

Power Ref: APML/EMD/MOEF/EC/204/11/22 Date: 24/11/2022

To, Additional Principal Chief Conservator of Forest (APCCF) Ministry of Environment, Forest & Climate Change Regional Office (WCZ), Ground Floor, East Wing, New Secretariat Building, Civil Line, Nagpur-440001 (MH).

- Sub: Six Monthly Compliance Status report of Environmental Clearance of Tiroda Thermal Power Plant for Phase- I & II along with Environmental Monitoring reports- Reg.
- Ref: Environmental Clearance letter J 13011/4/2008-IA.II (T) dated 29.05.2008 & EC
 Amendment letter no. J-13011/4/2008 –IA II (T) dated: 21/03/2012.
 Letter No. J-13012/81/2008-IA-II (T) dated 22.04.2010 & EC Amendment Letter
 no. J-13012/81/2008 IA II (T) dated: 30/03/2012 & 13/03/2014

Dear Sir,

With reference to above subject, please find enclosed herewith Six Monthly Environmental Clearance (EC) compliance status report along with environmental monitoring results like Ambient Air Quality, Stack Emission, Water Quality, Noise level, Soil, CAAQM, CEMS data, Met data, Green belt development details and CSR progress reports etc. for the period of **April'2022 to September'2022** in soft (**e-mail**).

This is for your kind information & record please.

Thanking you Yours faithfully, for Adani Power Maharashtra Limited

(Santosh Kumar Singh) Authorized Signatory

Encl: As above

CC: Member Secretary **Central Pollution control Board** Parivesh Bhavan, East Arjun Nagar Kendriya Paryavaran Bhawan New Delhi- 110 032. The Regional Officer, **Maharashtra Pollution Control Board** Regional Office, 5th Floor Udyog Bhawan, Civil Lines, Nagpur – 440001

Member Secretary, **Maharashtra Pollution Control Board** Kalpataru Point, 2nd – 4th floor, **Mumbai**–22

Adani Power Maharashtra Ltd Adani Corporate House Shantigram, S G Highway Ahmedabad 382 421 Gujarat, India CIN: U40101GJ2007PLC050506 Tel +9179 2555 4444 Fax +9179 2555 7177 www.adanipower.com

Registered Office: Adani Corporate House, Shantigram, Nr Vaishno Devi Circle, S G Highway, Khodiyar, Ahmedabad 382 421, Gujarat, India

COMPLIANCE STATUS REPORT OF ENVIRONMENTAL CLEARANCES

3300 (5x660) MW THERMAL POWER PLANT PHASE – I & II

At

TIRORA, DISTRICT GONDIA MAHARASHTRA

Submitted to:

Integrated Regional Office, Nagpur Ministry of Environment, Forest & Climate Change, Central Pollution Control Board, New Delhi & Maharashtra Pollution Control Board, Mumbai and Regional office, Nagpur

adani

Submitted By:

Environment Management Department Adani Power Maharashtra Limited

Plot NO: A -1, Tirora Growth Centre MIDC, Tirora, Gondia – 441911 (M.H)

PERIOD: April'2022 – September'2022

CONTENT

Sr. No.	Title	Annexures
1	Introduction	
2	Compliance status of Environment Clearances (ECs)	
List o	f Annexures	
3	Environmental Monitoring Report (Third Party) From April'2022 – September'2022 Micro Meteorology data Ambient Air Quality Report Stack Emission Report Water Quality Report Piezometer well analysis report Water Level Monitoring Noise Level Monitoring Report	Annexure - I
4	 Environmental Monitoring Report (In -House) From April'2022 – September'2022 Ambient Air Quality Report Stack Emission Report Waste-Water Analysis Report Noise Level Monitoring Report 	Annexure - I A
5	Online Continuous Ambient Air Quality Monitoring (CAAQMS) value (April'22 – September'22)	Annexure – II
6	Online Continuous Emission Monitoring System (CEMS) value (April'22 – September'22)	Annexure – III
7	Fly Ash Generation & Utilisation (April'22 – September' 22)	Annexure – IV
8	Efforts of Fly Ash Utilization	Annexure – V
9	Rainwater Harvesting Quantity & Structures inside Plant	Annexure – VI
10	Green Belt/Plantation Details	Annexure – VII
11	Biodiversity Conservation	Annexure –VIII
12	Ash Dyke Reclamation	Annexure – IX
13	Ash Analysis Report	Annexure – X
14	Progress Report of Corporate Social Responsibility (CSR)	Annexure – XI
15	Skill Development - Training and Placement details	Annexure – XII
16	Environment Statement (FY 21-22)	Annexure –XIII
17	Training & Awareness program – WED report	Annexure -XIV

1.0Introduction

Adani Power Maharashtra Ltd, (APML), a wholly owned company of Adani Power Limited has established 3300 MW (5x660) Coal-based Thermal Power Plant at Tiroda, District Gondia in Maharashtra in two phases as below:

Phase I: 2 x 660 MW

Phase II: 3 x 660 MW

The plant site is located at Tiroda Growth Centre of MIDC (Maharashtra Industrial Development Corporation) developed area near Tiroda, District Gondia in Maharashtra. The Villages, Gumadhawara, Khairbodi, Chikhali, Churdi, Bhiwapur, Kachewani and Mendipur, surround the site. The power plant is based on supercritical, energy efficient & environment friendly technology.

APML has been granted Environmental Clearances from Ministry of Environment & Forest, Consent to Establish & Consent to Operate from Maharashtra Pollution Control Board for phase I & II (Unit 1, 2, 3, 4 & 5). As a part of the compliance of statutory requirements, environmental quality monitoring is being done regularly at locations suggested by Sub- Regional Officer, MPCB, Bhandara on the basis of micrometeorological parameters. Also, three nos. of Continuous Ambient Air Quality Monitoring System have been established in three different locations inside the plant boundary as per wind rose and suggested by SRO, MPCB Bhandara. Also, 3rd party lab (M/s Enviro Analyst & Engineers Pvt. Ltd, Mumbai) carried out environmental monitoring & analysis for the power plant.

Point wise compliance status of Environmental Clearance for Phase -1 & 2 is furnished herewith.

Compliance status on Environmental Clearance (Phase-I: (2x660 MW) Thermal Power Plant)

LETTER NO. J-13011/4/2008-1A-II (T) DATED 29.05.2008 and Subsequent amendement in Environnemental Clearance vide LETTER NO. J-13011/4/2008-1A-II (T) DATED 21.03.2012

Sr. No.	Conditions	Compliance Status
(i)	The total land requirement for the project shall be restricted to 210 ha.	Complied. The project has undergone expansion. The total area has changed and the same has been approved by MoEF&CC. The total area required for all two phases are 565.84 ha.
(ii)	Sulphur and ash content in the coal to be used in the project shall not exceed 0.5 % and 29.57 % respectively (as Amendment dt. 21.03.12).	Being Complied. Sulphur & ash contents are below 0.5% and 29.57 % respectively.
(iii)	A bi-flue stack of 275 m height shall be provided with continuous online monitoring equipment's for SO_x , NO_x and Particulate matter. Exit velocity of flue gases shall not be less than 22 m/sec.	275 meters is installed with On-line monitoring equipment for SO ₂ , NO _x & PM. Exit velocity of
(iv)	High efficiency Electrostatic Precipitator (ESPs) shall be installed to ensure that particulate emission does not exceed 50 mg/Nm ³ .	
(v)	Space provision shall be kept for retrofitting of FGD, if required at a later date.	
(vi)	Adequate dust extraction system such as cyclones /bag filters and water spray system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	Cyclone) in the coal crusher and coal conveying
(vii)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided and its utilization to the maximum extant shall be ensured. 100% fly ash utilization shall be ensured from 5 th year onward. Unutilized fly ash shall be disposed-off in the ash pond in the form of High Concentrated Slurry and the bottom ash in conventional slurry mode.	collection of dry fly ash for end users. Rly. Rake/bulkers loading facility developed under the silos for bulk ash dispatch to users such as cement manufacturing industries. Please Refer
(viii)	Ash pond shall be lined with HDPE lining. Adequate safety measures shall also be implemented to protect the ash dyke from	

	getting breached. Guard drains shall be provided all along the periphery of the ash dyke to avoid contamination of soil and surface water in case of run-off.	CPCB. Adequate safety measures have been taken for any unforeseen incidents. Guard drains & guard pond established.
(ix)	Water requirement shall not exceed 36 MCM/year. No ground water shall be extracted for this power project including during construction phase.	Complied . 22.26MCM of water withdrawn from the River against the allocation of 70MCM for both phases during 2022-23 (till Sept). Comprehensive water audit has been conducted by "Academy of Water Technology & Environment Management" Kolkata in technical collaboration Indian Institute of Social Welfare & Business Management, Kolkata. Specific water consumption 2.46 m ³ /MWh during Apr- Sept'22.
(x)	Closed cycle cooling system with cooling towers shall be provided. Cycle of concentration (COC) of at least 5.5 shall be adopted and the effluents treated as per the prescribed norms.	Being complied. The average CoC is 5.9 during the period
(xi)	The treated effluents confirming to the prescribed standards shall be re-circulated and reused within the plant. There shall be no discharge outside the plant boundary except during monsoon for storm water. Arrangements shall be made that effluents and storm water do not get mixed.	All the effluent treated adequately & treated water is being reused within the plant. The concept of "Zero Discharge Condition" implemented except during monsoon period. Separate drainage network established for storm water.
(xii)	A sewage treatment plant shall be provided, and the treated sewage shall be used for raising green belt/plantation.	2x120 KL/D of Sewage Treatment Plants have been installed and is under operational. Treated water being reused in green belt development
(xiii)	Rainwater harvesting should be adopted. Central Ground water Authority / Board shall be consulted for finalization of appropriate rainwater harvesting technology within a period of three months from the date of clearance and details shall be furnished.	Secretary- Central Ground Water Authority, New Delhi. We have constructed 3Nos. of rainwater harvesting structures having capacity 12m ³ and 01 rainwater harvesting pond of capacity 394m ³ within plant to store the rainwater for further uses. Total 934m ³ rainwater has been harvested in April - Sept'22 through rainwater harvesting system. Please Refer Annexure – VI
(xiv)	Adequate safety measures shall be provided in the plant area to check/minimize spontaneous fires in coal yard, especially during summer season. Details of these measures along with location plant layout shall be submitted to Ministry as well as to the regional Office of the Ministry at Bhopal.	Adequate safety Control measures have been implemented to take preventive control measures. Fire hydrant and rain gun type water sprinklers installed in the coal yard. Details of control measures along with locations in the plant layout already submitted.
(xv)	Storage facilities for liquid fuel such as LDO to be used as auxiliary fuel in the project shall be made in the plant area where risk is minimum to the storage facilities. Adequate assessment of risk management shall be made in the Disaster management	Adequate storage & handling practices of LDO implemented as approved by Chief Controller of Explosive, Nagpur. Presently Low Sulphur containing LDO being used. Disaster Management Plan and On-site Emergency Plan have been prepared. Mock drills are being

	Plan for the same. Mock drills shall be conducted regularly as plan. Necessary	of control measures & preparedness of response
	clearance as may be applicable to such storage under HSM Rules shall be obtained.	team.
(xvi)	Regular monitoring of ground water in and around the ash pond area shall be carried out, records maintained, and periodic reports shall be furnished to the Regional Office of this Ministry.	around ash pond area. Monitoring results are being submitted to Regional Officer, MoEF&CC and MPCB regularly. Please Refer Annexure – I
(xvii)	A green belt of adequate width and density shall be developed around the plant periphery covering at least 69.64 ha of project area preferably with local species.	Green belts with local species have been
(xviii)	A plan for conservation of fauna reported in the study area shall be prepared in consultation with State Forests and Wildlife Department within 3 months and shall be implemented effectively.	Conservation plan of Fauna in the study area was prepared in consultation with State Forest
(xix)	First aid and sanitation arrangements shall be made for the drivers and other contract workers during construction phase.	First Aid and sanitation facility have been provided for the drivers and contract workers during construction phase.
(xx)	Leq. of Noise levels emanating from gas and steam turbines shall be limited to 75 dBA. For people working in the high noise area, requisite personal protective equipment like earplugs/ear-muffs etc. shall be provided. Workers engaged in noisy areas such as steam & gas turbines etc. shall be periodically examined to maintain audiometric record and for treatment for any hearing loss including shifting to non- noisy/less noisy areas.	Necessary actions have been taken care to maintain Ambient Noise levels within 75db(A) during plant operation. The personal protective equipment's have been provided to workers & employees working in noisy areas. Noise level monitoring is being carried out regularly and reports submitted to MoEF&CC, CPCB & MPCB.
(xxi)	Regular monitoring of ground level concentration of SO ₂ , NOx, SPM and RSPM shall be carried out in the impact zone and records maintained. If at any stage these levels are found to exceed the prescribed limits, necessary control measures shall be provided immediately. The location of the monitoring stations and frequency of monitoring shall be decided in consultation	Regular monitoring of PM_{10} , $PM_{2.5}$, $SO_2 & NO_x$ as per the revised NAAQS-2009. Monitoring reports are being submitted to the MPCB monthly. Ground level concentrations of specified parameters are well within the limits. Monitoring stations have been established in consultation with the MPCB. Please refer

	with SPCB. Periodic reports (six monthly)	
	shall be submitted to the Regional Office of this Ministry.	
(xxii)	The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned within seven days from the date of this clearance letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the State Pollution Control Board/ Committee and may also be seen at Website of the Ministry of Environment and Forests at <u>http://envfor.nic.in</u> .	oomprico:
(xxiii)	A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.	Environment Management Dept. is in place lead by General Manager & supported by qualified Environment Engineers, Chemist, Horticulturist and Ash utilization team for implementation & compliance of environmental standards.
		 Environmental Management System (Standard - ISO 14001:2015) implemented under Integrated Management System.
		 NABL Accredited Environmental Laboratory (ISO/IEC 17025:2017) established for monitoring & analysis of Ambient Air quality, Water/ wastewater, Stack emission etc.
(xxiv)	Half yearly report on the status of implementation of the stipulated conditions and environmental safeguards shall be submitted to this Ministry/Regional Office /CPCB/SPCB.	Six monthly compliance reports are being submitted regularly to MoEF&CC, CPCB &
		https://parivesh.nic.in & www.adanipower.com.
(xxv)	Regional Office of the Ministry of Environment & Forests located at Bhopal will monitor the implementation of the stipulated conditions. A complete set of documents including Environmental Impact Assessment Report and Environment Management Plan along with the additional information submitted from time to time shall be forwarded to the Regional Office for their use during monitoring.	

