD(MW)	UNIT#	# 4 SOX(mg	/nm3)	UNIT#	4 NOX(mg	g/nm3)	DU	UNIT# 4 ST(mg/nr	n3)		
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX		
1	01-Oct-21	490.78	901.61	848.23	937.27	399.22	378.98	414.62	37.74	33.91	40.72		
2	02-0ct-21	490.01	905.32	843.92	938.79	400.95	377.72	415.26	38.05	33.69	40.86		
3	03-0ct-21	487.25	899.94	879.42	927.03	398.75	389.59	410.01	37.63	35.86	39.82		
4	04-0ct-21	477.65	901.19	873.1	953.32	399.93	387.62	420.35	37.9	35.5	41.79		
5	05-0ct-21	514.57	912.3	882.75	940.8	403.04	390.43	416.13	38.43	35.99	41.02		
6	06-0ct-21	562.51	929.37	904.34	961.83	408.4	397.57	422.51	39.36	37.29	42.15		
7	07-0ct-21	560.68	929.53	907.28	952.2	408.67	398.65	419.66	39.4	37.83	41.64		
8	08-0ct-21	522.28	915.65	856.88	946.06	404.27	382.17	416.16	38.69	34.51	40.93		
9	09-0ct-21	523.57	916.31	880.92	947.31	404.41	389.92	418.4	38.65	35.91	41.44		
10	10-0ct-21	519.39	919.01	893.93	938.04	406.04	395.01	414.77	39.02	36.87	41.12		
11	11-Oct-21	553.46	936.44	903.2	954.4	412.29	399.55	419.99	40.16	37.61	41.72		
12	12-Oct-21	557.08	933.44	912.37	950.72	410.81	400.77	419.01	39.9	37.83	41.55		
13	13-Oct-21	556.69	930.75	908.04	948.37	409.64	398.9	417.55	39.68	37.54	41.22		
14	14-Oct-21	532.93	919.11	895.43	943.46	405.31	395.3	416.35	38.82	36.92	41.02		
15	15-Oct-21	494.03	904.86	862.14	944.96	400.92	384.82	416.44	38.1	35.04	41.08		
16	16-Oct-21	494.47	906.86	851.63	941.85	401.52	380.22	416.32	38.14	34.14	41.04		
17	17-Oct-21	540.53	924.11	874.72	957.35	407.1	388.23	421.71	39.18	35.4	42.04		
18	18-Oct-21	299.75	893.72	871.53	909.83	397.36	386.95	404.91	37.4	35.37	38.92		
19	19-0ct-21	363.31	859.97	825	941.71	386.23	371.56	415.86	35.36	32.56	40.7		
20	20-0ct-21	534.09	923.82	887.7	961.24	407.56	392.1	421.61	39.3	36.3	41.98		
21	21-Oct-21	541.81	922.13	880.91	962.86	406.5	389.82	423.42	39.13	36.03	42.22		
22	22-0ct-21	433.42	885.18	843.67	924.85	394.92	379.14	410.84	37	34.03	40.05		
23	23-0ct-21	482.95	911.67	888.7	933.84	403.41	392.7	412.33	38.53	36.62	40.25		

24	24-0ct-21	489.64	898.72	857.85	928.44	398.07	382.23	411.42	37.53	34.5	40.13
25	25-Oct-21	517.78	917.2	863.35	940.32	404.85	384.54	412.57	38.82	34.95	40.29
26	26-0ct-21	544.99	923.45	902.07	949.31	406.81	399.14	418.03	39.12	37.58	41.31
27	27-Oct-21	447.52	886.93	837.84	922.46	394.99	375.77	408.34	36.96	33.34	39.51
28	28-0ct-21	477.43	901.05	855.58	942.53	399.39	381.42	415.43	37.78	34.35	40.82
29	29-0ct-21	508.29	914.25	872.62	954.61	404.06	387.21	419.83	38.67	35.42	41.81
30	30-0ct-21	477.05	899.91	871.94	941.91	399.08	388.58	415.19	37.69	35.72	40.42
31	31-0ct-21	471.57	901.23	876.59	922.15	399.96	391.51	410.03	37.88	36.35	39.91

	CEMS DAYWISE VALUES FOR THE MONTH OF NOV '2021 UNIT# 4 LOAD(MW) UNIT# 4 SOX(mg/nm3) UNIT# 4 NOX(mg/nm3)												
S.NO.	DATE	UNIT# 4 LOAD(MW)	UNIT#	# 4 SOX(mg	/nm3)	UNIT#	4 NOX(mg	g/nm3)	UNIT# 4 DUST(mg/nm3)				
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX		
1	01-Nov-21	451.98	893.26	868.57	935.71	397.52	385.7	413.83	37.48	35.13	40.56		
2	02-Nov-21	495.76	909.48	849.62	956.79	402.49	379.43	420.05	38.36	33.99	41.66		
3	03-Nov-21	487.68	902.74	880.07	943.25	399.99	390	415.97	37.89	35.92	40.93		
4	04-Nov-21	426.05	883.14	845.51	921.79	394.25	378.43	409.59	36.88	33.83	39.81		
5	05-Nov-21	420.98	883.52	854.84	904.08	394.42	381.82	403.45	36.92	34.46	38.68		
6	06-Nov-21	439.24	884.75	842.48	924.74	393.85	377.3	406.53	36.76	33.62	39.21		
7	07-Nov-21	474.31	4.31 903.74 857.65 977.07 400.98 384.49 426.97 38.7								42.93		
8	08-Nov-21	518.64	921.93	859.36	980.55	406.99	383.92	427.95	39.2	34.81	43.1		
9	09-Nov-21	499.95	870.18	712.21	977.18	383.45	312.67	427.19	36.86	29.95	42.98		
10	10-Nov-21	297.82	595.24	697.77	692.71	261.32	218.53	304.11	25.03	20.93	29.13		
11	11-Nov-21			Unit	in shutdow	n condition		·					
12	12-Nov-21		Unit in shutdown condition										
13	13-Nov-21			Unit	in shutdow	n condition	l						
14	14-Nov-21			Unit	in shutdow	n condition	l						
15	15-Nov-21			Unit	in shutdow	n condition							
16	16-Nov-21		Unit in shutdown condition										

17	17-Nov-21		Unit in shutdow	n condition									
18	18-Nov-21		Unit in shutdow	n condition									
19	19-Nov-21		Unit in shutdow	n condition									
20	20-Nov-21		Unit in shutdow	n condition									
21	21-Nov-21		Unit in shutdow	n condition									
22	22-Nov-21		Unit in shutdow	n condition									
23	23-Nov-21		Unit in shutdow	n condition									
24	24-Nov-21		Unit in shutdow	n condition									
25	25-Nov-21		Unit in shutdow	n condition									
26	26-Nov-21		Unit in shutdown condition										
27	27-Nov-21		Unit in shutdow	n condition									
28	28-Nov-21		Unit in shutdow	n condition									
29	29-Nov-21		Unit in shutdow	n condition									
30	30-Nov-21		Unit in shutdow	n condition									
		CEMS DA	YWISE VALUES FOR THE MONTH	OF DEC '2021									
S.NO.	DATE	UNIT# 4 LOAD(MW)	UNIT# 4 SOX(mg/nm3)	UNIT# 4 NOX(mg/nm3)	UNIT# 4 DUST(mg/nm3)								
1	01-Dec-21		Unit in shutdow	n condition	· · · ·								
2	02-Dec-21		Unit in shutdown condition										
3	03-Dec-21		Unit in shutdow	n condition									
4	04-Dec-21		Unit in shutdow	n condition									
5	05-Dec-21		Unit in shutdow	n condition									
6	06-Dec-21		Unit in shutdow	n condition									
7	07-Dec-21		Unit in shutdow	In condition									

	0. 200 2.												
8	08-Dec-21			Unit	in shutdow	n condition							
9	09-Dec-21		Unit in shutdown condition										
10	10-Dec-21	76.27	76.27 764.89 720.42 792.4 336.32 320.58 346.01 35.38 32.42 37.14										
11	11-Dec-21	546.39	814.08	723.7	866.42	351.39	317.55	370.65	38.09	31.65	41.63		

12	12-Dec-21	516.62	802.64	730.79	868.32	347.32	320.38	371.78	37.26	32.06	41.86
13	13-Dec-21	534.45	802.3	731.47	859.57	345.94	320.14	367.2	36.92	32.12	40.94
14	14-Dec-21	534.07	805.66	727.73	857.96	347.69	319.04	367.04	37.31	31.93	40.95
15	15-Dec-21	536.41	806.08	737.44	859.47	347.99	322.02	368.94	37.35	32.46	41.35
16	16-Dec-21	534.27	808.92	734.78	864.48	349.19	323.16	370.32	37.53	32.78	41.58
17	17-Dec-21	530.74	807.32	736.97	861.67	348.92	323.13	368.62	37.57	32.73	41.33
18	18-Dec-21	500.14	796.96	728.82	865.98	345.69	319.61	370.83	37	32.05	41.68
19	19-Dec-21	405.18	749.87	718.88	790.59	328.91	316.25	343	33.89	31.43	36.46
20	20-Dec-21	483.58	788.49	719.41	853.13	342.54	316.18	365.86	36.34	31.41	40.74
21	21-Dec-21	484.1	786.49	735.07	863.64	341.54	321.99	369.98	36.21	32.5	41.52
22	22-Dec-21	561.91	814.61	741	860.04	350.23	324.46	367.68	37.71	32.97	41.07
23	23-Dec-21	562.23	820.01	734.39	872.93	353.02	321.89	373.31	38.27	32.49	42.14
24	24-Dec-21	559.34	819.48	737.46	873.01	352.84	323.49	373.29	38.3	32.81	42.13
25	25-Dec-21	588.08	830.13	743.31	868.21	356.28	324.21	371.06	38.97	32.87	41.69
26	26-Dec-21	578.85	821.3	748.34	865.51	352.73	325.97	369.99	38.16	33.2	41.49
27	27-Dec-21	565.29	817.43	725.56	869.83	351.49	318.04	371.94	38.01	32.12	41.87
28	28-Dec-21	589.58	828.9	723.25	862.41	355.77	318.5	369.75	38.79	31.88	41.24
29	29-Dec-21	547.51	811.74	726.79	861.64	349.75	319.02	368.75	37.63	31.89	41.27
30	30-Dec-21	533.29	804.15	720.42	858.56	346.99	316.84	367.29	37.18	31.54	40.99
31	31-Dec-21	517.12	800.37	719.16	867.08	346.09	316.12	371.31	36.96	31.4	41.77

	CEMS DAYWISE VALUES FOR THE MONTH OF JAN '2022											
S.NO.	DATE	UNIT# 4 LOAD(MW)	UNIT#	# 4 SOX(mg	/nm3)	UNIT#	‡ 4 NOX(mg	g/nm3)	DU	UNIT# 4 ST(mg/nr	n3)	
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX	
1	01-Jan-22	533.79	817.04	727.21	868.22	313.32	300.56	334.76	42.46	38.71	42.8	
2	02-Jan-22	535.88	836.93	793.95	875.04	323.24	310.24	335.00	40.35	38.23	42.22	
3	03-Jan-22	557.32	848.41	814.21	877.82	332.49	302.06	334.78	41.11	39.19	43.25	
4	04-Jan-22	570.19	838.74	792.2	875.73	313.33	301.48	325.6	39.35	38.02	42.73	
5	05-Jan-22	566.74	835.29	757.01	868.39	322.76	310.32	334.97	41.56	38.26	43.01	
6	06-Jan-22	600.68	811.68	800.39	824.69	336.31	324.46	347.35	43.93	38.68	43.05	
7	07-Jan-22	591.41	811.99	800	824.92	334.52	324.12	345.26	38.94	39.27	43.19	
8	08-Jan-22	584.69	813.26	800.04	824.76	315.56	278.1	365.54	40.71	39.25	42.69	
9	09-Jan-22	534.99	839.38	805.31	862.5	317.32	305.2	329.89	39.26	37.64	42.54	
10	10-Jan-22	534.2	813.01	810.71	864.87	315.98	305.09	329.69	41.77	37.84	43.13	
11	11-Jan-22	527.93	811.83	800.66	824.09	316.98	305.91	329.73	32.26	30.23	42.63	
12	12-Jan-22	538.95	822.07	810.53	834.92	350.49	305.65	386.2	38.03	33.31	42.24	
13	13-Jan-22	535.37	821.48	810.06	834.86	352.03	308.06	389.09	43.13	38.62	33.79	
14	14-Jan-22	544.35	842.87	814.84	877.85	345.66	309.49	379.91	40.9	37.05	33.35	
15	15-Jan-22	530.95	835.63	804.4	867.48	351.38	307.7	389.97	41.37	38.09	33.65	
16	16-Jan-22	465.06	822.74	810.25	834.91	356.01	306.4	389.56	38.98	33.55	42.51	
17	17-Jan-22	523.12	821.62	810.14	834.99	359.21	311.08	388.34	34.59	28.31	41.34	
18	18-Jan-22	549.06	826.66	803.77	849.1	344.78	308.1	380.36	36.97	33.84	40.69	
19	19-Jan-22	567.15	819.32	809.44	863.52	339.42	306.52	372.58	36.02	33.48	39.31	
20	20-Jan-22	520.32	816.56	777.86	878.16	338.63	305.8	368.86	35.9	33.52	38.71	
21	21-Jan-22	523.17	857.91	837.61	892.69	385.45	375.65	398.63	35.26	33.31	37.75	
22	22-Jan-22	487.66	821.62	810.14	834.99	341.49	306.27	384.04	36.4	33.43	41.54	
23	23-Jan-22	482.72	800.19	798.92	864.21	349.55	306.03	388.42	37.92	33.38	42.32	
24	24-Jan-22	569.4	820.35	797.67	868.11	346.32	307.06	382.45	37.23	33.59	41.2	
25	25-Jan-22	567.63	814.64	846.8	886.79	344.02	310.4	379.27	36.86	34.27	40.86	

26	26-Jan-22	480.55	833.75	770.8	871.36	344.5	305.95	382.75	36.93	33.37	41.13
27	27-Jan-22	530.49	842.87	814.84	877.85	349.67	306.81	386.78	37.86	33.56	42.02
28	28-Jan-22	557.33	833.75	770.8	871.36	346.25	305.28	385	37.19	33.24	41.9
29	29-Jan-22	554.59	842.87	814.84	877.85	349.95	305.99	381.68	37.89	33.37	41.04
30	30-Jan-22	563.63	812.51	791.52	857.92	350.35	307.58	386.58	38	33.7	42
31	31-Jan-22	552.75	822.43	810.05	834.81	348.07	304.68	381.9	37.51	33.13	41.08