(xxvi)	Separate funds shall be allocated for implementation of environmental protection measures along with item-wise break-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should be reported to the Ministry.	Separate fund has been already allocated for Environmental Protection.Budget details for pollution control measure for F.Y 2022-23 is as below (in Lakhs):SI.ParticularsCost (in Lac.)1Pollution control equipment 0 &M6872Pollution Monitoring, Study & analysis1463Green belt Development2054Rural Development/CSR3835Legal & consent fees3886Training & Awareness127Waste Management11924Total
(xxvii)	The project authorities shall inform the Regional Office as well as the Ministry regarding the date of financial closure and final approval of the project by the concerned authorities and the dates of start of land development work and commissioning of plant.	
(xxvii i)	Full cooperation shall be extended to the Scientists/Officers from the Ministry / Regional Office of the Ministry at Bhopal /the CPCB/the SPCB who would be monitoring the compliance of environmental status.	Noted. Full cooperation always extended.
(xxix)	The project proponent shall upload the status of compliance of the conditions stipulated in the environmental clearance issued vide this Ministry's letter of even no. dated 30.03.2007, in its website and uploaded periodically and simultaneously send the same by e-mail to the Regional Office of the Ministry of Environment and Forests.	
(xxx)	Criteria pollutant levels including NOx, RSPM, (PM10 & PM2.5), Sox (from Stack & ambient air) shall be regularly monitored and results displayed in your website and also at the main gate of the power plant.	Complied. Online monitoring data of Ambient air qualit including PM_{10} , $PM_{2.5}$, SO_2 & NO_x . and Stac monitoring of PM, NOx, SO_2 . being displayed a main Gate of the Plant.

Compliance Status of Environmental Clearance (Phase- II (3X660) MW THERMAL POWER PLANT)

LETTER NO.J-13012/81/2008-1A-II (T) DATED 22.04.2010) & Subsequent Amendment LETTER NO. J – 13012/81/2008- IA.II (T) dated 30.03.2012 and LETTER No. J-13012/81/2008-IA.II (T) dated 13.03.2014

Sr.	Conditions	Compliance Status
No.	Conditions	Compliance Status
(i)	on 100% domestic coal for which coal linkage from SECL is available and the other two units of 2x660 MW shall be run purely on imported coal, as per details in Para 2.	MoEF vide letter no. J-13012/81/2008-1A-II (T) dtd. 13.03.2014 has amended the condition for change of source of coal to indigenous Coal from subsidiary companies of "Coal India Limited" in place of Imported coal.
(ii)	Separate stacking arrangement shall be made for indigenous and imported coal.	Not Required as domestic coal being used as per amended EC dated 13.03.2014.
(iii)	In case source of fuel supply is to be changed at a later stage for the 2 x 660 MW the project proponent shall come back to the ministry as the appraisal presently was done based on imported coal for 2 x 660 MW unit.	Complied. Obtained required amendment on 13.03.2014.
Α	Water & Waste Water Management	
(iv)	No ground water shall be extracted for use in operation of the power plant even in lean season	Being Complied. We have already obtained permission from Water Resource Department (WRD) Govt. of Maharashtra for withdrawal of 70 MCM water for both phases from Wainganga River. The above quantity is adequate to meet the plant's requirement including lean season. Specific water consumption 2.46 m ³ /MWh during Apr-Sept'22 against the notified limit 3.5m ³ /MWh.
(v)	No water bodies including natural drainage system in the area shall be disturbed due to activities associated with the setting up / operation of the power plant	Complied There is no water body within plant premises.
(vi)	Minimum required environmental flow suggested by the Competent Authority of the State Govt. shall be maintained in the Channel / Rivers (as applicable) even in lean season.	Water allocation is from Dhapewada Irrigation Project constructed and maintained by Vidarbha Irrigation Development Corporation. APML has no role in regulating the water flow downstream.
(vii) (viii)	Hydro-geological study of the area shall be reviewed annually and results submitted to the Ministry and concerned agency in the State Govt. In case adverse impact on ground water quality and quantity is observed, immediate mitigating steps to contain any adverse impact on ground water shall be undertaken Closed cycle cooling system with	Complied, Ground water quality is being monitored in and around the plant premises. Ground water level in nearby villages is also being monitored to know the seasonal fluctuations. CSIR – NEERI, Nagpur engaged to carry out Hydro-geological study & review from 2019 – 2022.
	Closed cycle cooling system with	

	induced draft cooling towers shall be provided and COC of at least 5.5 shall be adopted.	The average CoC is 5.9 during the period
(ix)	The treated effluent confirming to the prescribed standards only shall be re- circulated and reused within the plant. There shall be no discharge outside the plant boundary except during monsoon. Arrangements shall be made that effluent and storm water do not get mixed.	Effluent treatment plant installed within the plant and treated water is being utilize/reuse within the premises to meet "Zero Discharge". Separate drains provided for trade effluent & storm water.
(x)	Effluent from the desalination plant shall be first treated in a guard pond before discharged, if applicable.	Not Applicable The desalination plant is not required
(xi)	A sewage treatment plant shall be provided (as applicable) and the treated sewage shall be used for raising greenbelt/plantation.	Complied. Sewage Treatment Plants have been installed and treated water is being reused for green belt development.
(xii)	Rainwater harvesting should be adopted. Central Groundwater Authority/ Board shall be consulted for finalization of appropriate rainwater harvesting technology within a period of three months from the date of clearance and details shall be furnished.	Rainwater Harvesting study carried out & report submitted to Regional Director, Central Ground Water Board, Nagpur & Member Secretary, Central Ground Water Board, New Delhi. We have constructed 3Nos. of rainwater harvesting structures having capacity 12m ³ and 01 rainwater harvesting pond of capacity 394m ³ . Total 934m ³ rainwater has been harvested from April to Sept'22 through rainwater harvesting structures. The details of rainwater harvesting system along with harvested quantity is enclosed as Annexure – VI
(xiii)	Regular monitoring of ground water shall be carried out by establishing a network of existing wells and constructing new piezometers. Monitoring around the ash pond area shall be carried out particularly for heavy metals (Hg, Cr, As, Pb) and records maintained and submitted to the Regional Office of the Ministry. The data so obtained should be compared with the baseline data so as to ensure that the ground water quality is not adversely affected due to the project.	
В	Air Pollution Control	
(xiv)	Provision for installation of FGD shall be provided.	Noted. Space for installation of FGDs have been provided since construction stage. As per MoEF&CC' Notification dated 05.09.2022, Tiroda TPP is falling under Category "C" Non- retiring TPP & the timelines for compliance of SO ₂ emission is up to December 2026. Accordingly, the work is under progress & will be installed within the schedule.
(xv)		ESP with efficiency of 99.93% (ESPs of 10 fields) installed for each boiler to meet

	50mg/ Nm ³ .	than 50mg/Nm ³ .
(xvi)	Adequate dust extraction system such as cyclones /bag filters and water spray system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	Complied. Adequate air pollution control measures such as dust extraction system (Cyclone followed by bag filters) in coal crushers and rain gun type dust suppression system in coal yard and dry fog type dust suppression system in the belt conveyor with insertable dust collector at transfer points have been installed to meet particulate matter emission within the norms.
(xvii)	Green Belt consisting of 3tiers plantations of native species around plant and at least 100 m width shall be raised. Wherever 100 m width is not feasible a 50 m width Shall be raised and adequate justification shall be submitted to the ministry. Tree density shall not be less than 2500 per ha with survival rate not less than 70%.	Complied, Green belt with local species has been developed on 258 Ha. of land in around the plant periphery, along the internal roads etc. so for, more than five lacs saplings planted as on Sept' 22. In addition to above, around 3,22,194 area also covered under Green Carpet. In-house nursery established to cater our saplings requirement. The survival rate of trees is maintained more than90%. Please Refer Annexure – VII.
(xviii)	Noise level emanating from turbines shall be so controlled such that the noise in the work zone shall be limited to 75dBA. For people working in the high noise area, requisite personal protective equipment like earplugs/ear muffs etc. shall be provided. Workers engaged in noisy areas such as turbine area, air compressor etc. shall be periodically examined to maintain audiometric record and for treatment for any hearing loss including shifting to non noisy/less noisy areas.	Necessary actions have been taken care to maintain ambient noise levels within 75 db(A) during plant operation. The working personals provided with appropriate personal protective equipment and periodic audiometric check-up is being carried out and records are being maintained. The monitoring reports regularly submitted to the MPCB & MoEF&CC. Please refer Annexure – I & IA
С	Fly Ash Management	<u>.</u>
(xix)	Utilization of 100% Fly Ash generated shall be made from 4 th year of operation of the plant. Status of implementation shall be reported to the Regional Office of the Ministry from time to time.	submitted to CPCB, CEA, MPCB & MoEFCC regularly. Please refer to Annexure -V
(xx)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided. Unutilized fly ash shall be disposed off in the ash pond in the form of slurry. Mercury and other heavy metals (As, Hg, Cr, Pb etc.) will be monitored in the bottom ash as also in the effluents emanating from the existing ash pond. No ash shall be disposed-off in low lying area.	Complied. 6 Nos of silos has been constructed for collection of dry fly ash for downstream user. Rly. Rake/bulkers loading facility developed under silos for bulk ash dispatched to user - cement making units. Un-utilised ash disposed- off in ash pond through HCSD mode. Bottom Ash analysis including heavy metals being done.
(xxi)	Ash pond shall be lined with HDP/LDP lining or any other suitable impermeable media such that no leachate takes place at any point of time. Adequate safety measures shall also be implemented to	Complied. Well-designed Ash dyke with HDPE lining have been established as per guidelines of MoEF&CC, and CPCB. We have stabilized/reclaimed Ash Dykes No. 2

	protect the ash dyke from getting breached.	having 34.50 LMT Ash and developed green belt / plantation. As on 1st April 2022, around 44.22 LMT legacy ash was available in ash dyke/pond and it is being utilized as per fly ash Notification 31.12.2021. Please refer Annexure – IX
(xxii)	For disposal of Bottom Ash in abandoned mines (if proposed to be undertaken) it shall be ensured that the Bottom and sides of the mined-out area are adequately lined with clay before Bottom Ash is filled up. The project proponent shall inform the State Pollution Control Board well in advance before undertaking the activity.	Being Followed. We will inform to Maharashtra Pollution Control Board well in advance. If any scope for
(xxiii)	Regular monitoring of ground water level shall be carried out by establishing a network of existing wells and constructing new piezometers. Monitoring around the ash pond area shall be carried out particularly for heavy metals (Hg, Cr, As, Pb) and records maintained and submitted to the regional Office of this Ministry. The data so obtained should be compared with the baseline data so as to ensure that the ground water quality is not adversely affected due to the project.	Regular monitoring of ground water quality including heavy metals is being carried out in and around the project area. Piezometric wells are established around the ash pond. Records are maintained and the same being submitted along with compliance report. Please refer Annexure – I & Annexure-X. We have engaged CSIR – NEERI, Nagpur to carry out Fly Ash Leachability Study since 2019 up to 2022.
D	Disaster Management	
+		
(xxiv)	Adequate safety measures shall be provided in the plant area to check/minimize spontaneous fires in coal yard, especially during summer season. Copy of these measures with full details along with location plant layout shall be submitted to Ministry as well as to the regional Office of the Ministry.	measures is available in the plant site to take preventive control measures. Fire hydrant and rain gun type water sprinklers established in the coal yard. Details of control measures and location within the plant layout has been
(xxiv) (xxv)	provided in the plant area to check/minimize spontaneous fires in coal yard, especially during summer season. Copy of these measures with full details along with location plant layout shall be	measures is available in the plant site to take preventive control measures. Fire hydrant and rain gun type water sprinklers established in the coal yard. Details of control measures and location within the plant layout has been
	provided in the plant area to check/minimize spontaneous fires in coal yard, especially during summer season. Copy of these measures with full details along with location plant layout shall be submitted to Ministry as well as to the regional Office of the Ministry. Storage facilities for auxiliary liquid fuel such as LDO and / HFO/LSHS shall be made in the plant area in consultation with Department of Explosive, Nagpur. Sulphur content in the liquid fuel will not exceed 0.5%. Disaster management plan shall be prepared to meet any eventuality in case of an accident taking place due	measures is available in the plant site to take preventive control measures. Fire hydrant and rain gun type water sprinklers established in the coal yard. Details of control measures and location within the plant layout has been already submitted to your good office. Adequate storage & handling practices of LDO implemented as approved by Chief Controller of Explosive, Nagpur. Presently Low Sulphur containing LDO being used. Disaster Management Plan and On-site Emergency Plan have been prepared. Mock drills are being conducted periodically to check effectiveness of control measures & preparedness of response
(xxv)	provided in the plant area to check/minimize spontaneous fires in coal yard, especially during summer season. Copy of these measures with full details along with location plant layout shall be submitted to Ministry as well as to the regional Office of the Ministry. Storage facilities for auxiliary liquid fuel such as LDO and / HFO/LSHS shall be made in the plant area in consultation with Department of Explosive, Nagpur. Sulphur content in the liquid fuel will not exceed 0.5%. Disaster management plan shall be prepared to meet any eventuality in case of an accident taking place due to storage of oil.	 measures is available in the plant site to take preventive control measures. Fire hydrant and rain gun type water sprinklers established in the coal yard. Details of control measures and location within the plant layout has been already submitted to your good office. Adequate storage & handling practices of LDO implemented as approved by Chief Controller of Explosive, Nagpur. Presently Low Sulphur containing LDO being used. Disaster Management Plan and On-site Emergency Plan have been prepared. Mock drills are being conducted periodically to check effectiveness of control measures & preparedness of response team. Approved R&R plan implemented. Indian Institute of Social Welfare and Business Management (IISWBM), Kolkata carried out R&R audit. The study report has been already submitted along with the EC compliance report.

	CSR programme. Subsequently a recurring expenditure of Rs. 13.20 Crore per annum shall be earmarked as recurring expenditure for CSR activities. Details of the activities to be undertaken shall be submitted within one month along with road map for implementation.	Crores budget for FY 2022-23) under Community Health promotion & facilitation, Sustainable Livelihood, Creating Rural Infrastructure, Promotion of Education, Skilled development etc. During COVID 19 pandemic, supported to civil hospital by supply & installation of Oxygen Plant, others medical material and vaccination drives. CSR activity report enclosed as Annexure – XI .
(xxviii)	While identifying CSR programme the company shall conduct need-based assessment for the nearby villages to study economic measures with action plan which can help in upliftment of poor section of society. Income generating projects consistent with the traditional skills of the people besides development of fodder farm, fruits bearing orchards, vocational training etc. can form a part of such programme. Company shall provide separate budget for community development activities and income generating programmes. This will be in addition to vocational training for individuals imparted to take up self-employment and jobs. In addition, a special scheme for upliftment of SC/ST's and marginalized population in the study area out of CSR programme shall be formulated and submitted to the Ministry within six months along with firm commitment of implementation. The scheme shall have an in – built monitoring mechanism.	Need Base Assessment Study for CSR programs prepared, and report already submitted to MoEF&CC. Need Base plan implemented in nearby villages including individuals who are economically weak to undertake some economic activity that would help them to achieve sustainable livelihood and financial independence. We have established a Skill Development Center (ASDC) for skill development of SC/ST and marginalized populations from Gondia and Bhandara districts. So far, we have trained 1050 students in which 943 placed for good job. Training on nursing (General Duty Assistance) for old, aged people and severe patient given to 123 girls in which 88 girls have been placed for job. ASDC report is enclosed as Annexure XII .
F (xxix)	General Additional soil for leveling of the	Complied
	Additional soil for leveling of the proposed site shall be generated within the site (to the extent possible) so that natural drainage system of the area is protected and improved.	•
(xxx)	First aid and sanitation arrangements shall be made for the drivers and other contract workers during construction phase.	First Aid and sanitation facilities were provided for the drivers and contract workers during construction period.
(xxxi)	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Labour hutments have been established with all required facilities & infrastructure during construction phase.
(xxxii)	The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the	Copy of the same already submitted to your good

r		
(vernacular language of the locality concerned within seven days from the date of this clearance letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the State Pollution Control Board/Committee and may also be seen at Website of the Ministry of Environment & Forests at http://envfor.nic.in.	Opmoliad
(xxxiii)	A copy of clearance letter shall be sent by the proponent to concern panchayat, Zila parisad/municipal corporation, urban local body and the local NG, if any from whom suggestions/representations, if any received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	Complied. Copy of EC and other required documents have been provided to Zila Parishad & Gram Panchayat.
(xxxiv)	A separate environment management cell with qualified staff shall be setup for implementation of the stipulated safeguards.	A separate Environment Management Dept. is in place lead by General Manager & supported by qualified Env. Engineers, Chemist, Horticulturist and Ash utilization team for implementation of environmental safeguards
		- Environmental Management System (Standard: ISO 14001:2015) implemented under Integrated Management System.
		 NABL Accredited Env. Laboratory (ISO/IEC 17025 :2017) established to monitor & analyses Ambient Air, quality Water/wastewater, Stack emission etc.
(xxxv)	The proponent shall upload the status of compliance of stipulated EC conditions, including the results of monitoring data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional office of MoEF,	Six monthly compliance reports are being submitted regularly to MoEF&CC, CPCB &
	the respective zone of CPCB & the SPCB. The criteria pollutant level namely; SPM, RSPM (PM10, PM2.5), SO2 and NOx	Compliance reports are also available on <u>https://parivesh.nic.in</u> and <u>www.adanipower.com</u>
	(ambient level and stack emission) shall be displayed at the convenient location near the main gate of the company in the public domain.	Online monitoring data of Ambient air quality including PM_{10} , $PM_{2.5}$, $SO_2 & NO_x$. and Stack monitoring of PM , NO_x , SO_2 . being displayed at main Gate of the Plant.
(xxxvi)	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated environmental clearance conditions including results of monitored data (both in hard copies as well by e-mail) to the respective Regional Office of MOEF, the respective Zonal Office of CPCB and the SPCB	Complied, Six monthly compliance report submitted regularly to the MoEFCC, CPCB & MPCB in soft by email. The last compliance report for the period of Oct'21- March'22 was submitted vide our letter No. APML/ EMD/MoEF/EC/158/05/22 dated 26.05.2022.
(xxxvii)	The environment statement for each financial year ending 31 st March in Form-	Environment Statement for FY 2021-22 submitted through online portal of Maharashtra

	V as is mandated to be submitted by the	Pollution Control Board, Please Refe	er Annexure
	project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective	- XIII	
(xxxviii)	Regional Offices of the Ministry by e-mail The project proponent shall submit six		
	monthly reports on the status of the implementation of the stipulated environmental safeguards to the Ministry of Environment and Forests, its Regional Office, Central Pollution Control Board and State Pollution Control Board. The project proponent shall upload the status of compliance of the environment of the environmental clearance conditions on their website and update the same periodically and simultaneously send the	Six monthly Environmental compliance status report is regularl to MoEFCC, CPCB & SPCB. The sam email also. Compliance status is also uploaded on https://parivesh.nic.in and www.adanipower.com on company v	ne is sent by
	same by e-mail to the Regional Office,		
(xxxix)	Ministry of Environment and Forests. Regional Office of the Ministry of	Complied	
	Environment & Forests will monitor the implementation of the stipulated conditions. A complete set of documents including Environmental Impact Assessment Report and Environment Management Plan along with the additional information submitted from time to time shall be forwarded to the Regional Office for their use during monitoring. Project proponent will up- load the compliance status in their website and up-date the same from time to time at least six monthly basis. Criteria pollutants levels including NOx (from stack & ambient air) shall be displayed at the main gate of the power plant.	Complied. EIA & EMP reports have been su regional office of MoEF&CC. information also being submitted as Compliance reports are available on <u>https://parivesh.nic.in</u> and <u>www.adanipower.com</u>	Additional required.
(xi)	Separate funds shall be allocated for implementation of environmental protection measures along with item- wise break-up. These cost shall be included as part of the project cost. The	Separate fund has already been al being utilize for Environmental measures. Budget details for pollution contro furnished herewith for F.Y 2022-23 a	Protection of measures
	funds earmarked for the environment protection measures shall not be	SI. Particulars	Cost (in Lac.)
	diverted for other purposes and year-	1 Pollution control equipment O &M	687
	wise expenditure should be reported to	2 Pollution Monitoring, Study &	146
	the Ministry	analysisGreen belt Development	205
		4 Rural Development/CSR	383
		5 Legal & consent fees	388
		6 Training & Awareness	12
		7 Waste Management	11924
		Total	13744

(xii) (xiii)	The project authorities shall inform the Regional Office as well as the Ministry regarding the date of financial closure and final approval of the project by the concerned authorities and the dates of start of land development work and commissioning of plant Full cooperation shall be extended to the Scientists/Officers from the Ministry / Regional Office of the Ministry at Bangalore / CPCB/ SPCB who would be monitoring the compliance of environmental status.	
	Additional Condition	s (EC Amendment)
(xiv)	The coal transportation by road shall be	Complied
	through tarpaulin covered trucks for a maximum period of two years and hence forth shall be only through mechanically covered trucks.	Coal is being transported through Rail only and unloaded within plant premises at wagon tippler & track hopper.
(xv)	Avenue plantation of 2/3 rows all along the road shall be carried out by the project proponent at its own expense.	Thick Plantation have been done in all around the Plant boundary.
(xvi)	Periodic maintenance of the road shall be done by the project proponent at its own expense and shall also facilitate the traffic control on the road.	Complied. All internal roads are black topped or concreated and being maintained.
(xvii)	Sulphur and ash contents in the domestic coal to be used in the project shall not exceed 0.4 % and 33% at any given time. In case of variation of coal quantity at any point of time, fresh reference shall be made to the Ministry for suitable amendments to environmental clearance condition wherever necessary.	blended with raw coal. We have also installed Real time Coal Ash Analyzers to monitor ash content. MPCB official also collect coal samples time to time and analysis results are well within the stipulated limit. Quarterly Ash content report is being submitted
(xlvii)	A long-term study of radio activity and heavy metals content on coal to be used shall be carried out through a reputed institute. Thereafter, mechanism for an in-built continuous monitoring for radio activity and heavy metals in coal and fly ash (including bottom ash) shall be put in place.	Being Complied. We have carried out testing of radioactive analysis in coal from Board of Radiation & Isotope technology (BRIT), Dept. of Atomic Energy, Govt. of India, Mumbai in FY 2017-18, 2018-19 and 2019-20. We have also done Heavy metal analysis in coal from Atomic Minerals Directorate for Exploration and Research, Dept. of Atomic Energy, Govt. of India, Hyderabad.
(xviii)	Harnessing solar power within the premises of the plant particularly at available roof tops shall be undertaken and status of implementation shall be submitted periodically to the regional office of the Ministry.	Solar panels installed at the roof top of Administrative building to cater domestic power requirement of administrative building. In addition to above, solar streetlights have been installed along the ash dyke area. Under CSR activities, we have installed more than 200 solar street-lights in nearby villages.
(xix)	Mercury emission from the stack shall also be monitored on periodic basis.	Being complied. Mercury emission from the stack is being monitored & reports are being submitted.

		Please refer Annexure – I .
(1)	Fugitive emission shall be controlled to prevent impact on agricultural or non- agricultural land.	To control fugitive emission, rain gun type water sprinkling system has been installed in coal yard. All coal conveying belts conveyors are covered and fog type dust suppression system provided. Adequate water sprinkling arrangements made in wagon tipplers and track hoopers to mitigate dust emission during coal un-loading by rail. Closed coal conveyor belts have been established. Cyclones followed by bag filters are provided at each coal transfer points (JNT's). Additionally, mobile water sprinklers are deployed at CHP area to suppress fugitive dust while movement of vehicles.
(li)	Source sustainability study of water requirement shall be carried out by an institute of repute. The study shall also specify the source of water for meeting the requirement during lean season. The report shall be submitted to the Regional Office of the Ministry within six months.	VIDC has developed and is operating Dhapewada Barrage on River Wainganga for water supply. However, we have undergone source sustainability study of River Wainganga by "Academy of Water Technology Environ Management" Kolkata in technical collaboration Indian Institute of Social Welfare and Business Management – Kolkata and CSIR–CGCRI, Kolkata. Final report was already submitted along with compliance report.
(Iii)	Fly ash shall not be used for agricultural purpose. No mine void filling will be undertaken as on option for ash utilization without adequate lining of mine with suitable media such that no leachate shall take place at any point of time. In case, the option of mine void filling is to be adopted, prior detailed study of soil characteristics of the mine area shall be undertaken from an institute of repute and adequate clay lining shall be ascertained by the State Pollution Control Board and implementation done in close co- ordination with the State Pollution Control Board.	Fly Ash is being utilised as per Fly ash Notification. CSIR – NEERI, Nagpur engaged for carry out Fly Ash leachability Study, Bioaccumulation and magnification study. Details of the same was submitted to Ministry with previous compliance report.
(liv)	Three tire green belt shall be developed all around Ash Pond over and above the Green Belt around the Plant Boundary.	A thick plantation/green belt has been developed around the Ash Pond area. Our efforts are being made to develop more & more greenery inside the plant premises. Closed dyke also covered with soil layer & dense green belts
(Iv)	Social audit for the CSR Scheme shall be carried out periodically by reputed university or an institution as per the CSR guidelines of Government of India and Details to be submitted to MoEF besides putting it on company's website.	Social Audit have been carried out by Indian Institute of Social Welfare & Business Management, University of Kolkata . Study report already submitted to your good office along with compliance report of April 2019 to Sept 2019.
(Ivi)	An Environmental Cell shall be created at the project site itself and shall be headed by an officer of the company of appropriate seniority and qualification. It	A separate Environment Management Dept. is in place lead by General Manager & supported by qualified Env. Engineers, Chemist, Horticulturist and Ash utilization team for

	shall be ensured that the head of the Cell shall directly report to Head of the Organization. The environmental Cell shall be responsible and accountable for implementation of all the conditions given in the EC including in the amendment letter.	 implementation of environmental safeguards Environmental Management System (Standard ISO 14001:2015) implemented under Integrated Management System. NABL Accredited Env. Laboratory (ISO/IEC 17025:2017) established to monitor & analyses Ambient Air Quality, Water/wastewater, Stack emission monitoring etc.
(Ivii)	Monitoring of surface water quantity and quality shall also be regularly conducted and record maintained. The monitoring data shall be submitted to the Ministry regularly. Further, monitoring points shall be located between the plant and drainage in the direction of flow of ground water and records maintained. Monitoring for heavy metals in ground water shall be undertaken.	Monitoring of surface water and ground water quality including heavy metals is being done on regular basis and records maintained. Please refer Annexure – I
(Iviii)	The environmental statement for each financial year ending 31 st March in Form – V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliances of environmental clearance conditions and shall also be sent to the respective Regional Offices of the Ministry by e-mail.	Environmental statement is being submitted regularly to MPCB. FY 2021 – 22 Environmental Statement submitted to MPCB through online portal.
(lix)		