	CEMS DAYWISE VALUES FOR THE MONTH OF FEB '2022											
S.NO.	DATE	UNIT# 4 LOAD(MW)	UNIT#	t 4 SOX(mg	/nm3)	UNIT#	4 NOX(mg	g/nm3)	UNIT# 4 DUST(mg/nm3)			
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX	
1	01-Feb-22	564.48	815.58	737.27	871.74	351.46	322.54	372.66	38.01	32.59	42.01	
2	02-Feb-22	549.44	815.13	742.62	869.2	351.43	325.47	372.22	37.97	33.18	41.95	
3	03-Feb-22	475.3	783.36	732.48	852.73	340.68	320.4	365.16	35.99	32.16	40.67	
4	04-Feb-22	551.8	813.92	734.11	855.97	350.69	321.58	366.16	37.85	32.42	40.76	
5	05-Feb-22	557.04	818.2	731.68	867.57	352.42	320.39	371.4	38.18	32.18	41.78	
6	06-Feb-22	545.43	813.68	743.31	866.16	351.02	325.96	370.88	37.92	33.25	41.69	
7	07-Feb-22	566.59	820.75	732.1	868.21	353.1	321.93	371.75	38.29	32.54	41.85	
8	08-Feb-22	588.69	822.92	731.7	869.45	352.71	320.19	372.2	38.12	32.13	41.94	
9	09-Feb-22	545.06	806.2	736.5	860.64	347.3	321.69	367.58	37.2	32.4	41.01	
10	10-Feb-22	551.59	815.85	734.06	865.4	351.78	321.43	370.15	38.08	32.38	41.53	
11	11-Feb-22	518.39	804.28	741.09	854.5	348.1	323.78	366.93	37.4	32.78	40.97	
12	12-Feb-22	563.3	818.3	739.89	869.21	352.04	323.72	372.02	38.08	32.82	41.9	
13	13-Feb-22	594.24	829.62	761.25	865.5	355.7	333.9	370.83	38.73	34.66	41.69	
14	14-Feb-22	601.26	829.17	781.78	863.24	355.08	340.87	369.41	38.66	36.31	41.39	
15	15-Feb-22	616.07	829.94	743.2	866.62	355.44	324.59	370.31	38.7	33.31	41.92	
16	16-Feb-22	569.55	816.27	732.56	869.5	351.09	320.61	372.18	37.93	32.64	41.74	
17	17-Feb-22	581.68	825.37	763.4	860.71	354.24	331.46	368.91	38.5	34.22	41.34	
18	18-Feb-22	591.55	830.58	769.43	868.04	356.69	338.36	371.75	38.95	35.74	41.86	

19	19-Feb-22	586.63	824.85	739.88	869.87	353.98	324.33	372.45	38.44	32.96	41.99
20	20-Feb-22	540.76	803.88	744.78	851.26	346.73	327.06	363.91	37.08	33.46	40.35
21	21-Feb-22	596.44	829.29	754.06	867.33	355.19	331.58	371.3	38.63	34.42	41.37
22	22-Feb-22	653.27	848.21	798.66	871.19	361.98	343.32	372.19	39.89	36.69	41.91
23	23-Feb-22	651.97	844.36	825.33	865.01	360.2	351.06	370.43	39.55	37.74	41.48
24	24-Feb-22	652.15	843.79	807.63	863.71	359.89	345.88	369.9	39.53	37.13	41.68
25	25-Feb-22	627.27	842.72	800.38	869.83	360.77	345.51	372.4	39.73	36.88	41.98
26	26-Feb-22	608.85	835.27	809.83	862.81	357.98	346.81	368.84	39.19	37	41.27
27	27-Feb-22	628.71	837.56	796.97	865.93	358.27	343.8	371.11	39.25	36.73	41.84
28	28-Feb-22	600.63	830.98	753.11	867.12	356.58	331.89	371.44	37.29	30.95	40.34

CEMS DAYWISE VALUES FOR THE MONTH OF MAR '2022													
S.NO.	DATE	UNIT# 4 LOAD(MW)	/nm3)	UNIT#	4 NOX(mg	UNIT# 4 DUST(mg/nm3)							
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX		
1	01-Mar-22	621.45	837.04	797.5	859.28	358.5	344.47	368.35	39.28	36.68	41.21		
2	02-Mar-22	612.89	833.47	797.85	860.25	357.19	343.43	369.12	39.04	36.43	41.38		
3	03-Mar-22	612.62	831.11	794.29	860.47	356.17	341.89	368.41	38.83	36.13	41.43		
4	04-Mar-22	626.29	838.15	804.67	862.41	358.62	348.25	369.47	39.34	37.45	41.43		
5	05-Mar-22	620.18	834.08	808.42	856.94	356.82	346.09	367.26	38.95	36.87	40.75		
6	06-Mar-22	614.6	830.63	785.07	862.53	355.86	339.07	369.42	38.8	35.63	41.41		
7	07-Mar-22	599.92	832.53	814.66	856.77	357.3	347.65	368.07	39.12	37.13	41.19		
8	08-Mar-22	616.82	831.62	790.28	865.59	356.03	339.46	370.42	38.8	35.63	41.59		
9	09-Mar-22	592.17	821.61	787.7	855.3	352.66	339.83	367.35	38.18	35.55	41.05		
10	10-Mar-22	618.96	830.35	778.33	863.43	355.09	335.85	370.18	38.61	34.83	41.57		
11	11-Mar-22	618.38	833.9	804.48	861.44	357.11	345.42	369.2	38.98	36.78	41.21		
12	12-Mar-22	596.64	828.97	795.65	861.37	356.01	341.84	369.49	38.84	36.1	41.23		
13	13-Mar-22	629.69	839.51	810.38	861.42	359.26	347.34	369.34	39.45	37.44	41.41		
14	1 <mark>4-Mar-2</mark> 2	628.46	841.13	821.51	860.8	360	350.77	369.12	39.55	37.7	41.38		

15	15-Mar-22	631.02	839.94	815.03	861.34	359.38	349.28	369.12	39.44	37.48	41.47
16	16-Mar-22	635.88	836.21	818.01	867.91	357.18	348.66	371.75	39.02	37.3	41.86
17	17-Mar-22	642.52	845.36	829.39	863.89	361.35	353.74	369.71	39.79	38.19	41.45
18	18-Mar-22	622.4	841.4	804.52	865.5	360.66	345.92	370.42	39.65	36.81	41.59
19	19-Mar-22	596.25	827.59	752.84	860.01	355.5	332.47	369.08	38.76	34.65	41.37
20	20-Mar-22	634.97	841.65	795.1	867.25	359.61	344.44	370.69	39.47	36.4	41.87
21	21-Mar-22	645.57	843.23	822.65	866.25	360.03	350.54	370.43	39.56	37.67	41.32
22	22-Mar-22	626.2	839.73	804.85	861.96	359.6	347.43	368.78	39.52	37.25	41.27
23	23-Mar-22	650.73	844.21	822.44	865.42	360.22	350.77	370.37	39.54	37.54	41.62
24	24-Mar-22	639.59	842.11	819.14	858.96	359.91	349.04	367.91	39.53	37.38	41.12
25	25-Mar-22	631.44	840.4	817.22	864.93	359.68	348.55	369.75	39.51	37.3	41.44
26	26-Mar-22	640.29	842.66	825.24	860.91	360.08	351.45	368.37	39.57	37.84	41.23
27	27-Mar-22	636.68	839.97	814.79	862.32	359	347.9	369.66	39.35	37.19	41.47
28	28-Mar-22	601.43	821.25	801.47	851.46	351.97	343.67	364.87	38.04	36.43	40.53
29	29-Mar-22	642.58	847.23	800.91	869.58	361.96	343.37	371.38	39.89	36.37	41.78
30	30-Mar-22	642.91	839.44	819.87	863.14	358.33	349.61	370.12	39.21	37.5	41.56
31	31-Mar-22	628.56	839.92	800.17	867	359.37	342.74	370.74	39.41	36.23	41.64

<u>UNIT #5 (CEMs)</u>

	CEMS DAYWISE VALUES FOR THE MONTH OF OCT '2021													
S.NO.	DATE	UNIT# 5 LOAD(MW)	UNIT# 5 SOX(mg/nm3)			UNIT#	ŧ 5 NOX(mg	/nm3)	UNIT# 5 DUST(mg/nm3)					
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX			
1	01-0ct-21				Unit in sh	utdown cor	dition							
2	02-Oct-21		Unit in shutdown condition											
3	03-Oct-21		Unit in shutdown condition											
4	04-0ct-21				Unit in sh	utdown cor	dition							
5	05-Oct-21				Unit in sh	utdown cor	dition							
6	06-0ct-21		Unit in shutdown condition											
7	07-Oct-21	Unit in shutdown condition												
8	08-Oct-21	432.89	895.82	829.21	935.01	370.58	350.17	384.99	42.57	38.32	46.36			
9	09-Oct-21	511.11	920.95	889.4	949.88	379.02	367.1	389.08	44.34	41.48	46.64			
10	10-0ct-21	497.33	916.12	867.71	947.29	377.59	361.18	388.81	44.05	40.41	46.69			
11	11-Oct-21	546.94	932.18	898.64	958.78	381.99	370.6	392.1	44.83	42.18	47.31			
12	12-0ct-21	568.91	940.74	916.51	964.93	384.72	374.98	394.05	45.48	43	47.72			
13	13-Oct-21	546.47	933.88	906.96	956.1	382.85	372.19	391.58	45.12	42.46	47.27			
14	14-0ct-21	536.52	928.62	896.82	951.11	381.15	369.43	389.49	44.76	41.96	46.73			
15	15-Oct-21	495.89	908.03	871.93	940.25	374.61	362.43	385.21	43.34	40.66	45.67			
16	16-0ct-21	506.29	916.41	857.86	952.12	377.39	357.51	390.23	43.98	39.53	46.96			
17	17-Oct-21	554.06	940.02	879.81	974.76	384.86	364.42	396.72	45.55	40.98	48.2			
18	18-0ct-21	498.03	911.22	872.05	947.18	375.74	362.18	388.68	43.63	40.55	46.64			
19	19-0ct-21	529.08	931.84	894.82	968.84	382.64	370.15	394.99	45.16	42.56	47.87			
20	20-0ct-21	550.13	936.69	897.68	966.29	383.79	369.86	393.56	45.3	41.67	47.45			
21	21-0ct-21	558.98	934.66	904.62	971.25	382.77	373.64	394.41	45.06	42.82	47.54			
22	22-Oct-21	453.11	902.17	846.74	950.27	373.79	354.3	389.37	43.44	39.36	46.73			
23	23-0ct-21	518.38	916.47	868.47	953.37	377.03	361.32	390.6	43.81	40.69	47.04			

24	24-Oct-21	486.87	906.2	868.33	942.29	374.16	360.86	387.67	43.27	40.28	46.53
25	25-0ct-21	511.72	924.84	861.11	953.37	380.29	358.45	390.68	44.59	39.71	47.07
26	26-0ct-21	542.18	933.59	903.97	964.85	382.93	372.34	393.74	45.16	42.7	48.03
27	27-Oct-21	435.12	892.96	847.87	934.98	370.92	354.69	385.04	42.82	39	45.92
28	28-0ct-21	465.24	902.44	854.78	939.35	373.16	357.04	385.03	43.11	39.46	45.65
29	29-0ct-21	505.87	922.02	853.98	967.51	379.32	356.4	394.03	44.43	39.32	47.87
30	30-0ct-21	471.14	908.02	865.23	954.62	375.3	359.73	389.82	43.62	39.98	46.65
31	31-0ct-21	468.53	901.23	876.59	922.15	399.96	391.51	410.03	37.88	36.35	39.91

CEMS DAYWISE VALUES FOR THE MONTH OF NOV '2021												
S.NO.	DATE	UNIT# 5 LOAD(MW)	UNIT# 5 SOX(mg/nm3)			UNIT#	≠ 5 NOX(mg	/nm3)	UNIT# 5 DUST(mg/nm3)			
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX	
1	01-Nov-21	452.33	899.34	859.05	938.62	372.6	358.8	385.57	43.13	39.98	46.04	
2	02-Nov-21	461.59	901.89	868.19	934.82	373.28	362.14	385.39	43.23	40.62	46.07	
3	03-Nov-21	450.61	897.71	863.95	923.34	371.85	360.56	380.05	42.92	40.26	44.94	
4	04-Nov-21	419.12	880.93	835.5	920.16	366.56	350.75	380.15	41.77	38.17	44.85	
5	05-Nov-21	414.8	886.62	858.07	917.11	368.75	358.48	379.15	42.32	39.91	45.04	
6	06-Nov-21	431.19	887.79	851.87	946.19	368.7	357.24	388.1	42.22	39.78	46.47	
7	07-Nov-21	472.69	903.1	849.08	969.24	373.14	355.88	395.74	43.05	39.41	48.14	
8	08-Nov-21	491.15	910.4	852.29	987.7	375.32	356.44	400.31	43.47	39.16	48.86	
9	09-Nov-21	511.42	919.91	856.98	987.46	378.19	358.07	400.92	44.1	39.81	49.12	
10	10-Nov-21	540.39	912.78	761.14	979.92	378.69	336.62	397.64	43.94	33.78	48.26	
11	11-Nov-21	576.35	829.82	728.28	877.52	357.55	324.7	374.04	38.01	30.98	41.76	
12	12-Nov-21	584.35	831.79	771.81	874.05	358.26	341.14	372.9	38.18	34.95	41.52	
13	13-Nov-21	589.58	840.77	777.8	873.3	357.5	337	369.55	39	34.4	41.82	
14	14-Nov-21	572.49	846.02	811.1	876.15	358.95	346.94	370.36	39.22	36.51	41.97	
15	15-Nov-21				Unit in sh	utdown cor	ndition					
16	16-Nov-21				Unit in sh	utdown cor	ndition					
17	17-Nov-21		Unit in shutdown condition									
----	-----------	--------	----------------------------	--------	--------	--------	--------	--------	-------	-------	-------	
18	18-Nov-21	515.13	841.94	752.57	885.29	358.05	333.17	373.26	39.13	34.51	42.59	
19	19-Nov-21	576.84	831.8	752.44	881.6	354.86	330.07	372.03	38.44	33.28	42.31	
20	20-Nov-21	508.2	814.19	737.4	878.5	350.07	324.8	371.32	37.57	32.08	42.22	
21	21-Nov-21	460.63	791.56	742.23	860.94	342.94	326.44	366.22	36.13	32.44	41.07	
22	22-Nov-21	486.76	803.51	735.51	890.41	346.71	323.68	375.08	36.9	31.74	43.01	
23	23-Nov-21	518.57	810.16	742.76	886.51	348.54	327.19	373.57	37.21	32.66	42.64	
24	24-Nov-21	575.61	838.38	762.4	887.09	357.42	331.93	373.5	39.05	33.43	42.76	
25	25-Nov-21	582.11	836.9	754.58	889.26	356.9	329.74	374.67	38.91	33.02	42.91	
26	26-Nov-21	567.62	829.66	764.72	889.58	354.64	334.49	374.8	38.5	33.99	42.95	
27	27-Nov-21	527.76	814.15	743.96	886.85	349.64	326.7	373.75	37.42	32.44	42.69	
28	28-Nov-21	515.32	811.2	756.72	881.28	348.7	330.51	371.64	37.21	33.18	42.18	
29	29-Nov-21	543.91	827.58	741.72	888.38	353.94	325.86	374.33	38.3	32.24	42.83	
30	30-Nov-21	567.59	831.85	757.41	878.09	354.85	331.07	370.27	38.5	33.38	42.19	