Annexure - I

SIX MONTHLY ENVIRONMENTAL MONITORING REPORT

FOR The Period of Apr.2022-Sept. 2022

of

ADANI POWER MAHARASHTRA LTD. Tirora, Growth Center, MIDC, Gondia – 441 911

Prepared by

Recognised by MoEF (GOI). F. No. Q-15018/19/2019-CPW dated. 9.6.2020 NABET Accredited and ISO 9001: 2000Certified Organisation

> Head Office: B-1003, Enviro House, 10 Flr. Western Edge II, W.E. Highway, Borivali (E), Mumbai-400 066

Nagpur Branch:- Banglow No. 65, Shivkunj, Old Verma Layout, Ambajari, Nagpur -440 010 Tel- (0712)2241835 09321619746-48

Email: enviro.nagpur@eaepl.com, website: www.enviroanalysts.com

NABET Accredited & MoEF (Govt. of India) approved CIN No. : U28900MH1995PTC093129

ENVIRO ANALYSTS & ENGINEERS PVT. LTD.

H. O. : B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066.
• Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

Foreword

The protection of environment plays a crucial role in maintaining the local environment quality for any industry, throughout their production. Hence compliance of the statutory requirements becomes very important to conserve the ecological balance within and surrounding the plant area. Therefore, environment protection is becoming a prerequisite for sustainable development. In line with this requirement, the management of Adani **Power Maharashtra Ltd.** has adopted a corporate responsibility of development and top priority is given for environment protection.

In order to comply with the Environment protection act, to fulfill statutory requirement and to be in tune with Environmental Preservation and sustainable development Adani **Power Maharashtra Ltd.**, has retained **Enviro Analysts and Engineers Pvt. Ltd.** as Environment Consultants and for various Environmental issues related to their Power Plant.

This report presents the Environmental Status for the period Apr.2022-Sept. 2022 as a compliance to the statutory requirements.

The co-operation extended by the Staff and Management of Adani Power Maharashtra Ltd. during the work execution period is gratefully acknowledged.

For ENVIRO ANALYSTS & ENGINEERS PVT. LTD.

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 65, Old Verma Layout, Ambazari, Nagpur - 440 010, Tel : 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Dryanal Mangal Hall, Pune - 411 030. Pune - 411 030. Lab : Row House No. 2, Shalom Garden, Opp. Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thane - 401 107. Tel. : 022-2811 6442

Workshop : Plot No. E - 122, MIDC Tarapur, Boisar, Dist. - Thane - 401 506.

Table of Contents

1.0 INTRODUCTION	4
1.1 Scope of Work	4
2.0 DETAILS OF SAMPLING LOCATIONS.	6
2.1 Meteorology and Ambient Air Quality.	6
2.2 Water Quality	8
2.3 Noise Level:	10
2.4Soil Quality:	10
2.5 Methodology of Monitoring	10
2.5.1 Instruments Used	10
2.5.2 Method of Analysis	11
2.6 Analytical Procedures	13
2.6.1 Meteorology	13
2.6.2 Ambient Air Quality	13
3.1 Meteorology	15
3.2 Ambient Air Quality	18
3.2.1 Presentation of Results	18
3.3 Stack Monitoring	22
3.3.1 Presentation of Results.	22
3.4 Water Quality	
3.4.1 Presentation Report	23
3.4.2 Ground Water Quality	23
3.4.3 Surface Water Quality.	24
3.4.4 Waste Water Quality	24
3.4.5Pizo-Metric Water Quality	24
3.5 Noise Level:	24

LIST OF TABLES:

TABLE - 2.1 AMBIENT AIR QUALITY MONITORING LOCATION	6
TABLE- 2.2 WATER SAMPLING LOCATIONS	9
TABLE- 2.3 NOISE LEVEL LOCATIONS FOR THE PERIOD OF APR.2022- SEPT.2022	10
TABLE- 2.4 SOIL SAMPLING LOCATIONS FOR THE PERIOD OF APR.2022- SEPT.2022TABLE- 2.5 (TECHNIQUES USED FOR AMBIENT AIR QUALITY MONITORING)	
TABLE- 3.1 METEOROLOGICAL DATA MONITORED AT SITE FOR APR.2022-SEPT.2022	15
TABLE- 3.2 SUMMARY OF AMBIENT AIR QUALITY INSIDE PLANT AREA - APR.2022-SEPT.2022	19
TABLE- 3.3 STACK ANALYSIS REPORT – APR.2022- SEPT. 2022	22
TABLE- 3.4 SURFACE WATER QUALITY – APR.2022- SEPT. 2022	24-28
TABLE- 3.5 GROUND WATER QUALITY – APR.2022- SEPT. 2022	29-33
TABLE- 3.6 WASTE WATER QUALITY – APR.2022- SEPT. 2022	34-35
TABLE- 3.7 PEIZO-METERIC WELL WATER QUALITY – APR.2022- SEPT. 2022	35
TABLE- 3.8 Noise Level	36

LIST OF FIGURES:

FIGURE - 2. 1 SAMPLING LOCATIONS MAP	
FIGURE- 3. 1 SITE SPECIFIC WINDROSE FOR APR.2022- SEPT. 2022	

LIST OF ANNEXURES:

Annexure I - On site Meteorological Data for APR.2022- SEPT. 2022

Chapter – 1

Introduction

&

Scope of work

1.0 INTRODUCTION.

M/s. Adani Power Maharashtra Limited (APML) a wholly owned company of Adani Power Limited has established 3300 MW (5x660) Coal-based Thermal Power Plant at Tiroda, District Gondia in Maharashtra in two phases as below:

Phase I: 2 x 660 MW

Phase II: 3 x 660 MW

1.1 Scope of Work.

The scope of work includes the data generation for various environmental components viz Meteorology, Air, Noise, Water, Stack, Effluent and soil of Adani Power Maharashtra limited, Tiroda.

To monitor the environmental parameters and data analysis in the vicinity of the power plant of 5x660MW at MIDC Area Tiroda, APML awarded the service to M/s Enviro Analysts & Engineers Pvt. Ltd. (EAEPL), Mumbai.

The present report incorporates data of various Environmental parameters for APR.2022- SEPT. 2022

Chapter – 2

Details of sampling Locations

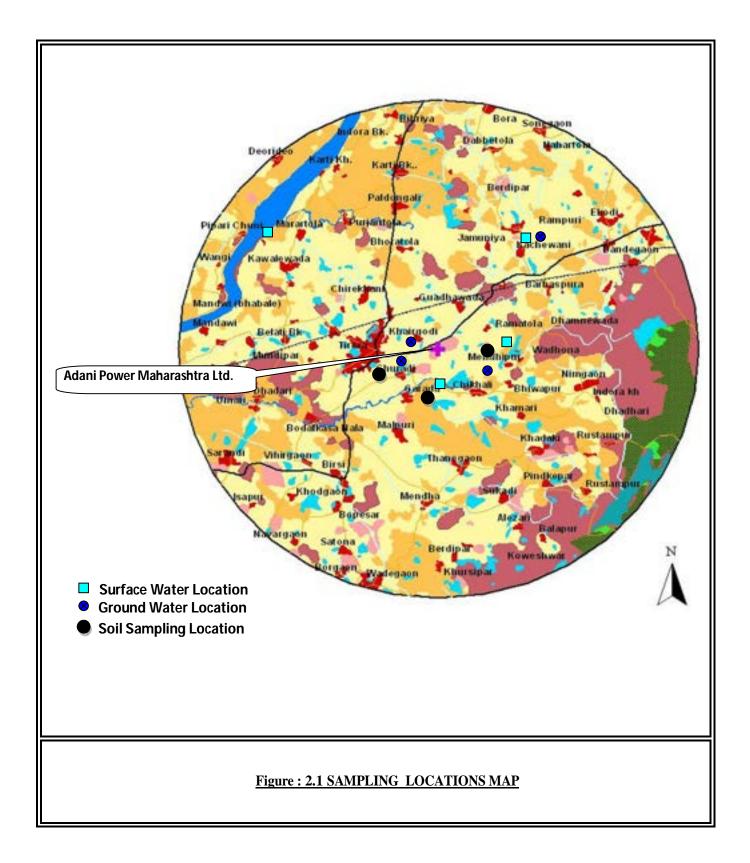
&

Methodology for sampling and analytical procedures

2.0 DETAILS OF SAMPLING LOCATIONS.

The details of sampling location w. r. t. Air, Water and Noise quality around the power plant are shown in the Sampling location Map as depicted in Figure.2.1

2.1 Meteorology and Ambient Air Quality.


Meteorological data was collected at one station concurrently with the ambient air quality monitoring. The weather station was placed on the roof top at a height of 10m. Wind speed, wind direction, relative humidity and temperature & Rainfall were recorded at hourly intervals contineously.

The sampling locations of Ambient Air Quality in the Power plant premises covering upwind and down wind direction . To assess the effect of industrial activity of power plant on the air, environmental parameters like Particulate Matter- PM_{10} , Particulate Matter- $PM_{2.5}$, Sulphur Dioxide- SO_2 , Nitrogen Dioxide $-NO_2$ were monitored Details of the sampling locations with respect to the plant site are given below in **Table-2.1**.

Code	Name of the monitoring Station	Distance from plant boundry (km)	Direction with respect to plant	Environmental Setting	Remarks
A1	Near AWRS	Within Plant	-	Within Plant	Industrial area
A2	Near Brick Plant	Within Plant	-	Within Plant	Industrial area
A3	Near China colony	Within Plant	-	Within Plant	Industrial area

Table 2.1 Ambient Air Quality Monitoring Location

Adani Power Maharashtra Limited Six Monthly Environmental Monitoring Reports

2.2 Water Quality

Water samples were collected at various locations within the area of 10 Km radius from the plant to assess the Physico-Chemical quality of Surface and Ground Quality water. Samples were collected as per the standard procedures. On site Parameters like Temperature, Electrical Conductivity, pH and Dissolved Oxygen were analyzed at-site using portable water analysis kit. Samples were collected by taking suitable precautions for preparation and transportation, particularly using sterilized bottles for bacteriological analysis. The details of the sampling locations are given in **Table-2.2** and **Figure.2.1** as depicted.

Water samples were collected on quarterly basis from 8 locations (Ground water 4, Surface water-4 Analytical methods mentioned in IS: 3025 and Standard Methods published by APHA were followed.