	CEMS DAYWISE VALUES FOR THE MONTH OF DEC '2021										
S.NO.	DATE	UNIT# 5 LOAD(MW)	UNIT# 5 SOX(mg/nm3)			UNIT#	ŧ 5 NOX(mg	/nm3)	UNIT# 5 DUST(mg/nm3)		
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Dec-21	446.05	789.03	732.35	886.36	342.72	322.95	373.55	36.13	31.64	42.8
2	02-Dec-21	469.44	793.83	742.06	848.66	343.41	326.24	360.09	36.13	31.93	39.72
3	03-Dec-21	463.07	794.15	745.56	883.12	343.92	327.15	372.65	36.3	32.53	42.47
4	04-Dec-21	510.96	814.2	750.21	890.92	349.98	328.56	375.19	37.54	32.74	43.02
5	05-Dec-21	481.43	800.44	751.18	883.85	345.93	329.01	372.39	36.75	32.93	42.32
6	06-Dec-21	482.79	799.09	750.81	884.36	345.18	328.25	372.46	36.5	32.65	42.32
7	07-Dec-21	449.45	784.63	740.62	885.51	340.68	325.24	373.52	35.58	32.06	42.68
8	08-Dec-21	509	814.58	754.01	880.13	350.18	330.66	370.77	37.61	33.15	42.35
9	09-Dec-21	518.03	818.72	748.16	891.43	351.51	327.96	375.12	37.86	32.7	43.14
10	10-Dec-21	498.53	802.81	740.7	892.19	346.06	326.27	375.65	36.68	32.47	43.13

11	11-Dec-21	523.13	814.69	731.34	887.44	349.6	322.58	374.01	37.4	31.79	42.76
12	12-Dec-21	513	812.32	754.81	883.6	349.11	330.83	372.7	37.29	33.44	42.46
13	13-Dec-21	523.15	815.65	741.41	879.66	350.07	325.68	371.32	37.47	31.92	42.15
14	14-Dec-21	529.13	818.7	729.26	880.14	350.98	322.07	371.53	37.66	31.47	42.2
15	15-Dec-21	524.75	813.57	732.86	884.96	349.05	323.2	373.03	37.19	31.71	42.51
16	16-Dec-21	514.43	813.83	734.76	872.5	349.61	323.49	368.61	37.43	31.71	41.74
17	17-Dec-21	520.3	812.73	740.13	871.54	349.04	325.05	367.75	37.29	32.01	41.38
18	18-Dec-21	493.92	808.18	745.9	870.52	348.22	327.73	368.01	37.19	32.62	41.51
19	19-Dec-21	390.09	760.4	727.45	816.4	333.41	321.44	352.48	34.14	31.33	38.41
20	20-Dec-21	472.48	800.08	740.9	882.01	345.77	326.82	372.03	36.74	32.62	42.29
21	21-Dec-21	476.83	798.92	738.62	874.43	345.21	325.36	369.66	36.55	32.23	41.8
22	22-Dec-21	539.21	822.94	745.14	873.05	352.23	327.21	369.52	37.93	32.58	41.86
23	23-Dec-21	553.21	826.26	735.16	886.16	353.11	323.59	372.92	38.06	31.73	42.45
24	24-Dec-21	545.78	827.02	744.69	883.26	353.61	327.37	372.87	38.22	32.67	42.55
25	25-Dec-21	575.58	840.62	742.67	887.71	357.87	326.07	374.04	39.11	32.27	42.75
26	26-Dec-21	564.88	830.02	734.3	891.19	354.24	323.41	375.18	38.32	31.71	43
27	27-Dec-21	559.82	833.53	740.47	887.54	355.67	325.77	373.99	38.67	32.28	42.74
28	28-Dec-21	561.08	833.2	724.98	873.62	355.7	320.54	369.34	38.67	31.12	41.8
29	29-Dec-21	531.49	814.07	725.54	875.01	349.02	320.74	370.36	37.18	31.17	42.04
30	30-Dec-21	512.7	810.62	730.22	869.09	348.38	322.48	367.72	37.13	31.58	41.49
31	31-Dec-21	522.7	811.62	731.22	869.09	347.38	322.48	363.72	37.13	31.58	42.49

	CEMS DAYWISE VALUES FOR THE MONTH OF JAN '2022										
S.NO.	DATE	UNIT# 5 LOAD(MW)	UNIT#	# 5 SOX(mg	/nm3)	UNIT#	≠ 5 NOX(mg	/nm3)	UNIT#	5 DUST(mg/nm3)
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Jan-22	527.89	846.19	817.84	874.26	334.52	324.12	345.26	36.93	33.37	41.13
2	02-Jan-22	521.57	848.24	820.34	875.83	315.56	278.1	365.54	37.86	33.56	42.02
3	03-Jan-22	547.26	832.67	764.13	863.29	317.32	305.2	329.89	37.19	33.24	41.9
4	04-Jan-22	549.09	839.59	778.98	875.95	315.98	305.09	329.69	42.18	40.48	38.65
5	05-Jan-22	554.67	835.63	804.4	867.48	335.41	319.91	345.22	42.94	39.3	33.86
6	06-Jan-22	589.12	822.74	810.25	834.91	313.74	302.06	323.01	42.11	38.27	33.43
7	07-Jan-22	571.9	821.62	810.14	834.99	348.54	328.94	376.84	39.99	36.51	42.6
8	08-Jan-22	557.2	823.94	799.39	853.94	313	300.38	323.52	40.34	37.41	43
9	09-Jan-22	508.36	831.29	802.62	873.29	317.03	282.14	331.64	39.91	38.9	42.3
10	10-Jan-22	518.09	826.87	795.76	876.87	320.57	313.05	330.68	38.29	33.96	40.44
11	11-Jan-22	507.97	825.99	737.44	849.62	321.56	310.01	331.69	37.67	35.48	40.3
12	12-Jan-22	526.79	847.72	820.55	874.72	319.32	309.84	331.7	38.41	35.25	40.42
13	13-Jan-22	542.13	844.88	756.02	878.51	335.13	322.92	345.54	40.77	37.84	43.13
14	14-Jan-22	530.93	812.98	732.2	865.42	332.13	313.58	345.86	32.26	30.23	42.63
15	15-Jan-22	521.09	823.69	725.9	879.97	336.31	324.46	347.35	38.03	33.31	42.24
16	16-Jan-22	457.65	832.67	764.13	863.29	335.45	325.25	344.27	37.79	35.53	40.03
17	17-Jan-22	513.68	839.59	778.98	875.95	325.23	297.65	342.14	38.04	36.24	40.35
18	18-Jan-22	511.13	822.12	762.94	870.98	320.33	296.22	342.19	36.97	32.31	39.24
19	19-Jan-22	550.35	841.26	783.73	874.69	330.18	294.94	359.98	37.49	33.2	40.23
20	20-Jan-22	503.25	850.49	819.37	879.06	316.77	301.04	343.25	41.16	35.97	32.81
21	21-Jan-22	511.66	843.5	820.74	871.16	320.68	305.06	334.45	39.54	35.31	31.58
22	22-Jan-22	473.4	853.29	818.55	871.98	319.88	294.69	331.97	40.06	37.16	33.59
23	23-Jan-22	466.78	850.27	786.11	879.6	317.48	294.43	334.32	41.26	36.9	41.87
24	24-Jan-22	542.28	817.8	736.16	867.04	314.71	289.14	331.1	42.03	36.71	43.13
25	25-Jan-22	547.58	829.78	733.28	867.89	334.52	324.12	345.26	40.34	37.39	43.05

26	26-Jan-22	479.84	843.15	811.47	876.48	335.42	324.79	345.67	39.99	36.51	42.6
27	27-Jan-22	510.78	823.86	729.16	859.23	330.44	308.2	341.42	38.98	33.55	42.51
28	28-Jan-22	538.84	839.59	778.98	875.95	332.9	312.24	346.36	38.94	39.27	43.19
29	29-Jan-22	532.33	822.12	762.94	870.98	385.45	375.65	398.63	40.71	39.25	42.69
30	30-Jan-22	546.32	836.91	746.7	878.04	341.49	306.27	384.04	39.26	37.64	42.54
31	31-Jan-22	513.68	846.59	803.34	873.77	349.55	306.03	388.42	41.77	37.84	43.13

CEMS DAYWISE VALUES FOR THE MONTH OF FEB '2022											
S.NO.	DATE	UNIT# 5 LOAD(MW)	UNIT#	UNIT# 5 SOX(mg/nm3)		UNIT#	≠ 5 NOX(mg	/nm3)	UNIT# 5 DUST(mg/nm3)		
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	01-Feb-22	531.67	810.29	734.91	873.61	347.97	324.35	369.63	36.91	32.04	41.83
2	02-Feb-22	533.82	821.9	746.26	884.99	352.12	327.29	373.44	37.87	32.43	42.68
3	03-Feb-22	466.82	787.93	742.7	873.6	341.3	325.83	370.01	35.63	32.17	41.99
4	04-Feb-22	534.03	818.5	745.71	871.91	350.76	327.84	368.99	37.61	32.79	41.68
5	05-Feb-22	545.24	826.32	751.5	876.81	353.41	329.44	370.93	38.16	32.66	42.16
6	06-Feb-22	536.3	820.82	761.02	882.1	351.62	333.12	372.17	37.79	33.99	42.34
7	07-Feb-22	547.11	826.75	743.16	879.14	353.5	326.19	371.16	38.18	32.29	42.12
8	08-Feb-22	561.58	832.92	741.74	882.94	355.43	326.6	372.81	38.62	32.53	42.55
9	09-Feb-22	512.09	812.99	759.8	863.86	349.35	332.58	365.61	37.4	33.51	40.89
10	10-Feb-22	531.4	823.75	739.92	873.62	353	325.1	369.64	38.18	32.05	42.08
11	11-Feb-22	508.75	810.81	743.63	857.61	348.73	326.22	363.7	37.25	32.27	40.42
12	12-Feb-22	547.7	832.21	758.12	884.81	355.62	332.2	373.35	38.75	33.8	42.65
13	13-Feb-22	580.86	842.67	749.85	880.68	358.59	328.7	372.09	39.24	32.63	42.39
14	14-Feb-22	584.84	842.23	783.58	871.02	358.25	338.95	368.62	39.13	34.96	41.59
15	15-Feb-22	588.64	832.33	766.94	880.64	354.73	333.89	371.86	38.35	33.8	42.31
16	16-Feb-22	557.56	831.89	763.65	882.69	355.23	332.57	372.78	38.62	33.59	42.55
17	17-Feb-22	564.26	834.46	777.59	873.03	355.84	337.91	369.86	38.67	34.82	41.96
18	18-Feb-22	563.38	830.29	762.35	872.01	354.56	333.62	369.44	38.41	33.67	41.86

19	19-Feb-22	561.34	830.69	742.72	871.88	354.64	326.24	369.18	38.42	32.33	41.76
20	20-Feb-22	539.76	820.44	739.99	875.19	351.56	325.27	369.27	37.8	32.31	41.6
21	21-Feb-22	579.31	837.94	746.2	872.85	356.69	327.69	369.46	38.78	32.71	41.81
22	22-Feb-22	381.13	760.3	722.9	846.3	333.88	319.9	358.66	34.36	30.98	39.08
23	23-Feb-22				Unit in sh	utdown cor	dition				
24	24-Feb-22	331.26	836.09	796.71	868.58	356.19	344.23	368.32	38.7	36.29	41.61
25	25-Feb-22	604.77	844.37	779.94	885.76	358.73	337.4	373.42	39.21	34.56	42.62
26	26-Feb-22	594.24	844.38	795.81	873.12	358.93	342.77	369.25	39.33	35.76	42.16
27	27-Feb-22	605.52	846.26	791.94	875.51	359.58	340.67	370.19	39.43	35.15	41.79
28	28-Feb-22	578.41	832.18	775.91	872.45	354.86	338.2	369.5	38.41	35.13	41.85

CEMS DAYWISE VALUES FOR THE MONTH OF MAR '2022												
S.NO.	DATE	UNIT# 5 LOAD(MW)	UNIT#	UNIT# 5 SOX(mg/nm3)		UNIT#	UNIT# 5 NOX(mg/nm3)			UNIT# 5 DUST(mg/nm3)		
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX	
1	01-Mar-22	600.86	847.95	817.98	881.92	360.42	350.82	372.49	39.68	37.26	42.48	
2	02-Mar-22	603.17	844.19	801	876.14	358.73	344	370.75	39.25	35.85	42.13	
3	03-Mar-22	608.92	846.49	806.91	879.02	359.55	345.73	371.22	39.43	36.28	42.38	
4	04-Mar-22	628.17	852.85	822.46	885.42	361.32	353.01	373.4	39.74	37.65	42.63	
5	05-Mar-22	615.28	848.96	820.86	873.71	360.12	349.64	369.69	39.48	37	41.86	
6	06-Mar-22	610.14	843.27	781.99	875.56	358.17	337.65	370.41	39.05	34.54	42.03	
7	07-Mar-22	619.58	853.71	807.18	882.56	361.72	345.6	372.15	39.89	36.13	42.37	
8	08-Mar-22	620.91	848.85	797.36	886.01	359.94	343.21	373.7	39.43	35.84	42.72	
9	09-Mar-22	617.45	850.96	813.31	876.26	361.08	349.17	369.78	39.77	36.78	41.74	
10	10-Mar-22	622.55	853.39	790.37	886.76	361.65	340.79	373.68	39.88	35.29	42.67	
11	11-Mar-22	634.54	859.35	819.78	884.55	363.68	349.89	372.94	40.32	37.17	42.44	
12	12-Mar-22	628.75	854.26	809.38	883.54	361.74	346.46	372.74	39.86	36.42	42.4	
13	13-Mar-22	617.08	853.68	810.69	879.93	362.14	348.04	371.51	40.01	36.74	42.21	
14	14-Mar-22	619.34	847.59	801.02	876.09	359.53	343.69	369.73	39.35	35.82	41.73	

15	15-Mar-22	631.3	861.38	817.46	886.12	364.6	348.28	373.64	40.57	36.66	42.69
16	16-Mar-22	623.99	848.21	827.47	876.48	359.71	352.09	370.66	39.39	37.46	42.07
17	17-Mar-22	613.03	849.33	816.66	874.24	360.56	348.62	369.78	39.65	36.85	41.86
18	18-Mar-22	618.42	847.2	800.56	871.3	359.51	343.57	368.9	39.39	35.79	41.65
19	19-Mar-22	581.75	832.15	764.42	874.54	354.97	334.68	369.94	38.45	34.41	41.55
20	20-Mar-22	628.81	855.45	828.97	879.36	362.23	352.81	371.68	39.97	37.6	42.31
21	21-Mar-22	643.52	860.77	834.13	882.71	363.92	353.5	372.6	40.3	37.75	42.67
22	22-Mar-22	626.65	853.87	801.02	881.52	361.88	343.47	372.22	39.91	35.73	42.4
23	23-Mar-22	636.16	853.24	827.6	881.48	361.14	351.89	372	39.66	37.5	42.39
24	24-Mar-22	633.13	854.7	830.48	881.41	361.8	352.24	372.31	39.84	37.47	42.44
25	25-Mar-22	644.68	862.02	835.29	879.09	364.37	354.18	371.66	40.44	37.96	42.09
26	26-Mar-22	641.61	854.5	836.2	878.41	361.45	354.03	370.8	39.71	37.84	42.02
27	27-Mar-22	628.1	847.07	786.23	879.96	359.09	339.23	371.33	39.2	34.92	42.13
28	28-Mar-22	620.64	854.12	822.44	876.33	362.14	350.2	370.46	39.98	37.13	42.01
29	29-Mar-22	635.39	852.11	808.99	888.3	360.77	346.29	374.41	39.55	36.38	42.87
30	30-Mar-22	634.3	857.92	831.49	879.48	363.14	352.51	371.61	40.18	37.51	42.27
31	31-Mar-22	631.04	839.92	800.17	867	359.37	342.74	370.74	39.41	36.23	41.64

Power Ref: APML/ENV/MoEFCC/CPCB/FLYASH/429/22 Date: 28/04/2022

Τo,

Additional Principle Chief Conservator of Forest Ministry of Environment, Forests & Climate Change Regional Office (WCZ), Ground Floor, East Wing, New Secretariat Building, Civil Line, Nagpur-440001 (MH).