Adani Power Maharashtra Limited Six Monthly Environmental Monitoring Reports

TABLE-2.2 WATER SAMPLING LOCATIONS

Code	Name of the monitoring Station	Distance from plant boundry (km)	Direction respect to plant	Source
SW1	Wainganga River Water	7.0	NW	River
SW2	Mendipur Pond Water	2.0	SE	Pond
SW3	Garada Village Nalah water	3.0	SSW	Nalah water
SW4	Kachewani Pond water	Pond water		
Ground	Water			
GW1	Kachewani Hand Pump	3.2	NE	Bore well
GW2	Mendipur Hand Pump	2.5	SE	Bore well
GW3	Garada Hand Pump	3.2	SW	Bore well
GW4	Chikhali Hand Pump	2.0	S	Bore well
Waste W	/ater			
WW1	Cooling Tower Blow Down water Unit-1			In Plant
WW2	Cooling Tower Blow Down water Unit-2			In Plant
	Cooling Tower Blow Down water Unit-3			
WW3	oboling rower blow bown water onit	-3		In Plant
WW3 WW4	Cooling Tower Blow Down water Unit			In Plant In Plant
		-4		
WW4	Cooling Tower Blow Down water Unit	-4		In Plant
WW4 WW5 WW6	Cooling Tower Blow Down water Unit Cooling Tower Blow Down water Unit	-4		In Plant In Plant
WW4 WW5 WW6	Cooling Tower Blow Down water Unit Cooling Tower Blow Down water Unit Boiler Blow down Water Unit-2	-4		In Plant In Plant
WW4 WW5 WW6 Piezome	Cooling Tower Blow Down water Unit Cooling Tower Blow Down water Unit Boiler Blow down Water Unit-2 tric Well water	-4		In Plant In Plant In Plant

2.3Noise Level:

Noise level at following in plant location and Buffer zone location were recorded by APML for the period of APR.2022- SEPT. 2022. Location details are given in **Table-2.3**. and as depicted in **Figure.2.1**

Code	Location	Location type	Remarks
NL- 1		Near Shanti Niketan I, II & III	Industrial
NL- 2		Near Labour Hutment	Industrial
NL- 3		Near Store Area	Industrial
NL- 4	Inside the	Gate No.1	Industrial
NL- 5		Gate No.2	Industrial
NL- 6	plant	Gate No.3	Industrial
NL- 7		Near OHC	Industrial
NL- 8		Railway Siding	Industrial
NL- 9		Near Reservoir 2	Industrial
NL-10		Near Ash Water Recovery Pump House	Industrial
NL-11		In China Colony	Industrial

TABLE: 2.3 NOISE LEVEL LOCATIONS FOR THE PERIOD OF Apr.2022- Sept.2022

2.4 Soil Quality:

Soil Samples collected at 3 locations around the plant zone on the seasonal basis for the period of Apr.2022-Sept. 2022 Location details are given in **Table-2.4**. and as depicted in **Figure.2.1**

TABLE: 2.4 SOIL SAMPLING LOCATIONS FOR THE PERIOD OF A	or.2022-Se	ot-2022

Code	Location	Location type	Remarks
S1	Buffer Zone	Garada Village	Agricultural Field
\$2		Mendipur Village	Agricultural Field
S3		Churadi Village	Agricultural Field

2.5 Methodology of Monitoring

2.5.1 Instruments Used

Samples were collected at 'Ambient Air' monitoring locations' using standard Fine dust sampler & RDS sampler for monitoring PM₁₀, PM_{2.5}, SO₂, NO₂, concentrations and analyzed as per USEPA / IS methods in APML Laboratories at site.

Adani Power Maharashtra Limited Six Monthly Environmental Monitoring Reports

Also Continuous Ambient Air Monitoring station installed (CAAQMS) at APML make Tyledyne and Met One instrument approved by USEPA.

On site Micro-meteorological data for wind direction, wind Speed, Temp, Relative humidity and Rainfall collected from APML.

Ground water, Surface water & Effluent water were analyzed for onsite parameters likeTemperature, Electrical Conductivity, pH and Dissolved Oxygen were analyzed on-site using portable water analysis kit. Samples are collected, preserved and sent for further analysis to Enviro Analysts & Engineers Pvt. Ltd, where other parameters like total hardness, chlorides, sulphate etc and heavy metals are analyzed as per requirements IS 3025/APHA methods.

Soil samples were analyzed for physical, chemical and heavy metal concentrations, using analytical methods.

Noise was measured at site locations using a noise level meter to determine sound levels in a scale as dB (A) This is suitable for audible range of 20 to 20,000 Hz for human being. Sound level monitoring done by APML.

Stack Monitoring kit having sensor probe was used to monitor stack data like Flue gas velocity, Volumetric flow of flue gas, Temperature of flue gas, Moisture content and other parameters like SPM, SO₂, NO₂ make by ECOTECH

2.5.2 Method of Analysis

Air samples were analyzed as per standard methods specified by Central Pollution Control Board (CPCB), EPA & IS method.

2.5.2.1 Meteorology

Micro-meteorological data was observed for wind direction and speed using wind vane and anemometer using an automatic met logger. The data was recorded at 1 hour interval. Wind speed & wind direction, Temperature, Rain fall, Relative humidity were recorded by Weather Monitoring Station by APML.

2.5.2.2 Ambient Air Quality (AAQ)

Sampling was carried out at each station during the stipulated study period using pre-calibrated Respirable Dust Samplers and Fine Dust Sampler in each of the stations by APML.

Earmarked samples were collected for Particulate Matter-PM10, Particulate Matter-PM2.5, SO2 and NO2 for 24 hourly.

The baseline data of air environment is generated for the parameters namely: Particulate Matter-PM10, Particulate Matter-PM2.5, Sulphur Dioxide SO2, and Nitrogen Dioxide NO2 in APML

2.5.2.3 Stack Monitoring

Stack emission were analyzed with the help of stack Kit (ECOTECH Stack Kit & Prob set, quarterly basis at Boiler Stack situated in plant. Height of the Boiler Stack was noted as, 275 m and I.D. 7.4m. Flue gas, Velocity, Temperature, Volume & Qty, Moisture Content, PM, SO₂, NO₂, Hg were analyzed. The values obtained were then compared vis-a-vis with the standards prescribed by CPCB.

Iso-kinetic stack monitoring was conducted as per standard method IS 11255 (Part-3) specified in Emission Regulation Act Part to determine PM, SO₂ and NO₂, Data was collected and analysis was done for other parameters like Flue gas Velocity, Temperature, Volumetric flow rate, Moisture contents.

2.5.2.4 Water/Waste Water Quality

Water/Waste water samples were collected for physico-chemical and bacteriological parameters taking suitable Precautions. Temperature, pH, Dissolved Oxygen and Electrical conductivity were measured in the field while collecting the samples. Sterilized bottles were used to collect samples for bacteriological analysis, stored in ice and transported to the Laboratory.

Ground and surface water samples were analysed as per IS: 10500 and Waste Water samples were analysed as per IS: 3025. The analytical methods mentioned in IS: 3025 and Standard Methods published by APHA were followed. MPN Index of coli forms was found as per standard methods (IS: 1622).

2.5.2.5 Noise Level

Noise is defined as unwanted sound that creates interferences in speech, communication, causes annoyance, disturbance in work concentration and sleep, thus deteriorating the quality of Noise environment. In the present study, Noise monitoring has been conducted regularly by APML Since loudness of sound is the important parameter to assess the effects of particular activities on human being, hence noise level is measured for noise environment assessment. Hourly Sound Pressure level (SPL) was recorded with Sound Level Meter for 24 hours.

2.6 Analytical Procedures

2.6.1 Meteorology

The data obtained from field is used to as certain the wind percentage frequencies in the sixteen directions for wind speeds using Beaufort's scale in the range of 0-1.8, 1.8-3.6, 3.6 – 7.2, 7.2 – 14.4, 14.4 – 28.8 and >28.8 kmph. Average wind roses at twenty four hourly are prepared from the data collected. Temperature, Relative Humidity is monitoring by Automatic Weather Monitor (WM 271, Envirotech) and Rain fall by using Rain Gauge of WM 271.

2.6.2 Ambient Air Quality

Whatman GF/A & PTFE filter paper was used in Respirable dust sampler RSPM and FDS and weighed in Mettler electronic balance and computed as per standard methods. Ambient Air samples were analyzed for SO₂ concentration levels by using Improved West-Gaeke method using spectrophotometer (HACH DR 5000) at a wavelength of 560 nm. NO2 conc. levels were estimated using Jacob and Hocheiser modified (Na-As) method using spectrophotometer (HACH DR 5000) at a wavelength of 540 nm.

Sampling and Analytical Techniques

The techniques used for ambient air quality monitoring and minimum detectable levels are given in **Table-2.5**

Sr. No.	Parameter	Technique	Technical protocol	Minimum detectable limit (µg/m³)
1	PM10	Respirable Dust Sampler (Gravimetric Method)	IS-5182 (Part-IV)	5.0
2	PM2.5	Fine Respirable Dust Sampler (Gravimetric Method)	IS-5182 (Part-IV)	5.0
3	Sulphur dioxide	Improved West & Gaeke Method	IS-5182 (Part-II)	4.0
4	Nitrogen dioxide	Modified Jacob & Hochheiser Method	IS-5182 (Part-VI)	4.0

TABLE- 2.5 (TECHNIQUES USED FOR AMBIENT AIR QUALITY MONITORING)

Chapter – 3

DATA ANALYSIS

3.0 DATA ANALYSIS

Environmental monitoring for the period of APR.2022- SEPT. 2022 consisted of collection and analysis of meteorological parameters, ambient air quality and ground water and surface water quality at different locations within study area selected for carrying out environmental monitoring around the plant site.

3.1 Meteorology

Meteorological data was collected by APML on hourly basis for wind speed, Wind direction, temperature and relative humidity continuously. Total Rain fall on monthly basis during the period of APR.2022-SEPT. 2022 was measured and recorded and reported in the Environmental report.

Wind Pattern for the period APR.2022- SEPT. 2022.

The data recorded during the study period was analyzed and the daily maximum, minimum and total of all the parameters were observed. The summary of all the meteorological observations is given in **Table-3.1**.

Month	Temperature (⁰C)		Relative Humidity (%)		Rainfall (mm)
	Max	Min	Max	Min	(Total)
April 2022	43.7	20.1	54.2	7.0	2.0
May 2022	43.7	22.4	68	9.3	8.4
Jun. 2022	45.5	19.4	77.9	9.0	240.6
July 2022	33.4	22.0	83.9	38.0	1116.0
Aug. 2022	34.6	22.4	96.2	36.4	990.4
Sept. 2022	34.6	21.3	84.4	37.5	198.7

TABLE- 3.1 METEOROLOGICAL DATA MONITORED AT SITE

(for the period of APR.2022- SEPT. 2022)

Temperature

The Temperature for the month of APR.2022- SEPT. 2022 was found to be within range of $20.1^{\circ}C - 45.5^{\circ}C$.

Relative Humidity

The average relative humidity for the month of APR.20221- SEPT. 2022 was found to be within range of 7.0-96.2%.


Rain Fall

Total Rain fall found the period of APR.2022- SEPT. 2022 was 2556.7mm

Wind Speed/Direction

The wind speed and direction data collected during the period of APR.2022- SEPT. 2022. The wind roses plot using the collected data for APR.2022- SEPT. 2022 is given in **Figure-3.1**

The first predominant wind direction during APR.2022- SEPT. 2022 was WSW. The calm condition ranges from 16.1 to 24.9%.

3.2 Ambient Air Quality

Ambient air quality has been carried out within plant for the period of APR.2022- SEPT. 2022. PM_{10} , $PM_{2.5}$, $SO_2 \& NO_2$, sampling at all the locations is done for 24 hours average twice a week by APML. The values obtained were then compared vis-a-vis the standards prescribed by CPCB for Industrial/ Rural / Residential uses.

3.2.1 Presentation of Results.

The summary of Ambient Air Quality monitoring results for the period of APR.2022- SEPT. 2022 are presented in detail in **Table 3.2** for Inside plant area. 98th percentile; maximum and minimum values etc have been computed from the collected raw data for all the AAQ monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQ for residential and rural zone.

Particulate Matter-PM10

The minimum and maximum concentrations during APR.2022- SEPT. 2022 in the plant area location for Particulate Matter- PM_{10} were recorded as 13.4 µg/m³ and 98.1 µg/m³ respectively. The minimum concentration was recorded at Near Brick Plant (A2) and maximum concentration at Near AWRS (A1).

Particulate Matter-PM_{2.5}

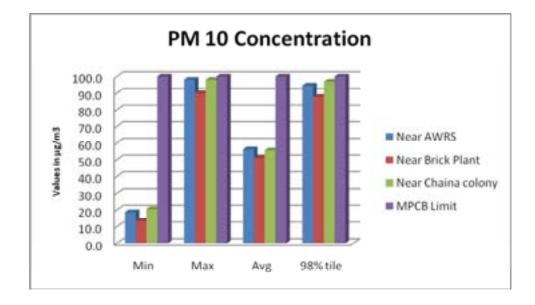
The minimum and maximum concentrations in the plant area location for $PM_{2.5}$ were recorded as 6.5µg/m³ and 57.8 µg/m³ respectively. The minimum concentration was recorded at Near AWRS (A1) and maximum concentration at Near AWRS (A1).

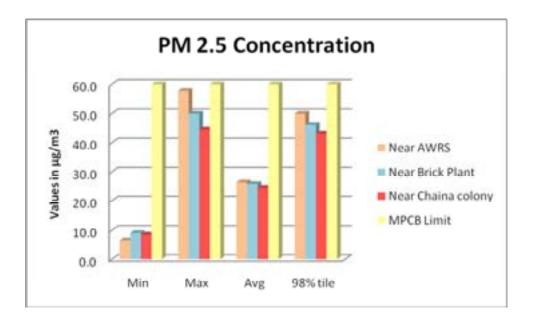
Sulphur Dioxide (SO₂)

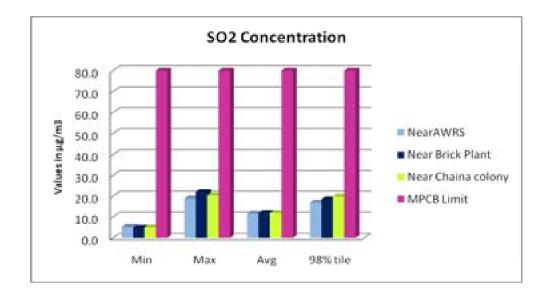
The minimum and maximum SO_2 concentrations in the plant area location were recorded as 4.9μ g/m³ and 22.0 μ g/m³ respectively. The minimum concentration was recorded at Near Brick Plant (A2) and maximum concentration was recorded at Near Brick Plant (A2) respectively.

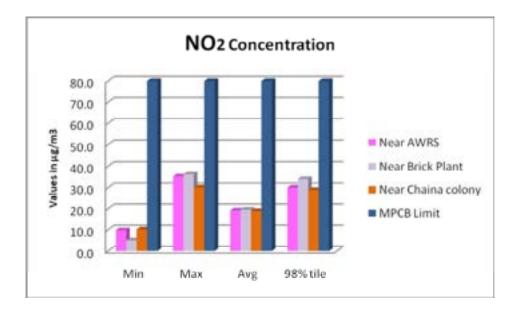
Nitrogen Dioxide (NO₂)

The minimum and maximum NO₂ concentrations in the plant area location were recorded as 5.1 μ g/m³ and 36.2 μ g/m³ respectively. The minimum concentration was recorded at Near Brick Plant (A2) and maximum concentration was recorded at Near Brick Plant(A2) respectively.


TABLE- 3.2 SUMMARY OF AMBIENT AIR QUALITY RESULT


(Inside Plant Premises)


for the period of Apr 2022- Sept. 2022


All values are µg/m3

Location		PM ₁₀				PN	l _{2.5}			S	O ₂			N	D ₂	
	Min	Мах	Avg	98% tile	Min	Мах	Avg	98% tile	Min	Мах	Avg.	98% tile	Min	Мах	Avg.	98% tile
Near AWRS	18.6	98.1	56.2	94.6	6.5	57.8	26.4	50.0	5.3	18.9	11.6	17.0	9.8	35.2	19.2	30.0
Near Brick Plant	13.4	89.9	51.1	87.8	9.1	50.0	25.8	46.2	4.9	22.0	11.9	18.5	5.1	36.2	19.6	34.0
Near China colony	20.5	98.0	55.6	96.9	8.5	44.5	24.5	43.1	5.1	20.4	12.0	19.8	10.2	30.1	18.9	28.8
MPCB Limit		10	0			6	0			8	80			8	0	

3.3 Stack Monitoring.

Stack monitoring is done with the help of stack Kit (ECOTECH Stack Kit) & Prob set, once in a quarter at Boiler Stack 1 to 5 situated in plant. Height of the Boiler Stack was noted as, 275m and I.D. 7.4m.Flue gas, Velocity, Temperature, Volume & Qty, PM, SO₂, NO_x, Hg are analysed. The values obtained are then compared vis-a-vis with the standards prescribed by CPCB.

3.3.1 Presentation of Results.

The Stack analysis results for the period of APR.2022- SEPT. 2022 are presented in detail for various parameters like Flue gas, Velocity, Temperature, Volume & Qty, SPM, SO₂, NOx, Hg values etc computed from the collected raw data for the Stack monitoring station. The summary of these results is presented below. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/MPCB

TABLE- 3.3 Stack Analy	vsis Rep	ort for the	period of Ap	or, 2022 - Sei	ot2022
	313 KCP			I. LULL OC	

PARAMETERS					CONCEN	TRATION				
FARAINETERS	Un	it I	Uni	t 2	Unit 3		Unit 4		Ur	nit 5
Date of Sampling	Jun.2022	Sept. 2022								
Diameter of Stack (M)	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
Height of Stack (M)	275	275	275	275	275	275	275	275	275	275
Temp. of exit gas (⁰ C)	128	122	127	118	130	120	131	128	128	130
Velocity of exit gas (m/sec)	23.54	22.95	23.55	22.60	23.90	23.62	23.61	24.22	23.22	23.80
Flow of exit gas at stack temp. & Press. (m3/hr)	3642856.43	3551552.89	3644403.95	3497389.77	3698567.06	3655236.57	3653689.05	3748087.62	3593335.87	3683091.89
Flow of exit gas at NTP(Nm3/hr)	2571802.13	2545429.43	2579326.89	2532253.31	2598174.53	2633072.45	2560295.47	2646093.78	2536841.35	2587303.50
PM (mg/Nm3)	38.5	34.7	41.8	37.8	42.2	31.6	40.9	43.2	42.4	38.8
Total dust emission (kg/hr)	99.01	88.32	107.81	95.72	109.64	83.20	104.71	114.31	107.56	100.39
SO2 (mg/Nm3)	984.3	810.5	964.7	781.1	934.6	803.7	943.7	802.4	968.8	824.4
SO2 (kg/hr)	2531.42	2063.07	2488.28	1977.94	2428.25	2116.20	2416.15	2123.22	2457.69	2132.97
SO2 (TPD)	60.75	49.51	59.71	47.47	58.29	50.79	57.99	50.95	58.98	51.19
NOx (mg/Nm3)	381.3	314.4	356.3	307.4	361.1	307.7	355.4	317.7	353.9	322.2
Mercury (mg/Nm3)	0.0171	0.0146	0.0166	0.0184	0.0169	0.0132	0.0162	0.0146	0.0169	0.0188

Power Plant (Unit-I to Unit 5)

Note: Values of PM, SO₂ and NOx based on 6% O₂

3.4 Water Quality

Ground waters were collected at 4 locations and Surface water at 4 locations within the 10 km radial distance of power plant were analyzed as per IS 10500 to assess the quality of water for portability.

3.4.1 Presentation of Results

The results of the water quality monitored in the period of APR.2022- SEPT. 2022, that of four surface water and four ground water samples and seven drinking water samples. The surface water quality results are given in **Table-3.4**, the results of ground water quality is given in **Table-3.5** and the results of Waste water quality are given in **Table-3.6** the findings are discussed below.

3.4.2 Ground Water Quality.

Most of the villages in the Nearby plant area have hand pumps, as most of the residents of these area use of this water for drinking and other domestic uses.

The analysis results indicate that the pH ranges from 7.55 to 8.05 the maximum pH observed at Garada Village(GW3) and Minimum pH were observed at Chikhali Village (GW4) which is well within the specified standard of 6.5 to 8.5.

Total hardness was observed to be ranging from 282 to 418 mg/l. The maximum hardness 418 mg/l was recorded at Kachewani Village (GW1) and the minimum hardness of 282 mg/l was recorded at Kachewani Village (GW1) in the Sept. 2022, Which is well within the specified standard of 200(600) mg/l.

Chlorides were found to be in the range of 19.8 mg/l to 157mg/l, the maximum concentration of chlorides was observed at Kachewani Village (GW1) and the minimum concentration of chlorides was observed at Mendipur Village(GW2)

Sulphates were found to be in the range of 17.5 mg/l to 124.3 mg/l. The maximum value observed at Kachewani Village (GW1) and the minimum value observed at Mendipur Village(GW2). The values of Chlorides and sulphate are acceptable limits.

The analysis results indicate all parameter including bacteriological and heavy metal parameters are well within the drinking water standards.

3.4.3 Surface Water Quality.

The analysis results indicate that the pH values in the range of 7.45 to 7.95 the minimum and maximum value was observed at Medipur Pond and Garada nalah water respectively which is well within the specified standard of 6.5 to 8.5.

TDS was observed in the range of 176 mg/l to334 mg/l, the maximum TDS value was observed at Garada Nalah whereas minimum value was observed in Wainganga River, where as TDS is within Desirable limits.

Chlorides and Sulphates were found to be in the range of 9.7 to 18.5 mg/l and 8.2 to 16.0 mg/l respectively. It is observed that value of chlorides and Sulphates are well within acceptable limits. It is evident from the above values that all the parameters are found to comply with the requirements of IS: 10500 specification of surface water except bacteriological parameters. The surface water quality does not indicate any industrial contamination.

Heavy metals concentrations for metals like Arsenic (As), Mercury (Hg), Lead (Pb), Cadmium (Cd), Chromium (Cr) and Copper (Cu) were found to be within the acceptable limits.

3.4.4 Waste Water Quality

Waste water samples were also collected from Cooling Tower Blodown of unit 1 to 5, Analytical methods mentioned in IS: 3025 and Standard Methods published by APHA were followed. The summary of waste water quality collected on quarterly basis for the period of Apr. 2022- Sept 2022 are given in **Table-3.6**

3.4.5 Piezo-Metric water

There were 3 Pizo meteric monitoried for water level and collected water samples were analyzed as per IS: 3025 and Standard Methods published by APHA were followed. The summary of pizometric water quality collected on quarterly basis for the period of APR.2022- SEPT.2022 are given in **Table-3.7**

3.5 Noise Level:

Noise level was measured by APML in basic units of dB(A) at eleven location inside the plant (industrial Area) during day time and Night time for 24Hrs.

Noise level was found within the acceptable limits during daytime as well as night time for all locations with reference to CPCB standard limits for Industrial area and Residential area.

Noise levels at following locations were recorded for the period of APR.2022- SEPT.2022 on monthly basis. The summary of Noise Level is given in **Table-3.8**

TABLE- 3.4 SURFACE WATER QUALITY

SW1: Wainganga River Water

Sr.	Test Deremeters	Linit	As not IS 10500 - 2012	Results			
No.	Test Parameters	Unit	As per IS 10500 : 2012	Jun. 2022	Sept. 2022		
1	Apparent Colour	Hazen units	5 (15)	2.5	1.7		
2	Odour	-	Agreeable	Agreeable	Agreeable		
3	Taste	-	Agreeable	-	-		
4	Turbidity NTU	NTU	1(5)	1.2	1		
5	Total Dissolved Solid	mg / I	500 (2000)	230	176		
6	Electrical Conductivity	µS/cm	-	372	286		
7	Total Alkalinity	mg / I	200 (600)	140	112		
8	pH Value at 25°C	-	6.5 to 8.5	7.80	7.55		
9	Total Hardness (CaCO3)	mg / I	200 (600)	130	90		
10	Calcium (as Ca)	mg / I	75 (200)	34.2	26.8		
11	Magnesium (as Mg)	mg / I	30 (100)	10.8	5.6		
12	Copper as(Cu)	mg / I	0.05(1.5)	< 0.01	< 0.01		
13	Iron (as Fe)	mg / I	0.3	0.085	0.062		
14	Manganese as (Mn)	mg / I	0.1(0.3)	< 0.01	< 0.01		
15	Chlorides (as Cl)	mg / I	250(1000)	13.6	9.7		
16	Sulphate (as SO4)	mg / I	200 (400)	11.0	8.2		
17	Nitrates (as NO3)	mg / I	45	4.70	2.15		
18	Fluoride (as F)	mg / I	1.0 (1.5)	0.42	0.35		
19	Phenolic Compounds	mg / I	0.001	BDL	BDL		
20	Mercury as (Hg)	mg / I	0.001	< 0.0005	< 0.0005		
21	Cadmium as (Cd)	mg / I	0.003	< 0.001	< 0.001		
22	Selenium as (Se)	mg / I	0.01	< 0.001	< 0.001		
23	Arsenic as (As)	mg / I	0.01 (0.05)	< 0.01	< 0.01		
24	Cyanide as (CN)	mg / I	0.05	< 0.005	< 0.005		
25	Lead as (Pb)	mg / I	0.01	< 0.001	< 0.001		
26	Zinc as (Zn)	mg / I	5 (15)	0.15	0.11		
27	Total Chromium as (Cr)	mg / I	0.05	< 0.03	< 0.03		
28	Mineral Oil	mg / I	0.05	< 0.01	< 0.01		
29	Free Residual Chlorine	mg / I	0.2 (1.0)	Nil	Nil		
30	Total Coliform	MPN/100 ml	Absent	>16	>16		
31	E. Coli	Nos./100 ml	Absent	>16	>16		

SW2: Mendipur Pond Water

Sr.	Test Parameters	Unit	As per IS 10500 : 2012	Res	sults
No.		Onic	A3 pci 13 10300 . 2012	Jun 2022	Sept. 2022
1	Apparent Colour	Hazen units	5 (15)	3.5	2.6
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	-	-
4	Turbidity NTU	NTU	1(5)	1.7	1.5
5	Total Dissolved Solid	mg / I	500 (2000)	318	184
6	Electrical Conductivity	µS/cm	-	540	304
7	Total Alkalinity	mg / I	200 (600)	168	132
8	pH Value at 25°C	-	6.5 to 8.5	7.90	7.45
9	Total Hardness (CaCO3)	mg / I	200 (600)	172	82.5
10	Calcium (as Ca)	mg / I	75 (200)	38.8	24.8
11	Magnesium (as Mg)	mg / I	30 (100)	18.2	4.98
12	Copper as(Cu)	mg / I	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / I	0.3	0.092	0.078
14	Manganese as (Mn)	mg / I	0.1(0.3)	0.009	0.007
15	Chlorides (as Cl)	mg / I	250(1000)	18.3	10.2
16	Sulphate (as SO4)	mg / I	200 (400)	13.1	9.6
17	Nitrates (as NO3)	mg / I	45	4.10	2.85
18	Fluoride (as F)	mg / I	1.0 (1.5)	0.75	0.40
19	Phenolic Compounds	mg / I	0.001	BDL	BDL
20	Mercury as (Hg)	mg / I	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / I	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / I	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / I	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / I	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / I	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / I	5 (15)	0.19	0.14
27	Total Chromium as (Cr)	mg / I	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / I	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / I	0.2 (1.0)	Nil	Nil
30	Total Coliform	MPN/100 ml	Absent	> 16	> 16
31	E. Coli	Nos./100 ml	Absent	> 16	> 16