Sub: Submission of Annual Fly Ash implementation report for the period of April' 2021 to March' 2022 for Adani Power Maharashtra Ltd, Tiroda, Gondia, Maharashtra.

Ref: MoEFCC, Fly Ash Notification S.O. 5481(E). dated; 31st December 2021.

Dear Sir,

With reference to above subject, we are furnishing herewith Annual Fly Ash implementation report for the period of **April' 2021 to March' 2022**, in compliance of Fly Ash Notification S.O.763 (E) Dated 14th September 1999 and amendment dated 3rd November' 2009. The Fly Ash notification has been further amended in 2016 and 2021.

Total Capacity of TPP: 3300 MW

Phase – I	:	1320 (2x660) MW
Phase – II	:	1980 (3x660) MW

This is for your kind information & record please.

Thanking You, Yours faithfully,

for Adani Power Maharashtra Limited

5 21 (R N Shukla)

General Manager - Environment & Forest

Encl.: As above

Adani Power Maharashtra Ltd Adani House Shantigram, S G Highway, Ahmedabad 382 421 Gujarat, India CIN: U40100GJ2007PLC050506 Tel +91 79 2555 7555 Fax +91 79 2555 7177 info@adani.com www.adani.com

Registered Office: Adani House, Shantigram, S G Highway, Ahmedabad 382 421, Gujarat, India

Power

CC: Member Secretary **Central Pollution control Board** Parivesh Bhavan, East Arjun Nagar New Delhi- 110 032.

Member Secretary, Maharashtra Pollution Control Board, Mumbai The Regional Officer, Maharashtra Pollution Control Board, Nagpur, Maharashtra

Adani Power Maharashtra Ltd Adani House Shantigram, S G Highway, Ahmedabad 382 421 Gujarat, India CIN: U40100GJ2007PLC050506 Tel +91 79 2555 7555 Fax +91 79 2555 7177 info@adani.com www.adani.com

Registered Office: Adani House, Shantigram, S G Highway, Ahmedabad 382 421, Gujarat, India

Fly Ash Notification S.O.5481 (E), 31st December 2021 – Ash Compliance Report for the Period 01.04.2021 to 31.03.2022

Sr. No.	Details	Compliance
1	Name of Power Plant	Tiroda TPP
2	Name of the company	Adani Power Maharashtra Limited, Tiroda
3	District	Gondia
4	State	Maharashtra
		Plot No A – 1, MIDC,
		Tirora Growth Centre,
5	Postal address for communication:	MIDC- Tirora
		Distt. Gondia
		Maharashtra - 441911
6	E-mail:	Santosh.Singh1@adani.com
7	Power Plant installed capacity (MW):	3300 MW
8	Plant Load Factor (PLF):	74.94%
9	No. of units generated (MWh):	21647210
10	Total area under power plant (ha):	565 84 Ha
10	(including area under ash ponds)	202.04 Hd
	Quantity of coal consumption during	
11	reporting period (Metric Tons per	14182576 MT
	Annum):	
12	Average ash content in percentage	32 04%
12	(per cent):	52:04 %
	Quantity of current ash generation	
	during reporting period (Metric Tons	Ash Generation: 4544696 MT
13	per Annum):	Fly Ash Generation: 3635757 MT
	Fly ash (Metric Tons per Annum):	Pottom Ash Generation: 908939 MT
	Bottom ash (Metric Tons per Annum):	
1/	Capacity of dry fly ash storage silo(s)	11600 MT
14	(Metric Tons) :	
	Details of utilisation of current ash	
	generated during reporting period	
	(a) lotal quantity of current ash	
	utilised (MTPA) during reporting	
	(b) Quantity of fly ash utilised (MTPA):	
	i) Fly ash-based products (bricks or	
	DIOCKS OF LIES OF FIDRE CEMENT	
	sneets or pipes or boards or	a. Total quantity of current ash utilised (MTPA)
	ii) Operant Manufacturing	during reporting period: 2523029 MT
15	II) Cement Manufacturing:	D. Please refer Annexure – 1A
	III) Ready mix concrete:	C. Please reter Annexure – 1B
	IV) Ash and Geo-polymer-based	d. Total quantity of current ash unutilised (MTPA)
	construction material:	auring reporting period: 2021667 MI
	V) Manufacturing of sintered or	
	colo bondeo asn aggregate:	
	VI) Construction of roads, road and	
	vill) Filling Up of low-lying area:	
	IX) FIIIING OT MINE VOIDS:	
	x) Use in overburden dumps:	
	xi) Agriculture:	

	vii) Coostsusting of shareling	
	XII) Construction of shore-ine	
	protection structures in coastal	
	districts:	
	xiii) Export of ash to other	
	countries:	
	xiv) Others (please specify);	
	(c) Quantity of bottom ash utilised	
	i) Fly ash-based products (bricks	
	or blocks or tiles or fibre cement	
	sheets or pipes or boards or	
	panels)	
	ii) Cement Manufacturing	
	iii) Ready mix concrete	
	iv) Ash and Geo-polymer-based	
	construction material:	
	v) Manufacturing of sintered of	
	cold bonded ash aggregate:	
	vi) Construction of roads, road and	
	fly over embankment:	
	vii) Construction of dams:	
	viii) Filling up of low-lying area:	
	ix) Filling of mine voids:	
	x) Use in overburden dumps:	
	xi) Anriculture	
	xij) Construction of shoreline	
	xiii) Export of ash to other	
	countries:	
	xiv) Others (please specify):	
	Total quantity of current ash	
	unutilised (MTPA) during reporting	
	period:	
	Percentage utilisation of current ash	
16	deperated during reporting period	55 52%
10		
	Decails of disposal of ash in ash	
	ponds	
	(a) Total quantity of ash disposed in	(a) Total quantity of ash disposed in ash good(s)
	ash pond(s) (Metric Tons) as on 31st	(Matria Taps) as an 31st March (avaluding consting)
	March (excluding reporting period):	
	(b) Quantity of ash disposed in ash	
	nond(s) during reporting period	(b) Quantity of ash disposed in ash pond(s) during
	(Motrie Tops):	reporting period (Metric Tons): 2021668 MT
	(Metric rolls).	(c) Total quantity of water consumption for slurry
	(C) TOLAI QUAILILY OF WALE	discharge into ash ponds during reporting period (m3):
17	consumption for slurry discharge into	13584198 m ³
	ash ponds during reporting period	(d) Total number of ash nonds:
	(m3):	(i) Active: 03 Nos
	(d) Total number of ash ponds:	(ii) Exhausted (yet to be coolaimed): OO No
	(i) Active:	
	(ii) Exhausted (yet to be reclaimed):	
	(iii) Reclaimed:	(e) total area under ash ponds (ha): 156.7 Ha
	(e) total area under ash ponds (ba)	

18	Individual ash pond details Ash pond-1,2, etc (please provide below mentioned details separately, if number of ash ponds is more than one) (a) Status: Under construction or Active or Exhausted or Reclaimed (b) Date of start of ash disposal in ash pond (DD/MM/YYYY or MMYYYY): (c) Date of stoppage of ash disposal in ash pond after completing its capacity (DD/MM/YYYY or MM/YYYY): (Not applicable for active ash ponds) (c) area (hectares): (d) dyke height (m): (d) volume (m3): (e) quantity of ash disposed as on 31st March (Metric Tons): (f) available volume in percentage (per cent) and quantity of ash can be further disposed (Metric Tons): (g) expected life of ash pond (number of years and months): (e) co-ordinates (Lat and Long): (please specify minimum 4 co- ordinates) (f) type of lining carried in ash pond: HDPE lining or LDPE lining or clay lining or No lining g) mode of disposal: Dry disposal or wet slurry (in case of wet slurry please specify whether HCSD or MCSD or LCSD) (h) Ratio of ash: water in slurry mix (1:): (i) Ash water recycling system (AWRS) installed and functioning: Yes or No (j) Quantity of wastewater from ash pond discharged into land or water body (m3): (k) Last date when the dyke stability study was conducted and name of the organisation who conducted the study:	Please Refer Annexure – 2
	organisation who conducted and name of the study: (I) Last date when the audit was conducted and name of the organisation who conducted the	
	Quantity of legacy ash utilised	
19	 i) Fly ash-based products (bricks or blocks or tiles or fibre cement sheets or pipes or boards or panels) ii) Cement Manufacturing iii) Ready mix concrete 	Please Refer Annexure – 3
	construction material:	

	 v) Manufactu cold bonde vi) Constructi and fly ove vii) Construct viii) Filling up o ix) Filling of m x) Use in ove xi) Agriculture xii) Constructi protection coastal dis xiii) Export o countries: xiv) Others (ple 	uring of sintered or ed ash aggregate: on of roads, road er embankment: ion of dams: of low-lying area: nine voids: rburden dumps: e: on of shoreline structures in stricts: f ash to other		
20	Summery:			
	Details Quantity Generated (MT)		Quantity Utilised (MT) and (per cent)	Balance Quantity (MT)
21	Current ash during reporting period	4544696 MT	2523029 MT	2021667 MT
	Legacy ash	0	1032628 MT	2400333 MT
	Total	4544696 MT	3555657 MT (78.24%)	4422000 MT
21	Any other informa Soft copy of the report, and shape and ash ponds m moefcccoalash@g	tion: annual compliance files of power plant ay be e-mailed to:- ov.in	We have stabilized/rec 34.50 LMT ash with gr around 44.22 LMT leg	claimed Ash Dykes No. 2 having reen belt. As on 01st April 2022, acy ash available in ash dykes.
22	Signature of Auth	orised Signatory	you	

<u> Annexure – 1A</u>

QUANTITY OF FLY ASH UTILISED DURING REPORTING PERIOD FY 2021 - 22

Sr. No.	Month	Fly ash-based bricks or blocks or tiles	Cement Manufacturing	Construction of roads, road and fly over embankment	Filling up of low-lying area	Agriculture	Others (Fine Ash)	Total (MT)
1	Apr-21	18776	96575	309	30949	0	624	147233
2	May-21	15653	80094.4	193	50166	0	537	146644
3	Jun-21	15128	127860	326	10906	0	571	154791
4	Jul-21	16090	165736	96	25851	0	555	208327
5	Aug-21	14828	125865	203	44992	0	596	186484
6	Sep-21	17692	77591	454	25203	0	509	121449
7	Oct-21	28262	113862	427	62907	0	539	205998
8	Nov-21	15083	67307	10129	102629	0	482	195630
9	Dec-21	24318	89433.84	5781	121267	0	715	241515
10	Jan-22	25332	97969.1	3444	111308	0	793	238846
11	Feb-22	27054	82505.62	16428	123277	519	874	250658
12	Mar-22	27534	113279.37	4005	106037	689	924	252469
٦	Fotal	245750	1238078	41795	815492	1208	7719	2350043

Annexure – 1B

QUANTITY OF BOTTOM ASH UTILISED DURING REPORTING PERIOD FY 2021 - 22

Sr. No.	Month	Fly ash-based bricks or blocks or tiles	Construction of roads, road and fly over embankment	onstruction of roads, road and fly over embankment Filling up of low- lying area		Total (MT)
1	Apr-21	1479	94	85	12228	13886
2	May-21	1427	0	2420	7836	11683
3	Jun-21	92	252	467	7278	8089
4	Jul-21	537	452	288	10721	11998
5	Aug-21	92	609	468	13156	14325
6	Sep-21	988	1121	2128	13028	17265
7	Oct-21	593	1959	5147	11739	19438
8	Nov-21	160	2625	3313	6249	12347
9	Dec-21	1801	2403	944	11728	16876
10	Jan-22	4451	3119	8021	3401	18992
11	Feb-22	2601	2506	9105	0	14212
12	Mar-22	836	5858	3073	4106	13874
	Total	15057	20998	35459	101471	172985