SW3: Garada Village Nalah water

Sr.	Test Parameters	Unit	As per IS 10500 : 2012	Res	sults
No.		Onit	A3 pci 13 10300 . 2012	Jun. 2022	Sept. 2022
1	Apparent Colour	Hazen units	5 (15)	3.0	1.5
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	-	-
4	Turbidity NTU	NTU	1(5)	1.7	1.0
5	Total Dissolved Solid	mg / I	500 (2000)	334	212
6	Electrical Conductivity	µS/cm	-	540	346
7	Total Alkalinity	mg / I	200 (600)	170	144
8	pH Value at 25°C	-	6.5 to 8.5	7.95	7.70
9	Total Hardness (CaCO3)	mg / I	200 (600)	198	116
10	Calcium (as Ca)	mg / I	75 (200)	44.4	36.8
11	Magnesium (as Mg)	mg / I	30 (100)	21.1	5.8
12	Copper as(Cu)	mg / I	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / I	0.3	0.091	0.072
14	Manganese as (Mn)	mg / I	0.1(0.3)	< 0.01	< 0.01
15	Chlorides (as Cl)	mg / I	250(1000)	18.5	11.4
16	Sulphate (as SO4)	mg / I	200 (400)	16.0	10.6
17	Nitrates (as NO3)	mg / I	45	3.85	2.60
18	Fluoride (as F)	mg / I	1.0 (1.5)	0.65	0.45
19	Phenolic Compounds	mg / I	0.001	BDL	BDL
20	Mercury as (Hg)	mg / I	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / I	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / I	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / I	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / I	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / I	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / I	5 (15)	0.18	0.13
27	Total Chromium as (Cr)	mg / I	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / I	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / I	0.2 (1.0)	Nil	Nil
30	Total Coliform	MPN/100 ml	Absent	> 16	> 16
31	E. Coli	Nos./100 ml	Absent	> 16	> 16

SW4: Kachewani Pond water

Sr.	Test Parameters	Unit	As per IS 10500 : 2012	Res	sults
No.		Ont	AS DEL 13 10300 . 2012	Jun. 2022	Sept. 2022
1	Apparent Colour	Hazen units	5 (15)	3.5	2.5
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	-	-
4	Turbidity NTU	NTU	1(5)	2.0	1.5
5	Total Dissolved Solid	mg / I	500 (2000)	332	232
6	Electrical Conductivity	µS/cm	-	538	374
7	Total Alkalinity	mg / I	200 (600)	152	138
8	pH Value at 25°C	-	6.5 to 8.5	7.85	7.65
9	Total Hardness (CaCO3)	mg / I	200 (600)	178	130
10	Calcium (as Ca)	mg / I	75 (200)	43.4	40.2
11	Magnesium (as Mg)	mg / I	30 (100)	16.9	7.2
12	Copper as(Cu)	mg / I	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / I	0.3	0.093	0.076
14	Manganese as (Mn)	mg / I	0.1(0.3)	< 0.01	< 0.01
15	Chlorides (as Cl)	mg / I	250(1000)	15.4	12.3
16	Sulphate (as SO4)	mg / I	200 (400)	13.3	10.7
17	Nitrates (as NO3)	mg / I	45	4.15	3.10
18	Fluoride (as F)	mg / I	1.0 (1.5)	0.60	0.45
19	Phenolic Compounds	mg / I	0.001	BDL	BDL
20	Mercury as (Hg)	mg / I	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / I	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / I	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / I	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / I	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / I	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / I	5 (15)	0.19	0.11
27	Total Chromium as (Cr)	mg / I	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / I	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / I	0.2 (1.0)	Nil	Nil
30	Total Coliform	MPN/100 ml	Absent	> 16	> 16
31	E.Coli	Nos./100 ml	Absent	> 16	> 16

TABLE- 3.5 GROUND WATER REPORT

Monitoring Date: 13.06.2022

		STATIC W	ATER LEVEL OF	OPEN WE	LL	
Name of village	Plinth Height (m)	Diameter (m)	Water level from G.L. (m)	Shape	Total Depth of well from G.L (m)	Landmark
Mendipur	0.85	1.45	7.90	Round	11.00	Near Vitoba Ahinshak Suryavanshi Residence
Khairbori	1.10	1.83	7.55	Round	10.10	Near Hanuman Temple, Durga Temple
Churdi	1.20	2.60	9.00	Round	11.60	Near Primary School
Kachewani	1.5	4.80	Dry	Round	12.30	Opp. ZP. school

Monitoring Date: 21.09.2022

		STATI	C WATER LEVEL	OF OPEN	WELL	
Name of village	Plinth Height (m)	Diameter (m)	Water level from G.L. (m)	Shape	Total Depth of well from G.L (m)	Landmark
Mendipur	0.85	1.45	1.10	Round	11.00	Near Vitoba Ahinshak Suryavanshi Residence
Khairbori	1.10	1.83	1.0	Round	10.10	Near Hanuman Temple, Durga Temple
Churadi	1.20	2.60	1.45	Round	11.60	Near Primary School
Kachewani	1.5	4.80	1.4	Round	12.30	Opp. ZP. school

GROUND WATER QUALITY

GW1: Kachewani Hand Pump water

Sr.				Re	sults
No.	Test Parameters	Unit	As per IS 10500 : 2012	Jun. 2022	Sept. 2022
1	Apparent Colour	Hazen units	5 (15)	0.1	0.1
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	Agreeable	Agreeable
4	Turbidity NTU	NTU	1(5)	0.1	0.1
5	Total Dissolved Solid	mg / I	500 (2000)	912	672
6	Electrical Conductivity	μS/cm	-	1478	1040
7	Total Alkalinity	mg / I	200 (600)	236	210
8	pH Value at 25°C	-	6.5 to 8.5	8.0	7.75
9	Total Hardness (CaCO3)	mg / I	200 (600)	418	282
10	Calcium (as Ca)	mg / I	75 (200)	87.2	73.8
11	Magnesium (as Mg)	mg / I	30 (100)	48.6	23.7
12	Copper as(Cu)	mg / I	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / I	0.3	0.25	0.15
14	Manganese as (Mn)	mg / I	0.1(0.3)	0.018	0.012
15	Chlorides (as Cl)	mg / I	250(1000)	157	86.6
16	Sulphate (as SO4)	mg / I	200 (400)	124.3	70.3
17	Nitrates (as NO3)	mg / I	45	2.65	2.25
18	Fluoride (as F)	mg / I	1.0 (1.5)	1.05	0.85
19	Phenolic Compounds	mg / I	0.001	BDL	BDL
20	Mercury as (Hg)	mg / I	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / I	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / I	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / I	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / I	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / I	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / I	5 (15)	0.64	0.40
27	Total Chromium as (Cr)	mg / I	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / I	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / I	0.2 (1.0)	< 0.1	< 0.1
30	Total Coliform	MPN/100 ml	Absent	Absent	Absent
31	E. Coli	Nos./100 ml	Absent	Absent	Absent

GW2: Mendipur Hand Pump water

Sr.	T. 1 D		A	Results			
No.	Test Parameters	Unit	As per IS 10500 :2012	Jun. 2022	Sept. 2022		
1	Apparent Colour	Hazen units	5 (15)	0.1	0.1		
2	Odour	-	Agreeable	Agreeable	Agreeable		
3	Taste	-	Agreeable	Agreeable	Agreeable		
4	Turbidity NTU	NTU	1(5)	0.1	0.1		
5	Total Dissolved Solid	mg / I	500 (2000)	568	542		
6	Electrical Conductivity	µS/cm	-	920	880		
7	Total Alkalinity	mg / I	200 (600)	210	184		
8	pH Value at 25°C	-	6.5 to 8.5	7.90	7.65		
9	Total Hardness (CaCO3)	mg / I	200 (600)	292	288		
10	Calcium (as Ca)	mg / I	75 (200)	68.2	66.7		
11	Magnesium (as Mg)	mg / I	30 (100)	29.5	29.4		
12	Copper as(Cu)	mg / I	0.05(1.5)	< 0.01	< 0.01		
13	Iron (as Fe)	mg / I	0.3	0.093	0.085		
14	Manganese as (Mn)	mg / I	0.1(0.3)	< 0.01	< 0.01		
15	Chlorides (as Cl)	mg / I	250(1000)	20.5	19.8		
16	Sulphate (as SO4)	mg / I	200 (400)	18.7	17.5		
17	Nitrates (as NO3)	mg / I	45	2.40	2.20		
18	Fluoride (as F)	mg / I	1.0 (1.5)	0.90	0.75		
19	Phenolic Compounds	mg / I	0.001	BDL	BDL		
20	Mercury as (Hg)	mg / I	0.001	< 0.0005	< 0.0005		
21	Cadmium as (Cd)	mg / I	0.003	< 0.001	< 0.001		
22	Selenium as (Se)	mg / I	0.01	< 0.001	< 0.001		
23	Arsenic as (As)	mg / I	0.01 (0.05)	< 0.01	< 0.01		
24	Cyanide as (CN)	mg / I	0.05	< 0.005	< 0.005		
25	Lead as (Pb)	mg / I	0.01	< 0.001	< 0.001		
26	Zinc as (Zn)	mg / I	5 (15)	0.19	0.17		
27	Total Chromium as (Cr)	mg / I	0.05	< 0.03	< 0.03		
28	Mineral Oil	mg / I	0.05	< 0.01	< 0.01		
29	Free Residual Chlorine	mg / I	0.2 (1.0)	< 0.1	< 0.1		
30	Total Coliform	MPN/100 ml	Absent	Absent	Absent		
31	E.Coli	Nos./100 ml	Absent	Absent	Absent		

GW3: Garada Hand Pump water

Sr.	Tool Domentone	11	A	Re	sults
No.	Test Parameters	Unit	As per IS 10500 : 2012	Jun. 2022	Sept. 2022
1	Apparent Colour	Hazen units	5 (15)	0.1	0.1
2	Odour	-	Agreeable	Agreeable	Agreeable
3	Taste	-	Agreeable	Agreeable	Agreeable
4	Turbidity NTU	NTU	1(5)	0.1	0.1
5	Total Dissolved Solid	mg / I	500 (2000)	724	632
6	Electrical Conductivity	µS/cm	-	1168	1024
7	Total Alkalinity	mg / I	200 (600)	223	202
8	pH Value at 25°C	-	6.5 to 8.5	8.05	7.80
9	Total Hardness (CaCO3)	mg / I	200 (600)	322	284
10	Calcium (as Ca)	mg / I	75 (200)	75.2	71.8
11	Magnesium (as Mg)	mg / I	30 (100)	32.6	25.4
12	Copper as(Cu)	mg / I	0.05(1.5)	< 0.01	< 0.01
13	Iron (as Fe)	mg / I	0.3	0.13	0.095
14	Manganese as (Mn)	mg / I	0.1(0.3)	< 0.01	< 0.01
15	Chlorides (as Cl)	mg / I	250(1000)	40.5	35.7
16	Sulphate (as SO4)	mg / I	200 (400)	28.3	24.2
17	Nitrates (as NO3)	mg / I	45	2.75	2.30
18	Fluoride (as F)	mg / I	1.0 (1.5)	0.95	0.80
19	Phenolic Compounds	mg / I	0.001	BDL	BDL
20	Mercury as (Hg)	mg / I	0.001	< 0.0005	< 0.0005
21	Cadmium as (Cd)	mg / I	0.003	< 0.001	< 0.001
22	Selenium as (Se)	mg / I	0.01	< 0.001	< 0.001
23	Arsenic as (As)	mg / I	0.01 (0.05)	< 0.01	< 0.01
24	Cyanide as (CN)	mg / I	0.05	< 0.005	< 0.005
25	Lead as (Pb)	mg / I	0.01	< 0.001	< 0.001
26	Zinc as (Zn)	mg / I	5 (15)	0.63	0.57
27	Total Chromium as (Cr)	mg / I	0.05	< 0.03	< 0.03
28	Mineral Oil	mg / I	0.05	< 0.01	< 0.01
29	Free Residual Chlorine	mg / I	0.2 (1.0)	< 0.1	< 0.1
30	Total Coliform	MPN/100 ml	Absent	Absent	Absent
31	E. Coli	Nos./100 ml	Absent	Absent	Absent

GW4: Chikhali Hand Pump water

Sr.	T. 1.D		A	Re	sults	
No.	Test Parameters	Unit	As per IS 10500 : 2012	Jun. 2022	Sept. 2022	
1	Apparent Colour	Hazen units	5 (15)	0.1	0.1	
2	Odour	-	Agreeable	Agreeable	Agreeable	
3	Taste	-	Agreeable	Agreeable	Agreeable	
4	Turbidity NTU	NTU	1(5)	0.1	0.1	
5	Total Dissolved Solid	mg / I	500 (2000)	760	654	
6	Electrical Conductivity	µS/cm	-	1230	1062	
7	Total Alkalinity	mg / I	200 (600)	238	204	
8	pH Value at 25oC	-	6.5 to 8.5	7.65	7.55	
9	Total Hardness (CaCO3)	mg / I	200 (600)	358	292	
10	Calcium (as Ca)	mg / I	75 (200)	83.0	75.8	
11	Magnesium (as Mg)	mg / I	30 (100)	36.6	24.9	
12	Copper as(Cu)	mg / I	0.05(1.5)	< 0.01	< 0.01	
13	Iron (as Fe)	mg / I	0.3	0.15	0.10	
14	Manganese as (Mn)	mg / I	0.1(0.3)	< 0.01	< 0.01	
15	Chlorides (as Cl)	mg / I	250(1000)	41.7	33.1	
16	Sulphate (as SO4)	mg / I	200 (400)	26.8	21.7	
17	Nitrates (as NO3)	mg / I	45	2.95	2.20	
18	Fluoride (as F)	mg / I	1.0 (1.5)	0.92	0.82	
19	Phenolic Compounds	mg / I	0.001	BDL	BDL	
20	Mercury as (Hg)	mg / I	0.001	< 0.0005	< 0.0005	
21	Cadmium as (Cd)	mg / I	0.003	< 0.001	< 0.001	
22	Selenium as (Se)	mg / I	0.01	< 0.001	< 0.001	
23	Arsenic as (As)	mg / I	0.01 (0.05)	< 0.01	< 0.01	
24	Cyanide as (CN)	mg / I	0.05	< 0.005	< 0.005	
25	Lead as (Pb)	mg / I	0.01	< 0.001	< 0.001	
26	Zinc as (Zn)	mg / I	5 (15)	0.46	0.42	
27	Total Chromium as (Cr)	mg / I	0.05	< 0.03	< 0.03	
28	Mineral Oil	mg / I	0.05	< 0.01	< 0.01	
29	Free Residual Chlorine	mg / I	0.2 (1.0)	< 0.1	< 0.1	
30	Total Coliform	MPN/100 ml	Absent	Absent	Absent	
31	E. Coli	Nos./100 ml	Absent	Absent	Absent	