	Ash Dyke Information																	
Sr. No.	Dyke Name	Status of Dyke (Under Construction /Active/ Exhausted/Recl aimed)	Date of Start of Ash Disposal (MMYYYY)	Date of Stoppage of Ash Disposal in ash pond after completing its capacity (MMYYYY). [NA for Active Ash Ponds]	Area (Hectares)	Dyke Height (m)	Volume (Lm3)	Quantity of Ash disposed as on 31 st March (Lac Metric Ton)	Available volume in percentage (per cent) and quantity of ash can be further disposed (Metric Tons)	Expected life of ash pond (number of years and months):	Co-ordinates (Lat and Long): Please Specify minimum 04 co- ordinate	Type of Lining Carried in Ash Pond: HDPE Lining or LDPE Lining or Clay Lining or No Lining	Mode of Disposal: Dry Disposal or Wet Slurry (in case of wet slurry please specify whether HCSD or MCSD or LCSD)	Ratio of ash: water ir slurry mix (1:)	Ash Water Recycling System (AWRS) installed and functioning (Yes or NO)	Quantity or Wastewater from ash pond discharged into land or wate body (m3):	Last date when the dyke stability study was conducted	Last Date when the audit was conducted
		(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	(k)	(1)	(m)	(n)	(0)	(p)	(q)
1	Dyke - 01	Active	Sep-12	In progress	20.00	18.00	31.00	22	9.00	2 Yrs & O Month	1) 21"25'01"N 79"58'49"E 2) 21"25'16"N 79"58'48"E 3) 21"25'22"N 79"58'36"E 4) 21"25'22"N 79"58'36"E 4) 21"25'11"N 79"58'39"E	HDPE	LCSD	01:06	Yes	Wastewater		Internal committee has
2	*Dyke - 02	Reclaimed	Dec-13	Dec-21	33.00	15.00	34.50	34.5	0.00	0	1) 21"24'48"N 79"58'47"E 2) 21"24'51"N 79"59'10"E 3) 21"24'56"N 79"58'49"E 4) 21"24'33"N 79"59'08"E	HDPE	LCSD	01:06	Yes	collected in stilling chamber and recylec through AWRS. Recycled	We will planning to carry out dyke stability in FY 2022 23 for all active	been formulated consisting of Civil, Safety, Quality, Maintenance & Environmental engineers to visit & monitor ash dyke
3	Dyke - 03	Active	Mar-15	In progress	18.00	14.00	25.00	6	19.00	4 Yrs 8 0 Month	1) 21"24'51"N 79"58'36"E 2) 21"25'05"N 79'58'35"E 3) 21"25'14"N 79'58'27"E 4) 21"25'14"N 79'58'27"E 4) 21"25'04"N 79'58'29"E	HDPE	HCSD	01:03	Yes	wastewater nas been reused in Ash Hadling Plant.	dykes	status on monthly basis. Last Audit was conducted on 31.03.2022
4	Dyke - 04	Active	Jul-17	In progress	85.70	7.00	110.00	16	94.00	10 Yrs & 0 Month	1) 21"24'20"N 79"57'56"E 2) 21"24'03"N 79"51'14"E 3) 21"24'25"N 79"57'29"E 4) 21"23'47"N 79"57'27"E	HDPE	LCSD	01:06	Yes			
*Ach Ow	in . If has have	n caclaimad																

ure - 02

Annexure – 3

QUANTITY OF LEGACY ASH UTILISED DURING REPORTING PERIOD FY 2021 - 22

Sr. No.	Month	Fly ash-based bricks or blocks or tiles	Construction of roads, road and fly over embankment	Filling up of low-lying area	Others (Cenosphere)	Total (MT)
1	Apr-21	361	2447	69864	0	72672
2	May-21	500	4427	174911	0	179838
3	Jun-21	650	345	67420	0	68415
4	Jul-21	67	0	26119	0	26186
5	Aug-21	51	0	3506	0	3557
6	Sep-21	0	0	778	0	778
7	Oct-21	117	0	67048	0	67165
8	Nov-21	25	10860	148519	0	159404
9	Dec-21	76	1794	181228	99	183197
10	Jan-22	28	4048	71533	32	75641
11	Feb-22	0	9110	70408	60	79578
12	Mar-22	0	28616	87567	15	116198
То	tal	1875	61647	968901	205	1032628

Annexure - V MI-ANT

ENVIRO ANALYSTS & ENGINEERS PVT. LTD.

NABET Accredited & MoEF (Govt. of India) approved CIN No. = U28900MH1995PTC093128

H. O. - B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066. - Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

Page 1 of 2

ENV/SWT/2021-22/107

Date: 27.12.2021

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra - 441 911. India

Sample Particulars : Fly Ash Sample

Sample Registration Date	: 14.12.2021	Analysis Starting Date :	17.12.2021
Quantity received	: 2 kg	Analysis Completion Date :	27.12.2021
Sample Type:	: Solid Waste	Sampled by :	EAEPL Representative

TEST RESULTS

Sr. No.	Test Parameters	Measurement Unit	Results
1	Alumina (as Al ₂ O ₃)	% by mass	24.64
2	Iron Oxide (as Fe ₂ O ₃)	% by mass	5.12
3	Silica (as SiO ₂)	% by mass	56.1
4	Reactive Silica	% by mass	0.022
5	Magnesium Oxide (as MgO)	% by mass	1.47
6	Sulphur Trioxide (as SO ₃)	% by mass	0.048
7	Alkalies (as Na ₂ O)	% by mass	3.04
8	Chloride (as Cl)	% by mass	0.026
9	Loss on ignition (as LOI)	% by mass	0.04
10	Cadmium	mg/kg	0.19
11	Chromium	mg/kg	12.7
12	Arsenic	mg/kg	0.810
13	Mercury	mg/kg	0.049
14	Selenium	mg/kg	Nil
15	Cyanide	mg/kg	Nil
16	Cobalt	mg/kg	13.6
17	Copper	mg/kg	24.5
18	Lead	mg/kg	13.9
19	Molybdenum	mg/kg	Nil
20	Nickel	mg/kg	17.7
21	Tin	mg/kg	Nil

For Enviro Analysts & Engineers Pvt. Ltd.

900 Authorized Signatory

Nagpur Branch ! Shiv Kunj, Bunglow No. 65, Old Venne Layout, Ambazari, Nagpur - 440 010. Tel. 0712 - 2241 835. Telefax : 0712 - 2241 836

Pune Branch: Flat No. 11. Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, 8/1, Sadashiv Peth. L. B. S. Road, Nr. Dayasal Mangal Hall, Pune - 411 030. Tel.: 020-2432 4444

Lab : Row House No. 2, Shalom Garden. Opp, Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thene - 401 107, TeL: 022-2811 6442

Workshop : Plot No E - 122, MIDC Tarapur. Boisar. Dist. - Thane - 401 506.

SINVIN PAR & RETTER ENVIRA

NABET Accredited & MoEF (Govt. of India) approved CIN No. - U28900MH1995PTC093128

H. O. - B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066. - Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eeepl.com • Website : www.eaepl.com

Page 2 of 2

E ENV/SWT/2021-22/107

Date: 27.12.2021

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora,

Dist.: Gondia, Maharashtra – 441 911. India

Sample Particulars : Fly Ash Sample

Sample Registration Date	: 14.12.2021	Analysis Starting Date :	17.12.2021
Quantity received	: 2 kg	Analysis Completion Date :	27.12.2021
Sample Type:	: Solid Waste	Sampled by :	EAEPL Representative

TEST RESULTS

Sr. No.	Test Parameters	Measurement Unit	Results
22	Barium	mg/kg	251
23	Calcium	mg/kg	122954
24	Iron	mg/kg	35788.8
25	Zinc	mg/kg	57.3
26	Aluminium	mg/kg	130345.6
27	Manganese	mg/kg	112.6
28	Antimony	mg/kg	Nil
29	Beryllium	mg/kg	Nil

<u>Note:</u> 1. Results relate to tested sample only.

2. Test report should not be reproduced partially.

REMARKS: Based upon request of party, sample was tested for above mentioned parameters only.

For Enviro Analysts & Engineers Pvt. Ltd.

1000

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 85, Old Venne Layout, Ambazari, Nagpur - 440 010 Tel. 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Path, L. B. S. Road, Nr. Dhyanal Mangai Hall, Pune - 411 030, Tell. : 020-2432 4444 Lab ; Row House No. 2, Shalom Garden, Opp, Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thene - 401 107, Tel. ; 022-2811 6442

Workshop : Plot No E - 122, MIDC Tarapur, Boisar, Dist. - Thane - 401 505.

STRUCTURE OF A RETTER ENVERTONMENT

NABET Accredited & MoEF (Govt. of India) approved CIN No. - U28900MH1995PTC093128

H. O. - B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066.
• Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

Page	1	of 2

ENV/SWT/2021-22/107 /1

Date: 27.12.2021

ISSUED TO: M/s ADANI POWER MAHARASHTRA LIMITED Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra – 441 911. India

Sample Particulars : Pond Ash Sample

Sample Registration Date	:	14.12.2021	Analysis Starting Date	-	17.12.2021
Quantity received	:	2 kg	Analysis Completion Date	:	27.12.2021
Sample Type:	:	Solid Waste	Sampled by		EAEPL Representative

IEST RESULTS			
Sr. No.	Test Parameters	Measurement Unit	Results
1	Alumina (as Al ₂ O ₃)	% by mass	22.03
2	Iron Oxide (as Fe ₂ O ₃)	% by mass	4.91
3	Silica (as SiO ₂)	% by mass	57.31
4	Reactive Silica	% by mass	0.019
5	Magnesium Oxide (as MgO)	% by mass	1.15
6	Sulphur Trioxide (as SO ₃)	% by mass	0.062
7	Alkalies (as Na ₂ O)	% by mass	3.14
8	Chloride (as Cl)	% by mass	0.051
9	Loss on ignition (as LOI)	% by mass	0.050
10	Cadmium	mg/kg	0.15
11	Chromium	mg/kg	13.8
12	Arsenic	mg/kg	0.83
13	Mercury	mg/kg	0.036
14	Selenium	mg/kg	Nil
15	Cyanide	mg/kg	Nil
16	Cobalt	mg/kg	11.4
17	Copper	mg/kg	19.6
18	Lead	mg/kg	13.2
19	Molybdenum	mg/kg	Nil
20	Nickel	mg/kg	20.2
21	Tin	mg/kg	Nil

For Enviro Analysts & Engineers Pvt. Ltd.

0

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 85, Old Verme Layout, Ambazari, Nagpur - 440 010 Tel. 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Path, L. B. S. Road, Nr. Dhyanal Mangai Hall, Pune - 4 11 030, Tell. : 020-2432 4444 Lab : Row House No. 2, Shalom Garden, Opp, Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thene - 401 107, Tel. : 022-2811 6442

Workshop : Plot No E - 122, MIDC Tarapur, Bolser, Dist. - Thene - 401 506.

NABET Accredited & MoEF (Govt. of India) approved CIN No. - U28900MH1995PTC093128

H. O. - B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066. - Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eeepl.com • Website : www.eaepl.com

Page 2 of 2

ENV/SWT/2021-22/107 /1

Date: 27.12.2021

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra – 441 911. India

Sample Particulars : Pond Ash Sample

*			
Sample Registration Date	: 14.12.2021	Analysis Starting Date :	17.12.2021
Quantity received	: 2 kg	Analysis Completion Date :	27.12.2021
Sample Type:	: Solid Waste	Sampled by :	EAEPL Representative

TEST RESULTS

Sr. No.	Test Parameters	Measurement Unit	Results
22	Barium	mg/kg	217
23	Calcium	mg/kg	123671
24	Iron	mg/kg	34320.9
25	Zinc	mg/kg	61.3
26	Aluminium	mg/kg	116538.7
27	Manganese	mg/kg	83.7
28	Antimony	mg/kg	Nil
29	Beryllium	mg/kg	Nil

Note: 1. Results relate to tested sample only.

2. Test report should not be reproduced partially.

REMARKS: Based upon request of party sample was tested for above mentioned parameters only.

For Enviro Analysts & Engineers Pvt. Ltd.

G

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 85, Old Verme Layout, Ambazari, Nagpur - 440 010 Tel. 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Dryasal Mangai Hall, Pune - 411 030, Tell. : 020-2432 4444 Lab ; Row House No. 2, Shalom Garden, Opp, Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thene - 401 107, Tel. ; 022-2811 6442

Workshop : Plot No E - 122, MIDC Tarapur, Boisar, Dist. - Thane - 401 505.

SERVICE PAR & RETTER ENVEROPMENT

NABET Accredited & MoEF (Govt. of India) approved CIN No. - U28900MH1995PTC093128

H. O. - B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066.
• Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

Page 1 of 2

ENV/SWT/2021-22/107/2

Date: 27.12.2021

ISSUED TO: M/s ADANI POWER MAHARASHTRA LIMITED Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra – 441 911. India

Sample Particulars : Bottom Ash Sample

Sample Registration Date	: 14.12.2021	Analysis Starting Date :	17.12.2021
Quantity received	: 2 kg	Analysis Completion Date :	27.12.2021
Sample Type:	: Solid Waste	Sampled by :	EAEPL Representative

TEST RESULTS			
Sr. No.	Test Parameters	Measurement Unit	Results
1	Alumina (as Al ₂ O ₃)	% by mass	20.82
2	Iron Oxide (as Fe ₂ O ₃)	% by mass	5.21
3	Silica (as SiO ₂)	% by mass	48.94
4	Reactive Silica	% by mass	0.011
5	Magnesium Oxide (as MgO)	% by mass	1.58
6	Sulphur Trioxide (as SO ₃)	% by mass	0.055
7	Alkalies (as Na ₂ O)	% by mass	2.66
8	Chloride (as Cl)	% by mass	0.057
9	Loss on ignition (as LOI)	% by mass	0.008
10	Cadmium	mg/kg	0.134
11	Chromium	mg/kg	14.71
12	Arsenic	mg/kg	0.28
13	Mercury	mg/kg	0.024
14	Selenium	mg/kg	Nil
15	Cyanide	mg/kg	Nil
16	Cobalt	mg/kg	10.94
17	Copper	mg/kg	17.3
18	Lead	mg/kg	15.5
19	Molybdenum	mg/kg	Nil
20	Nickel	mg/kg	16.6
21	Tin	mg/kg	Nil

For Enviro Analysts & Engineers Pvt. Ltd.

0

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 85, Old Verme Layout, Ambazari, Nagpur - 440 010 Tel. 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Path, L. B. S. Road, Nr. Dhyanal Mangai Hall, Pune - 4 11 030, Tell. : 020-2432 4444 Lab : Row House No. 2, Shalom Garden, Opp, Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thene - 401 107, Tel. : 022-2811 6442

Workshop : Plot No E - 122, MIDC Tarapur, Bolser, Dist. - Thans - 401 506.

E R C

NABET Accredited & MoEF (Govt. of India) approved CIN No. - U28900MH1995PTC093128

H. O. - B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066. - Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eeepl.com • Website : www.eaepl.com

Page 2 of 2

ENV/SWT/2021-22/107/2

Date: 27.12.2021

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra – 441 911. India

Sample Particulars : Bottom Ash Sample

Sample Registration Date	: 14.12.2021	Analysis Starting Date :	17.12.2021
Quantity received	: 2 kg	Analysis Completion Date :	27.12.2021
Sample Type:	: Solid Waste	Sampled by :	EAEPL Representative

TEST RESULTS

Sr. No.	Test Parameters	Measurement Unit	Results
22	Barium	mg/kg	279
23	Calcium	mg/kg	128141
24	Iron	mg/kg	36417.9
25	Zinc	mg/kg	63.1
26	Aluminium	mg/kg	110137.8
27	Manganese	mg/kg	113.2
28	Antimony	mg/kg	Nil
29	Beryllium	mg/kg	Nil

Note: 1. Results relate to tested sample only.

2. Test report should not be reproduced partially.

REMARKS: Based upon request of party sample was tested for above mentioned parameters only.

For Enviro Analysts & Engineers Pvt. Ltd.

G

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 85, Old Verme Layout, Ambazari, Nagpur - 440 010 Tel. 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Dryasal Mangai Hall, Pune - 411 030, Tell. : 020-2432 4444 Lab : Row House No. 2, Shalom Garden, Opp, Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thene - 401 107, Tel. : 022-2811 6442

Workshop : Plot No E - 122, MIDC Tarapur, Boisar, Dist. - Thane - 401 505.

SERVICE PAR & RETTER ENVEROPMENT

GREEN BELT & PLANTATION DETAILS

Total Area Covered: 258 HA Tree Planted: 515708 Nos. Shrubs Planted: 59884 Sq. Meter Green Carpet: 3, 22,194 Sq. Meter

Plant & Shrubs Species used for Green Belt Development

Shrubs	Tree Species	
Bogunvellia	Psidium guavajava (Amarud)	
Rose	Punica granatum (Anar)	
Furcaria	Manilkara zapota (Chikoo)	
Cassia biflora	Phyllanthus emblica (Aonla)	
Lagerstromia indica	Tamarindus indica (Imali)	
Shrubs	Mangifera indica (Mango)	
Flower Beds.	Lemon	
Lawn	Carissa carandas	
Exora Tall	Bottle Brush	
Golden Ficus	Casuarina	
Ficus panda	Samania saman	
Group plants	Ficus religeosa	
Nerium Bell (Yellow Ghanti Kanher)	Casia siamia	
Hibiscus	Bauhinia purpuria	
Musanda	Ficus bengalensis	
Nolino	Delonix regia	
Furcaria	Azadiracta Indica	
Junifer	Spathodia	
Ficus Golden	Peltaphorum	
Ficus blackiana	Delonix regia	
Headge	Acacia auriculiformis	
	Jackranda	
	Peltaphorum	
	Neolamarckia cadamba	
	Palms (Coconut, Fistal palm, Royal Palm, etc)	
	Ficus Golden	
	Rain Tree	
	Mimusops elengii	
	Cassia fistula	
	Tectona grandis (Teak)	
	Wad (Bargad)	
	Peepal	
	Neem	
	Bamboo	
	Satparni	
	Gulmohar	
	Australian babul	

Adani Foundation

CSR TIRODA Six monthly report (OCT-MAR) FY- 2021-22

Education Programmes: -

Navodaya Coaching Centre (NCC)

To nurture talent from rural area and support talented students from deprived families to get into Navodaya School. AF has opened special coaching classes for these students in Government school.

With the support of

education department NCCs running in total 3 centers i.e. ZP Upper primary school Birshi, ZP Upper primary school Chikhali and ZP Upper primary school Gumadhavda. Regular Navodaya Coaching Classes being

conducted at 3 centers Gumadhavda, Chikhali and Birsi for 2021-22 batch. Daily 2 hours of classes.

Pre- Training of Youths for Army and Police services

Adani Foundation is organizing 3 months training course in association with police department. To transform young candidates into academically proficient, physically

fit, mentally strong individuals bursting with energy and confidence and ready to face any challenge in life. Pre-Police training classes are being conducted on regular basis; physical training being imparted by police dept. in morning hours

on regular basis. started 3rd batch of 100 students. Regularly conducted daily 2 hours of Theory classes. Classes started Special coaching for the preparation of Police Bharti, namely Special Police Bharti Batch.

District Collector Ms. Naina Gunde ma'am, has visited and motivated the trainees of Pre-Police training classes on this occasion Deputy Superintendent of Police Shri Nitin Yadav was also present.

Adani Foundation Cricket Cup :-

Adani Foundation Cricket Cup 2021-2022 was concluded with a nail biting final match between the villages Churdi Vs Khairbodi on 26-03-2022. In an electrifying atmosphere with more than 200 villagers present along with HR Head Shri Hariprasad Adathale, Security Head Shri Rajendra Murai , CSR Head Shri Nitin Shiralkar, Sarpanch and GP members. Khairbodi won the game and hearts by their spectacular and well-disciplined game. Prize money of Rs. 15,000/- was

given to the winners along with certificates and tropy and runners up team Churdi was given a prize money of Rs. 11,000/-. We also gave away trophies to Man of the series, Best Bowler and Best Batsman. All in all the event was a grand success and helped in building good relationship with positive vibes between the employees and villagers.

Community Health Programme; -

Installed Liquid Oxygen Storage Tank (13KL Capacity) at Government Civil Hospital, Bhandara -

Adani Foundation has supported district administration by providing 13KL liquid oxygen storage tank at Government Medical Collage Hospital, Bhandara. It is serving the need of oxygen for COVID-19 patients. Capacity of the tank is 1000-1200 oxygen cylinder refilling per day.

Mobile Health Care Unit (MHCU) and Health Check Up

camps

Providing quality healthcare service at the doorstep of villages

2 MHCUs are operational – with partnership of Helpage India Organization.

General Medical Health Camp- Organized 48 General Medical Health camps in 48 villages- Total 331 patients (Male - 2253, Female- 3078) were benefited from these camps.

Regular OPD- This month both MHCU visits in 50 villages & consulted total 36363 patients (15588-Male and 20775-Female).

Health Awareness :- Organized 2 Awareness session with women and adolescent girls about women health

and anaemia in 2 villages- Belati and Bihiriya village. Total 39 women participate for this awareness session.

ECG Check ups- Completed total 169 patients ECG check ups.

Awareness on Health and hygiene ("Swachhagrahi House') Competition.

To imbibe good habits of sanitation and hygiene amongst family members.

To ensure involvement of all family members to keep their house and surrounding clean and neat.

To boost pride of home makers and her family members by organizing the competition.

Swachhagrahi House competition has been started in four villages of Tirora site, in which **2400 families** participated in Swachhagrahi

house competition in the villages of Dandegaon, Sonegaon, Nahartola, Ekodi, Jamuniya, Berdipar, Dhamnewada and Dabbetola, villages.

Cancer screening camps

- Timely diagnose cancer of suspected patients from the project area villages.
- To provide referral services for identified patients diagnosed with cancer in the proposed camps.
- To provide Govt. support for identified cancer patients in the proposed camps..
- Organizing 2 cancer screening camps in villages of Adani Foundation :- We

had organized 2 cancer screening camps in in Berdipar village and Tirora Town, Total 129 suspected patients got benefitted from these camps. These camps were organized with the support of Rashtra Sant Tukdoji Maharaj Cancer Hospital and Research Centre, Nagpur and Dist. Health Dept. Gondia

Sustainable Livelihood Development :-

Milk Collection & Chilling Centre (MC&CC)

Adani Foundation has supported local farmers to form Tiroda Farmers Producer Company (TFPCL) for dairy development. Also facilitated them to established

Anuradha dairy, operating three Milk Collection cum Bulk Milk Chilling Centres at Jamuniya / Berdipar, Chikhali & Kawalewada and initially 22 milk collection centres in other villages started by women SHG members of MAVIM (Mahila Arthik Vikas Mahamandal). AMUL dairy is collecting milk

from Anuradha dairy on daily basis. More than 1000 dairy farmers are assosicited with Anuradha dairy, they are getting addinational benefit of Rs. 5 to 25 / liter. Average daily milk collection 7000 liters. Monthly turnover is more than Rs. 80.00 Lakhs.

Animal Husbandry and Related Initiative (Dhanalakshami Programme)

To develop dairy farming as an additional source of livelihood for the farmers by improving productivity of local cows and buffaloes. Two livestock development centers (LDC) are running at Khairbodi and Kawalewada respectively covering 26 villages.

Sr. No.	Activity	Numbers	
1	AI	547	
2	AI (Sorted Sex semen)	766	
3	PD	410	
4	PD (Sorted Sex semen)	437	
5	Fodder seeds	231	
8	Cattle Health Check-up Camps	10	
9	Calving	172	

10

SSS Calving

194

Bio- Gas Installation

To make available alternative fuel for firewood to the rural households for cooking and household utilization.

To reduce the uses of firewood & preserve forest and maintain balance of environment.

To promote organic farming with the use of slurry that is residual of Biogas unit.

To ensure good health of homemakers, save their time from household chore and create employment opportunities.

Installation of 18 units of Biogas at 18 households in nearby villages.

Organic SRI

The organic SRI gives more yield in less investment, it is based on the scientific principles of Paddy Cultivation, which mostly revolves around Water Management, Young Aged seeding, Careful Single seedling transplantation, Weeding Rotary for soil aeration, Uses of Organic Compost and pesticides, and wider spacing management. Cover 100 new farmers in this initiative with target of 30

quintal/acre. In addition to that we intend to provide 4 kg hybrid seeds of Bayer 6444 variety to 37 farmers who cultivated organic SRI in 2020-21.

Exposure visits of farmers are being organized at demo plots in different villages, getting positive response from visitor farmers. In the exposure visits demonstration of importance of SRI over conventional method of paddy cultivation being given scientifically.

Silage Making Initiative

In Tiroda block many women farmers are engaged in household dairy business,

To support & promote household dairy business, Adani foundation is implementing many initiatives like two livestock development centers, Anuradha dairy etc.

For empowering women dairy farmers, we intend to support 50 women SHG members to start silage making business, the project includes maize cultivation, silage making & selling bags. This initiative of silage making will generate opportunity for income generation for 50 women SHG members as

well as useful for increasing milk production in our area.

Land Preparation Completed to 12 farmers for maize fodder cultivation

Lac Cultivation Programme

Adani foundation is implementing Lac Cultivation Programme. We have added 200 new farmers in the programme total goes to 400 farmers. At new 200 farms inoculation of lac insects carried out on 3000 flame trees. We have provided 40 packets of lac insects for inoculation of 15 trees

per farmer, totaling of 8000 packets have been provided and inoculation process was completed.

Capacity building & Support for income generation activity (IG):-

1. Agarbatti Making

Skilling women to provide financial and nutritional security to HHs. 20 Agarbatti Machines are installed in 5 villages (Garada, Ramatola, Tikaramtola, Mendipur, Gumadhawada), total 60 SHG women are successfully ruining this business. Agarbatti Making programme is ongoing.

Perfumed Agarbatti Packets sale is ongoing.

Total Agarbatti Production: - **64853 Kgs** Total Income Earned: - **Rs. 35,67,596/-**

2. Mushroom Cultivation

Mushroom cultivation is on expansion, with the collaboration of Mahila Aarthik Vikas Mahamandal (MAVIM), AF is giving Mushroom Cultivation training to women at Tiroda block. AF facilitated detail training on theoretical concept and practical demonstration of Oyster Mushroom Cultivation.

With the collaboration of Mahila Aarthik Vikas Mahamandal (MAVIM), AF Completed Mushroom practical demonstration in 5 villages.

Mushroom Cultivation Details In Month Wise Mushroom Bed Cultivated 2021-22

Sr. No	Month	Total Seeds Supply to SHG	Production in Kg	Avg. Sale rate in Rs./ KG	Total Income in Rs.	Seeds Expenditure in Rs.	Other Expenditure in Rs.	Total Expendit ure in Rs.	Net Profit in Rs
1	Oct-21	270	675	180	121500	8100	5400	13500	10800 0
2	Nov- 21	640	1600	180	288000	19200	12800	32000	25600 0
3	Dec-21	1435	3587.5	180	645750	43050	28700	71750	57400 0
4	Jan-22	1510	3775	180	679500	45300	30200	75500	60400 0
5	Feb- 22	1485	3712.5	180	668250	44550	29700	74250	59400 0
6	Mar- 22	1504	3760	180	676800	45120	30080	75200	60160 0
Total		7078	17695	150	3196800	212340	141560	353900	28429 00

Lac Bangle Making and Training :- One day hands-on training on Lac Bangle making had been organized for the women SHG members engaged in Lac bangle making.

To learn new type of Bangle Making and Variety of saree pin How to decorate Bangle with stone New design of bangle and sarre pin, hair pin with stone

To make sets of Bangle and various Decoration

Cold lac and powder base Lac bangle.

 Visit of Principal Secretary of Govt. of MS Shri. Nandkumar, IAS has visited our SLD initiatives and appreciated our SLD initiatives. Shown interest for replicating some of the initiatives in other districts through govt. departments.

CEO,ZP, Gondia Shri Anil Patil, IAS, has visited our CSR initiatives, interacted with beneficiaries and assured us for best possible support from government.

Community Infrastructure development :-

Water Conservation Work :-

Deepening and development of Gumadhawada and Barbaspura pond under water conservation work is completed.

Deepening and development of stream at Thanegaon and Ekodi under water conservation work is completed. Total more than 16000 cum work completed.

Drinking water facility with handpump:-

To reduce burden of water management for women and provide potable drinking water for villagers in we have provided borewell with hand pump units at Wadegaon, Tirora, Kachewani, Barbaspura and Berdipar village.

Rainwater harvesting and dug well recharge project.

- To make availability of drinking water for villagers.
- To introduce rainwater harvesting methodology for villagers and students.

- 3. To improve living standard of farmers and promote supporting agriculture business in area
- 4. Construction of Dug well recharge unit at Bus stop Tirora, Barbaspura drinking water well, Ekodi, Gumadhawada and Tikaramtola is completed.

- Construction of Kitchen shed in Kawalewada the construction work is ** completed.
- Construction of CC road at Gumadhawada village is completed.
- Solar power-based lift irrigation project at Garada village. *

हाथ धुलाई जागृति दिवस पर विद्यार्थियो को बताया गया हाथ धुलाई का महत्व..

🔶 नि.परिषद सेजगांव के विद्यार्थियों के लिये अटानी फाऊंडेशन के सहयोग से आयोजित की गई स्पर्धाए.

जगग्रेरणा गोटिया। रेज में प्रतिवर्ष 16 अक्टबर को हाथ धलाई जागति दिवस मनाया जाता

है, इस अवसर पर अक्तनी फाईडेशन एवं जिला प्रसिद्ध उच्च प्राथमिक शाळा सेजगाव तहसील तिरोडा के संयुक्त तत्वाधान में हाथ धुलाई जागृति दिवस मनागया गया, तथा स्कूली बच्चों को हाथ धलाई का महत्व समझाने के लिये निबंध दुइरैंग एवं मुक नाटम का मंचन कार्यक्रम आयोजित किया गया।

दिलाक १६ अंबट्रमा की आयोजित कार्यक्रम की अध्यक्षता कलेतताल पार्थ्य सारपंथ ने को, सम्री प्रमुख अतिथि के रूप में कार्यक्रम में अपनी पराईरेतन हठ निलीन शिराळकर, पूर्व उमस्पापती पत्तपाल समित्री विरोड डीक्टर किस्तेन जी पार्ध्य, उस्सरपंथ स्वानील णजन, एस.एम.सी. एसडी परधी, भी तुरकर सचिव वान पांचपत सेतनाव व मुख्यस्थाला एस एन पटले त्रवः सभी जिलक

व्यक्तम को प्रसत को जिन्हों तथा स्थरम्प जीव संदर्भ में घटनों क दिसम पा सम दी। इंग्रेंग बनाकर लोग विद्यार्थीजे ने मुक क संदेश दिया। व

प्रतेमत क्वस हि

प्रदर्शन सहुत होलव अदानी फार्टडेरन ने किया कार्वक्रम की संरत्तता के लिये स्वमर्गल वाहने, सनोग (वंगदले, प्रकाल भालेरण, जार आर विसेन, एस मी स्वंगडले व की पी बी पटले या व स्थापन समिती ने महत्वपूर्ण खेलदन दिया। 🔶 अटानी फार्फडेशन व्यासानिक सेवाओं में हमेशा आपके साथ.. नितीन शिरालकर रेड निकीन पंचोधन के कॅन्सर रोग निदान पंक्रम को

जिन्होंने भाग लिया, तथा नूक नद्भ में जिन्होंने अभिनय किया, ऐसे सभी विद्यकीयों को अदानी

फाटडेशन को और में पुरस्कार प्रदान किये गए। कार्यक्रम का संचालन अर्थवेद अर्क सर व आभार

शिबिर १३ रोजी भेत के बच्चों हो बेरतर बनाने तिरोडा 🛚 अदानी फाउंडेशन र के प्रयास की तिरोडा तसेच आरोग्य विभाग रेसे कार्यक्रमों में

जिल्हा परिषद गोंदिया यांच्या संयुक्त विद्यमाने मोफत कॅन्सर रोग निदान शिबिराचे आयोजन १३ डिसेंबर रोजी सकाळी १०:३० ते दुपारी ३.०० वाजे दरम्यान जिल्हा परिषद उत्तर बुनियादी शाळा तिरोडा च्या प्रांगणात करण्यात आले आहे

शिबिरात राष्ट्रसंत तुकडोजी रिजनल कॅन्सर हॉस्पिटल, नागपुर च्या तज्ञ डॉक्टरांकडून मुख कर्करोग, स्तन कर्करोग, गर्भाशय कर्वत्रोग व इत्तर कर्वत्रोगाची तपासणी करण्यात येईल तरी ज्यांना कर्वतरोगा संबंधी काही लक्षणे आहेत. अशा गरजुंनी या मोफत कॅन्सर रोग निदान शिबिराचा लाभ घ्यावा असे आवाहन अदानी फाउंडेशन प्रमुख नितीन शिराळकर यांनी केले आहे.

Des Normali Edi Dei 13, 2021 Pagi Poweréd by eRei

Media Coverage:-

अदानी फांऊडेशनच्या वतीने निःशुल्क आरोग्य तपासणी

तिरोडा 🔳 तालुक्यातील ग्राम पंचायत चांदोरी व अदानी पंचायत चांदोरी व अदानी फांऊडेशनच्या संयक्त विद्यमाने फांऊडेशनच्या संयक्त वतीने येथील महात्मा गांधी रोजगार हमी योजनाच्या नाला सरळीकरण कामावर रोगनिदान शिबिराचे आयोजन करण्यात आले होते. या मोफत रोगनिदान शिबिरात उपस्थित मजुरांची आरोग्य तपासणी करण्यात आली जिल्ह्यात तापमान वाढ् लागले आहे. याचा परिणाम नागरिकांच्या

आरोग्यावर होत आहे, विशेषतः कामावर असलेले मजुर उष्णतेच्या दहाकतेचा परिणाम होत आहे. परिणामी त्यांच्या आरोग्याची

रोगनिदान शिबिराचे आयोजन करण्यात आले होते. या शिबिरात सरपंच अलकेश मिश्रा, डॉ.मनिषा कुंमारे, विवेक राऊत, स्वप्नील वाहने, संदिप अंबुले, राधेलाल बिसेन, शिवचरण धांडे, देवदास मराठे, सुनिता पटले, कमल पटले, दर्शन अंबुले, सुमाथ अंबुले, मुनेंद्र नंदेश्वर, लोकेश्र वैद्य, रामरतन शिवणकर, जितेंद्र वासीसताले, भैयालाल बावीसताले, ताराचंद नखाते, बालचंद वैद्य व गावातील

प्रमुखासह मजूर वर्ग उपस्थित होते. War 20, 2622 Page No. 2 (basered by) eReletio.com देण्यात आला.

भजेपारवास घेतला आर बराचा लाभ

लोकमत न्यूज नेटवर्क बिरसी-फाटा : ग्राम भजेपार येथील

ग्रामपंचायत कार्यालयात अदानी फाउंडेशनच्या ततीने मोफत

आरोग्य तपासणी शिबिराचे आयोजन शनिवारी (दि.२०) करण्यात आले होते. शिबिरात डॉ. मनीषा कुंभारे, एस. डी. अंबुले, स्वप्निल राऊत यांच्या उपस्थितीत आरोग्य तपासणी व औषध वितरण करण्यात आले. याप्रसंगी सरपंच वर्षा पंधरे, उपसरपंच लेखीराम बोपचे, सदस्य तारेंद्र बिसेन, निमा भैरम, रोजगार सेवक लेखिराम पटले यांच्यासह इतर ग्रामपंचायत सदस्य व कर्मचारी उपस्थित होते. गावकऱ्यांना मोफत आरोग्य शिबिराचा लाभ

सीईओंचा दूध उत्पादक शेतकऱ्यांशी संवाद चिखली, (वा.)

रोग्रे गामपंचायत अदानी अंतगंत फाउंडेशन संस असलेल्या अनुसधा डेअरी दूध संबद्धत केंटाला जिल्हा परिपदेचे मुख्य कार्यकारी अधिकारी अनिल गरील यानी भेट देऊन दूध राभादना शेलक-यांशी संवाद माणला, दूध उत्पादन वाढीसाठी तिरव्या चाऱ्याचे महत्त्व रोलकन्यांना पटवून दिले.

बेरडीपार

नारुवयातील

अदानी फाउंडेशनच्या कामधेनू प्रकल्पांतर्गत सारटेड सेल्स सिमनच्या माध्यमातून जन्मलेल्य कालवादीची अनिल पारील यांनी पाहणी केली. सारटेड सेल्स सिमनच्या माध्यमातून फक्त ग जागवहाँच जन्माला खेत

असल्यामुळे हो उपक्रम दूध व्यवसायासाठां फायरेशोर आहे. बेरडोपार येथां ज मशरूम उत्पादन व्यवसाय कर गान्या महिला बनात गटांच्या खेरबोढी येथे अदानी यादव फाउंडेशन व पोलीस विभागाच्या प्रशिक्षणाथ्यांना संयुक्त विद्यमाने सुरू असलेल्या सैन्य व पोलीस भरतीपूर्व भरतीपूर्व

जिल्हा परिषद शाला कोईलोहारा येथे मुख्य कार्यकारी अधिकारी अनिल पार्टील यानी भेट दिले वायवारा आयवस्य आगल पावस्य विभावस्य असता. असता, शाळतील शिक्षक व यामस्थानी लोकसल्पागातून शाळेच्या शैक्षणिक व भौतिक विकासाच्या बाटवानीविषयी माहिनी दिली, तसेव शाळेने आदर्श शाळा उपक्रमातर्गत सन २०१७-१८ मण्य तिरोडा तालुक्यातून व सत्र 2019-20 मच्ये गोदिया जिल्ह्यातून प्रथम क्रमांक प्राप्त केल्याची माहिती मुख्याव्यापकांनी दिली. माहिती मुख

प्रशिक्षणाला भेट देऊन उपस्थित प्रांशक्षणार्थ्यांना स्पर्धा परीक्षेवर मार्गदर्शन केले. यावेळी पोलीस बचतगटाच्या उपविभागीय अधिकारी नितीन होते. उपस्थित उपस्थित अदाना पाशिक्षणार्थ्यानां उपास्यतं मान्यवरांच्या हस्ते ट्रॅंक सूट चितरित करण्यात आले. यानंतर निर्मिती प्रकल्पाला भेट दिली.

मख्य कार्यकारी अधिकारी पारील यांनी रामाटोला येथील महिला अगरबती उपक्रमाला भेट देऊन माहिती जाणून घेतली. बरबसपुरा येथे फाइंडेशनअंतर्गत राबविण्यात येणाऱ्या गांडूळ खत

SAKSHAM- ADANI SKILL DEVELOPMENT CENTRE

Annual Report FY 2021-22

VISION

To make everyone Skilled, Employable & Entrepreneur to benefit them in gaining or advancing their career aspiration to uplift the social life of Citizens of India with mapping the demands of Industries of getting Trained Manpower.

To systematize the skill development efforts in the Nation and create an environment where each and every youth and women not only gets some employable skill training but also gets some gainful employment and entrepreneurship.

MISSION

- To list Adani Skill Development Centre in Top 5 Largest Quality Skill Training Provider in the Country by 2020.
- To make 3, 00,000 Indian Youth Skilled with Employability and Entrepreneurship Skills by 2022.

ABOUT ASDC

Adani Skill Development Center (ASDC) is envisioned to be playing a major role in elevating the socio-economic status of the people belonging to the lowest strata of the society by providing them with various skill development training for making them employable and earn their own livelihood.

India has the highest youth population. However, their employability is a major issue as many of them lack professional skill-sets required for employment. ASDC, majorly focusing on youth and women, is an attempt to bridge this gap by providing them with training on developing various skills for entrepreneurship and employability.

Since filling a skill-gap is like solving a puzzle—it has to ensure that not only the pieces have to fit in but, one should have all the necessary pieces from the get-go. This includes a list of the required skills and competencies for every role; assessment of what you have versus what you need; identification of high performers and best practices; necessary training; and measurement of results.

Over the last four years, ASDC has assessed various aspects of the technical, leadership, and soft skills gaps that organizations, in general, face and accordingly, focuses on imparting required training in those areas in partnership with various colleges and institutes.

Through ASDC, Adani Group has taken a step towards establishing the right people at the right place by creating a model of Skill Development Centers. It is also an attempt to make the youth and women at large, independent and employable.

THE YEAR IN REVIEW: KEY HIGHLIGHTS

In this FY 2021-22 starting, we mobilize the students through telephonic calls and give the information about the present situation of COVID-19 also from time to time make us aware of safety in this critical situation. We have faced challenges at that time because most of the students are in Mumbai, Pune and they have jobs but we always motivate them be don't fear and fight with this situation.

In between we are always contacted with HO because time to time meetings are arranged from HO for current situations and training performance from HO time to time arrange various webinars and meetings on video call for improving training quality. In Covid-19 critical situation we are facing various challenges but we did it and completed the admission target of the given month simultaneously. We completed the online TOT in this period.

Considering the situation, of regularity of the courses and Domain-Specific requirement of Theory & Practical portion of the course, ASDC Management has decided to train the students in two different modes of training as per course requirement and Candidate's wish:

- Online: All classes shall be conducted via Webinar or Online Training Content.
- Hybrid: Domain-Specific course where Practical knowledge is required, Theory part would be digital and online while for Practical Sessions, Student can come to a nearby SAKSHAM Centre for practical

Now we are stable and manage each and every activity, reporting procedure to concerned authority as per planned activities and scheduled. We complete valuable tasks and give estimating effort with flexibility and adaptability in the work completion and focusing on priorities for training and think to give much better to our Centre and students. We have prepared syllabus day wise PPT, We conduct time to time parents meetings and share training and placement regarding information.

At the same time we are focused on placement, our team personally visited the home town of students and motivated them for placement and we are successful now all students of Welding Technician and Assistant Electrician are placed in Pune, Mumbai and other cities with handsome salaries of Rs. 12000/- p.m.

Overall in this FY 2021-22, we have completed all tasks and targets successfully and we are ready to take upcoming challenges and work with the same flow in the next FY 2022-23 and give our best to our team.

In the year 2021-22, trained 508 candidates at ASDC Tiroda.

ASDC Tiroda Training Details FY 2021-22									
S. N.	Trade	Total Batch	Enrolled Candidates	Drop Out Candidates	Total Trained	Total Placement	Total Up skilled		
1	Assistant Electrician	5	88	0	88	82	6		
2	Welding Technician	2	27	0	27	25	2		
3	Fitter: Mechanical Assembly	2	38	0	38	34	4		
4	Domestic Data Entry Operator	3	45	0	45	40	5		
5	Digital Literacy	8	166	0	166	0	166		
6	Interview Skills	2	47	0	47	0	47		
7	Basic Functional English	1	16	0	16	0	16		
8	Non Domain Employability Skills	1	9	0	9	0	9		
9	5'S	4	68	0	68	0	68		
10	GST with TALLY	1	4	0	4	0	4		
Total		29	508	0	508	181	327		

Events & Achievements in FY 21 – 22

- In June month, SAKSHAM-Adani Skill Development Centre Tiroda organized Yoga day with online students and shared how important Yoga is in our daily life on the occasion of International Yoga Day. If we see deeply today all problems arise in life only from stress. Each and every situation we have stress. We don't know how dinosaurs disappeared from the soil but if humans disappear from soil the reason is only stress. Stress is directly affected by our mind and health so we need to be safe from stress so if you want to release stress the only solution and way is daily yoga so we organize every year as a Yoga day. On this beautiful day our e-learning student is involved and cooperates thanks to ASDC to organize such a wonderful event.
- In Aug. month, we organized a Guest lecture for Asst. Electrician students about the topic "Electrical Safety Standards" conducted by Mr. Sunil Upadhyay, Deputy Manager – Operation & Maintenance (Electrical) Adani Power Maharashtra Pvt. Ltd, Tiroda with the support of Dr. Vijay Gandhewar, Technical Training Head APML Tiroda.
- > In Sep. month, Celebrated online Teachers day programme on 5th Sep. 2021.
- In Dec. month respected Sh. Chandra Shekhar Gouda (COO, Adani Foundation) visited SAKSHAM ASDC Tiroda on 22.12.2021.

- In Jan. month, we celebrated National Youth Day with APML Tiroda apprenticeship candidates.
- In APML ITI apprenticeship candidates coordination with APML Technical training department for all processes like admission, induction programme, training programme, final theory and practical assessment, final result sheet, certification etc.
- In our Centre annual target was 1210 candidates, we achieved the target of 533 till Mar. 2022 and completed 45% of the target successfully.
- In our Centre from Apr. 2017 to Mar. 2022, all domain trade trained candidates placement ratio has above 90%.
- > We have signed MOU of nearly 11 companies for 700 candidates and also signed our own batch MOU.

Best Practices at Centre.

- Safety Induction Program: At the commencement of batch we provide training on fire &safety, first-Aid and waste & environment management for all the candidates.
- 5-S Implementation at the Centre: 5-S quality management implementation and maintain regularly.
- Placement Drives conducted virtually: In the critical situation of COVID-19 we conducted an online Job fair (Shares all companies related information) for all trained candidates and parents.
- Individual Candidates documents dossier: Placed Individual Candidates documents dossier file with Index of Individual Candidate Dossier.
- Live Online Training using Projector and White Board : We are taking initiative for more effective live online practical E-learning using projector, due to this actual interest of students is increasing and it is very effective. Students giving feedback on such type training is very helpful to better understand. Students can feel like an actual classroom training environment.
- Live Practical: Online live practical arrange for students and demonstrate and explain live practical and find students' performance.
- Placement ratio has above 90%.: In our Centre from Apr. 2017 to Mar. 2022, all domain trade trained candidates placement ratio has above 90%.

Impactful stories of change

Indrapal Gawarane, a resident of a small village from Borgaon in Deori block, Maharashtra had high aspirations and big dreams, however, he didn't know what destiny had planned for him. Deori blocks fully from nexulight and tribal in Gondia district. Due to poor condition he has the responsibility of her family, spending most of his time in household chores. After finishing her class 12 exams, he took admission to ITI, Tiroda in the Welding Technician trade. But after completing ITI he has no confidence.

One day his friend Ramesh met him and told us about the courses running in Adani Skill Development Centre, Tiroda. Ramesh suggested to him in this Lockdown period no one can give any type of job in industries so this is the opportunity for you to learn something new also after completion of course Centre gives 100% job opportunity. Indrapal says thanks to his friend for telling such great information. He immediately contact the Centre mobilization team and requested to give admission in Welding Technician course. Mobilization team support and give the admission in three month online/hybrid course of welding technician.

Determined to choose the right path to succeed in life and make a respectful effort to support his family, Indrapal decided to enroll himself in an online/hybrid course Welding Technician run by Adani Skill development Tiroda. Beating all odds, she took up a three month skill training course in welding on an online platform in the critical situation of COVID-19.

His trainer Mr. Netlal Thawkar at Adani Skill development Centre found Indrapal to be a strong and focused boy who possessed the passion to excel. Immediately after finishing the course successfully he was selected in TATA Motors Pune as supervisor with a handsome salary Rs. 18,000 per Month.

Regarded as one of the promising and rewarding skill trades, welding has been one of the most dynamic and in-demand professions. Indrapal said, I am really thankful to ASDC, Tiroda for giving me this opportunity for all his encouragement.

Indrapal Gawarane

Annexure - IX

BIODIVERSITY CONSERVATION AT APML TIRODA

BIODIVERSITY GLIMPS

Indian Crested Hawk Eagle

Sarus Crane

BIODIVERSITY GLIMPS

Brown Snake Eagle

Oriental Darter

The Komodo Dragon

BIODIVERSITY GLIMPS

Barred Buttonquail

Indian Grey Hornbill

Little Owl
BIODIVERSITY GLIMPS

Leptotes Plinius

Asian Green Bee-eater

ASH UTILIZATION EFFORTS TO ACHEICE 100 % ASH UTILIZATION

- We have made long agreements with various cement manufacturers such as Ultratech Cement, ACC Cement, Ambuja Cement, Dalamia Cement, Birla Corporation and Shree Cement and providing ash as per their requirement.
- Agreement has been done with Birla Corporation limited for lifting of fly ash to BTAP Wagon.
- Jumbo Bag loading successfully done, through BOST Wagon. (2 Jumbo Bag Racks has been dispatched for cement manufacturing).
- We are providing fly ash to fly ash brick manufacturers (more than 150 nos.) and also in construction activities.
- We are also supplying Bottom Ash more than 145 nos. red brick manufactures for "Use of Bottom Ash in production of Red Brick"
- Bottom ash has been provided to in fly ash bricks manufactures for replacement of sand.
- We are providing ash to road & embankment projects. Presently, we have made agreement and supplying ash to various Road Project like Barbik Road Project, Atcon Raod Project, JMC Road Project Limited and HG Infra. Providing Ash to ROB – Tumsar, Maharashtra
- We have also successfully demonstrated use of Ash in Agriculture with engagement of AMPRI – Bhopal (CSIR – GOI). We are provide ash to nearby progressive farmers
- We have also conducted feasibility study from CFRI Dhanbad for Ash Stowing of Underground Mines of MOIL. We are providing Bottom Ash to MOIL, Balaghat for mine stowing.
- CSIR NEERI, Nagpur engaged for carry out hydrogeological & fly ash leachability study around the ash dyke area and Land Reclamation sites.

Way Forward for maximize Ash Utilization

- We have engaged Tropical Forest Research Institute (TFRI) Jabalpur for "Implementable Forestry Research for Ash Utilization promotion and development of Research Park" at APML.
- > Planning for disposal of ash in WCL coal mines.
- We are in discussion with VNIT Nagpur to explore feasibility to extract M-Sand from Ash.
- Discussion with CSIR AMPRI Bhopal for Fly ash based Geo polymer Concrete road for bulk utilization of ash.
- Production of fly ash based concrete blocks under the guidance of M/s.
 MASA, Germany in under discussion.
- Discussion with M/s. Builtech, India for Fly ash based Aerated autoclaved concrete block.
- M/s CeEntek, Singapore also interested to set up plant for Fly ash based Ultra high performance concrete at APML, Tiroda.
- Consultancy project awarded to CSIR CIMFER Dhanbad for Stowing of WCL Mine with fly ash.

Annexure - XI

Ash Dyke - 2 Reclamation Activities

1. Ash Dyke Completely filled

2. Shifting of Soil for Covering

3. Covering of Soil with help of Earth Moving Equipment's

4. Soil Covering, levelling and compaction

5. <u>Pit Digging for Sampling Plantation</u>

6. Laying & Installation of Drip System for Watering

7. <u>Plantation of Conocarpus Species around the boundary of Ash Dyke</u>

8. <u>Plantation of Eucalyptus Species inside Ash Dyke</u>

<u>Groundwater Recharge through Rainwater Harvesting at APML,</u> <u>Tiroda</u>

Sr. No.	Month	Rainfall (mm)	Rainwater Harvesting (m3)
1	April – 21	0	0.00
2	May – 21	36.1	13.19
3	June – 21	181	66.14
4	July – 21	365.1	133.41
5	August – 21	234.5	85.69
6	September – 21	287	104.87
7	October – 21	7.8	2.85
8	November – 21	14.6	5.33
9	December – 21	49.2	17.98
10	January – 22	0	0
11	February – 22	0	0
12	March – 22	0	0
	Total	1175.3	429.45

Rainwater Harvesting Structure inside the plant premises

Inception Report

Bioaccumulation & Bio magnification study in and around low

laying area filled with fly ash near Adani Power Maharashtra

Limited

Submitted to

M/s. Adani Power Maharashtra Limited (APML), Tiroda, Gondia District (Maharashtra)

CSIR-National Environmental Engineering Research Institute Under Council of Scientific & Industrial Research Nehru Marg, Nagpur – 440 020

March 2022

1. Introduction

1.1. Inception Report Purpose

The inception report is prepared to introduce the project objectives and the initiation of the activities.

1.2. Project Objectives and Scope

Objectives:

- 1. To undertake survey and identification of flora and fauna around the ash disposal sites.
- 2. To undertake heavy metal analysis of tree leaves, vegetation, crop yields and cattle population for understanding of bioaccumulation and bio magnifications in flora and fauna around land reclamation sites.

Scope of work:

- i. Primary survey and identification of flora and fauna around the ash disposal sites
- ii. Sampling & analysis of trace elements in flora like tree leaves, fruits, vegetation, fodder, crop yield etc. around land reclamation site filled with fly ash.
- iii. Analysis of the heavy metals i.e. As, B, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se, Zn, Hg, Co, Mo in flora samples collected around the land reclamation sites as well as from the ash ponds of APML in pre and post monsoon seasons.
- iv. Identification and sampling of the cattle population and nearby aquatic life.
- v. Find out the heavy metal like As, B, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se, Zn, Hg, Co, Mo in fauna (milk, urine, and scat of grazing animals as well as in aquatic animals like fish) samples collected around the land reclamation sites as well as from the ash ponds of APML in pre and post monsoon seasons.
- vi. Calculate bioaccumulation and bio magnification factor of land reclamation area

vii. Correlate the leaching process from Fly Ash disposal site to groundwater to complete food chain process of flora and fauna.

1.3. Project Organization

The project will be executed by a team consisting of permanent staff, temporary staff and it will be coordinated by the Director.

- Scientific Staff
 - Dr. Shalini Dhyani
 - Dr. Paras R Pujari
- Project Staff
 - Ms. Sunidhi Singh
 - Ms. Jayshree Shukla
 - Mr. Aseem Fulzele

Project Coordinator

- Dr. Atul N. Vaidya
- Secretarial Assistance
 - Mrs. Vandana Cinthray

2. Planned Objectives and Activities

2.1. Objective: To undertake survey and identification of flora and fauna around the ash

disposal sites.

Results & Activities:

- Primary survey and identification of flora and fauna within 50 km from plant will be carried out.
- ii. Identification and collection of flora samples will be carried out on the basis of species dominance and frequency

2.2. Objective: To undertake heavy metal analysis of tree leaves, vegetation, crop yields and cattle population for understanding of bioaccumulation and bio magnifications in flora and fauna around land reclamation sites.

Results & Activities:

- Sampling and analysis of trace elements in plants (wild as well agricultural crops)
 will be carried around the land reclamation site filled with fly ash near APML.
- ii. Samples will be collected within the 50km from the plant in pre and post monsoon season using random sampling. The plants, after identification will be stored in polyethylene bag and brought to the laboratory for the heavy metal analysis i.e. i.e. As, B, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se, Zn, Hg, Co, Mo.
- iii. Collected samples of plant leaves shoot and root will be analyzed for heavy metal analysis in Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) (Model: iCAP 6300 DUO, Make: Thermo Fischer).
- iv. In order to study the effect of fly ash and bio-magnification of trace elements and heavy metals in terrestrial fauna, herbivores will be selected from each location.
 Grass samples along with soil from the faunal grazing area and other biological samples such as milk, urine and fecal matter (scat) will be collected. Milk sampling will be carried out as per the standard protocol of International Dairy Federation (IDF).

3. Project Work Plan

3.1. Work Plan Schedule

S1.	Activity	0-3	3-6	6-9	9-12
No		months	months	months	months
1	Reconnaissance survey for site selection,				
	sampling of plants, soil, dung, urine, milk				
	and fish from reclamation sites				
2	Sample analysis for plants, soil, dung, urine,				
	milk and fish samples				
3	Calculation bioaccumulation and bio				
	magnification factor of land reclamation area				
4	Correlate the leaching process from Fly Ash				
	disposal site to groundwater to complete				
	food chain process of flora and fauna				
5	Report preparation				

3.2. Responsibility Chart

The biological activities will be looked after by Dr. Shalini Dhyani and hydrogeological by Dr.

Paras R. Pujari supported by Project staff.

4. Implementation of the Project

4.1. Kick off Meeting: A kick off meeting was arranged through MS teams on 20th December 2021 wherein presentation of the project was made before the senior management of the APML. Subsequently, discussions were held in the Environmental section wherein planning for the field activities were discussed. A reconnaissance visit took place wherein the ash disposal at the low lying areas in the 50 km buffer was covered on 6th January, 2022.

4.2. 1st **Field Visit**: The 1st field visit for sample collection was made during the period February 14-17, 2022 (**Plate 1-3**).

Plate 1: Sampling in the study area A, B- Plant Sampling C, D- Soil Sampling E- Scat Sampling F- GPS Location

Plate 2: NEERI Team at ash filling site

Plate 3: Common plant species found in the study area; A) Datura stramonium B) Hyptis suaveolens C) Lantana camara D) Pluchea indica E) Ipomea carnea F) Sphaeranthus indicus

Samples (plants, soil, scat, milk and urine) were collected from different locations (Table 1,

Figure 1).

The samples will be analysed at the Laboratory in CSIR-NEERI, Nagpur.

S. No.	Sample Code	Village	Latitude	Longitude
1	MAF	Mendipur	21°23'56.26"N	79°59'3.88''E
2	G1OG	Garada	21°23'31.13"N	79°56'49.33"E
3	CRS	Chirekhani	21°25'50.82"N	79°56'12.80"E
4	CPG	Chikhali	21°23'42.09"N	79°57'55.54"E
5	АК	Gumadhawada	21°25'35.79"N	79°58'21.87''E
6	RUR	Kachewani	21°26'30.56"N	79°59'7.84''E
7	TH-1	Tiroda	21°22'37.91"N	79°55'22.45"'E
8	BMA	Birsi	21°22'24.16"N	79°55'21.91"E
9	SKF	Sarandi	21°21'50.48"N	79°52'53.21"E
10	BRS	Bhiwapur	21°23'33.18"N	79°58'57.63"E
11	SSR	Sarra	21°18'50.66"N	79°55'8.95"E
12	MP	Malhi	21°19'22.87"N	79°54'12.49''E
13	PGS	Parsawada	21º 30' 40.3" N	79º 57' 55.7''E
14	MRT	Maregoan	21°18'43.96"N	79°55'43.46"E
15	DRB	Dakni	21°28'27.60"N	80° 9'4.97''E
16	GPG	Gondmohdi	21°30'41.80"N	80° 0'9.22''E
17	GAAS	Gangazari	21°27'6.69"N	80° 3'32.35''E
18	LMS	Lodhitola	21º 23' 44.9"N	79º 55' 07.6"E
19	SPB	Silli	21°19'18.68"N	79°53'5.80''E
20	IUB	Indora	21°22'58.07''N	80° 0'10.44"E
21	CYSG	Chulod	21°27'40.68''N	80°15'27.67''E

Table 1- Location of samples in the study area

S. No.	Sample Code	Village	Latitude	Longitude
22	MGPL	Madgi	21°20'22.92"N	79°47'3.99"E
23	LNLB	Lonara	21°16'31.48"N	79°52'49.32''E
24	SVT	Sonekhari	21°17'20.36"N	79°50'27.34''E
25	ASK	Ambora	21°29'13.91"N	80°13'44.51"E
26	DTDT	Dawwa-tumkheda	21°24'13.11"N	80°11'39.07''E
27	SGHK	Kawlewada	21°25'54.86"N	79°54'13.82"E
28	GHAM	Goregaon	21°20'43.89"N	80°11'42.08"E
29	KSSG	Khatia - p.s.gondia	21°30'26.15"N	80°15'37.00''E
30	DGGP	Dhatora-gondia	21°26'16.33"N	80°16'6.10''E
31	MTTG	Tedhava	21°35'37.08"N	80° 9'18.69"E
32	СТРН	Hirdamali	21°22'31.95"N	80°12'8.39''E

Figure 1: Base Map of the study Area

4.3. Future programmes

The analysis of samples collected in the pre-monsoon sampling is in progress. The postmonsoon sampling will be undertaken during September-October, 2022.

The results will be presented before the APML once in a year preferably at the final end of the project.