TABLE- 3.6 WASTE WATER QUALITY (Apr.2022- Sept. 2022)

Sr.	Parameters	Unit	МРСВ	Results			
No.	Faranneters	Onit	Limit Jun. 202		Sept. 2022		
1.	Free Available Chlorine	mg / I	0.5	0.25	0.22		
2.	Zinc as (Zn)	mg / I	1.0	0.11	0.10		
3.	Total Chromium as (Cr)	mg / I	0.2	0.015	0.011		
4.	Phosphate as (PO4)	mg/ l	5.0	1.32 1.37			

Sample Category : Unit-1- Cooling Tower Blow Down water (WW-1)

Sample Category : Unit-2- Cooling Tower Blow Down water (WW-2)

Sr.	Parameters	Unit	МРСВ	Results			
No.		Omt	Limit	Jun. 2022	Sept. 2022		
1.	Free Available Chlorine	mg/l	0.5	0.28	0.24		
2.	Zinc as (Zn)	mg/l	1.0	0.10	0.13		
3.	Total Chromium as (Cr)	mg / I	0.2	0.013	0.017		
4.	Phosphate as (PO4)	mg/ l	5.0	1.35	1.31		

Sample Category	:	Unit-3-	Cooling	Tower I	Blow Dow	n water	(WW-3)
-----------------	---	---------	---------	---------	----------	---------	--------

Sr. No.	Parameters	Unit	MPCB Limit	Results			
	r arameters			Jun. 2022	Sept. 2022		
1.	Free Available Chlorine	mg / I	0.5	0.23	0.26		
2.	Zinc as (Zn)	mg / I	1.0	0.10	0.11		
3.	Total Chromium as (Cr)	mg / I	0.2	0.011	0.013		
4.	Phosphate as (PO4)	mg/ l	5.0	1.30	1.34		

Sr.	Daramatara	11	МРСВ	Results			
No.	Parameters	Unit	Limit	Jun. 2022	Sept. 2022		
1.	Free Available Chlorine	mg / I	0.5	0.22	0.25		
2.	Zinc as (Zn)	mg / I	1.0	0.11	0.12		
3.	Total Chromium as (Cr)	mg / I	0.2	0.015	0.012		
4.	Phosphate as (PO4)	mg/ l	5.0	1.37	1.32		

Sample Category : Unit-4-Cooling Tower Blow Down water (WW-4)

Sample Category : Unit-5- Cooling Tower Blow Down water (WW-5)

Sr.	Parameters	Unit	MPCB Limit	Results			
No.	Parameters	Unit		Jun. 2022	Sept. 2022		
1.	Free Available Chlorine	mg / I	0.5	0.25	0.22		
2.	Zinc as (Zn)	mg / I	1.0	0.12	0.13		
3.	Total Chromium as (Cr)	mg / I	0.2	0.013	0.016		
4.	Phosphate as (PO4)	mg/ l	5.0	1.30	1.37		

TABLE- 3.7 Pizo-metric well water Report

Date of sample collection: 21.09.2022

Sr. No.	Test Parameters	Unit	As per IS : 10500 : 2012	Pizo well (P1) Near AWRPH	Pizo well (P2) B/H Ash dyke -1	Pizo -well (P3) Near Raw Water pump house -02
1	рН		6.5 to 8.5	7.65	7.75	7.45
2	Total Dissolved Solid	mg / I	500 (2000)	558	506	477
3	Electrical Conductivity	µS/cm	-	912	822	780
4	Copper as(Cu)	mg / I	0.05 (1.5)	< 0.01	< 0.01	< 0.01
5	Iron (as Fe)	mg / I	0.3 (1.0)	0.12	0.14	0.11
6	Manganese as (Mn)	mg / I	0.1 (0.3)	0.043	0.071	0.038
7	Mercury as (Hg)	mg / I	0.001	< 0.0005	< 0.0005	< 0.0005
8	Cadmium as (Cd)	mg / I	0.01	0.0028	0.0014	0.0013
9	Selenium as (Se)	mg / I	0.01	0.0012	0.0012	0.0011
10	Arsenic as (As)	mg / I	0.05	0.010	0.010	0.015
11	Cyanide as (CN)	mg / I	0.05	< 0.005	< 0.005	< 0.005
12	Lead as (Pb)	mg / I	0.05	0.0016	0.0014	0.0011
13	Zinc as (Zn)	mg / I	5 (15)	1.78	1.62	1.46
14	Total Chromium as (Cr)	mg / I	0.05	< 0.010	< 0.010	< 0.010

				RESUL	T (dBA)					
SL.	LOCATION	DAY								
NO.		April 2022	May 2022	Jun. 2022	Jul. 2022	Aug. 2022	Sept. 2022			
1	Near Shanti Niketan I, II & III	54.1	57.5	54.7	57.4	59.6	59.4			
2	Near Labour Hutment	67.4	66.5	63.7	61.4	62.7	59.3			
3	Near Store Area	63.9	64.7	62.4	63.6	64.2	64.7			
4	Gate No.1	55.1	57.2	56.7	55.7	55.1	50.3			
5	Gate No.2	62.5	63.3	62.5	64.1	63.2	64.5			
6	Gate No.3	70.9	72.0	70.3	71.9	70.8	68.2			
7	Near OHC	59.1	61.6	54.4	53.5	49.9	50.7			
8	Railway Siding	58.1	61.6	62.2	64.6	62.4	63.0			
9	Near Reservoir 2	53.1	54.4	57.0	55.1	53.1	51.7			
10	Near Ash Water Recovery Pump House	60.5	64.4	61.9	62.4	59.3	62.9			
11	In China Colony	38.2	44.8	44.3	46.6	42.0	38.4			
C	PCB Standards									
In	dustrial Area			7	5					

TABLE- 3.8 Noise Level (Within Plant area)

				RESUL	T (dBA)						
SL.	LOCATION		NIGHT								
NO.		April 2022	May 2022	Jun. 2022	Jul. 2022	Aug. 2022	Sept. 2022				
1	Near Shanti Niketan I II & III	50.2	47.2	46.2	44.5	51.6	50.4				
2	Near Labour Hutment	62.3	52.3	51.1	50.8	56.7	53.3				
3	Near Store Area	58.8	54.3	55.5	53.3	57.2	57.7				
4	Gate No.1	52.5	50.2	50.2	51.2	49.7	44.9				
5	Gate No.2	54.7	53.3	53.4	54.4	57.4	58.7				
6	Gate No.3	62.2	60.7	61.1	68.8	63.7	59.3				
7	Near OHC	50.0	49.9	47.0	44.0	43.5	44.3				
8	Railway Siding	49.9	51.6	51.8	50.0	54.3	54.9				
9	Near Reservoir 2	40.4	44.3	44.7	43.3	44.2	42.8				
10	Near Ash Water Recovery Pump House	52.2	51.3	50.3	49.8	50.6	54.2				
11	In China Colony	34.4	38.8	34.4	30.4	38.2	34.6				
C	PCB Standards		·	·		• 	·				
In	ndustrial Area			7	0						

Annexure I - On site Meteorological Data for APR.2022- SEPT.2022

<u>Apr. 2022</u>

Date	Wind Direction (Blowing		Speed n/hr)	Ten	nperature	(°C)	ŀ	lumidity (%	6)	Barometric Pressure (mBar)	Rainfall (mm)
	From)	Max.	Avg.	Max	Min	Avg.	Max	Min	Avg	(Average)	
01.04.2022	NW	20.3	4.3	40.5	20.1	30.6	45.7	8.3	23.6	980.7	0.0
02.04.2022	Ν	42.2	4.2	39.2	24.0	30.6	51.8	18.9	34.9	982.2	0.0
03.04.2022	NNW	27.2	3.9	38.7	23.7	30.5	54.2	17.4	36.0	982.0	0.0
04.04.2022	NW	38.3	5.9	38.8	23.6	30.7	50.7	17.7	35.2	982.0	0.0
05.04.2022	NNW	37.3	5.7	38.7	24.9	30.8	51.8	16.0	35.1	983.7	0.0
06.04.2022	NW	31.1	5.3	40.9	24.4	31.3	51.2	18.5	33.9	983.8	0.0
07.04.2022	NW	29.4	6.2	40.1	25.2	31.5	45.2	20.5	31.7	983.3	0.0
08.04.2022	ENE	41.7	6.7	38.9	25.3	30.5	47.8	21.5	32.5	982.2	0.0
09.04.2022	NNW	38.5	6.2	40.2	25.0	31.2	43.9	21.6	32.8	981.1	0.0
10.04.2022	ENE	43.2	6.2	39.8	24.9	31.5	48.5	20.0	33.5	980.3	0.0
11.04.2022	NNW	27.9	5.2	40.3	25.8	31.8	46.2	10.9	32.7	979.8	0.0
12.04.2022	NNW	36.6	6.2	38.4	25.7	31.6	48.6	20.9	33.9	979.3	0.0
13.04.2022	NNW	45.9	7.2	39.2	26.4	32.0	47.0	20.2	32.9	978.8	0.0
14.04.2022	NW	32.4	4.7	36.8	25.9	30.6	41.1	17.3	30.6	978.9	0.0
15.04.2022	NNW	29.9	4.0	40.5	24.7	31.5	48.5	9.1	27.8	978.4	0.0
16.04.2022	NW	30.9	4.0	40.5	23.0	31.9	43.0	9.5	21.6	977.6	0.0
17.04.2022	NW	26.4	4.2	41.1	23.4	32.2	46.8	8.1	22.4	978.6	0.0
18.04.2022	N	32.9	5.8	40.6	26.4	32.6	45.3	12.3	25.5	980.8	0.0
19.04.2022	ENE	24.5	3.5	43.5	26.3	33.3	42.0	8.5	23.7	981.4	0.0
20.04.2022	NW	37.0	2.8	42.9	25.1	33.9	37.5	8.9	20.3	979.9	0.0
21.04.2022	NW	45.0	4.6	40.8	22.2	33.0	52.1	14.8	25.8	978.9	2.0
22.04.2022	NW	40.5	6.3	37.7	22.8	29.8	52.2	19.3	34.8	981.9	0.0
23.04.2022	ENE	33.8	4.1	40.2	25.0	31.2	51.1	15.4	34.6	981.8	0.0
24.04.2022	ENE	34.8	4.5	39.6	24.4	31.4	49.9	12.5	29.2	980.7	0.0
25.04.2022	NNW	32.4	3.2	42.6	24.7	33.4	43.3	8.2	20.5	979.6	0.0
26.04.2022	NW	28.7	4.6	41.8	29.0	36.3	30.3	9.0	16.7	980.0	0.0
27.04.2022	NW	24.2	3.8	42.6	27.8	34.4	42.3	8.0	18.6	979.7	0.0
28.04.2022	NW	36.6	4.6	43.7	24.1	33.8	42.3	7.0	20.1	980.2	0.0
29.04.2022	ENE	26.9	4.6	43.5	25.8	33.7	35.6	10.0	21.7	979.9	0.0
30.04.2022	ENE	35.1	4.9	42.5	27.1	34.7	35.2	9.8	18.3	977.6	0.0

<u>May 2022</u>

Date	Wind Wind Speed Direction (Km/hr) (Blowing		-	Temperature (°C)			Humidity (%)			Barometric Pressure (mBar)	Rainfall (mm)
	From)	Max.	Avg.	Max	Min	Avg.	Мах	Min	Avg	(Average)	
01.05.2022	ENE	46.7	4.9	43.8	25.8	33.8	36.7	9.8	21.2	975.9	0.0
02.05.2022	ENE	37.0	5.8	42.6	30.8	36.5	25.5	14.0	19.0	976.0	0.0
03.05.2022	ESE	46.2	3.8	42.3	26.4	34.7	35.5	12.5	22.0	978.0	0.0
04.05.2022	E	49.9	7.4	39.9	25.1	32.6	45.1	15.4	29.1	980.7	0.0
05.05.2022	NW	26.7	4.2	40.8	26.3	33.4	44.4	11.6	27.5	979.7	0.0
06.05.2022	NW	46.9	5.9	41.2	23.5	32.3	45.4	11.4	26.4	979.0	0.0
07.05.2022	NNE	30.9	2.9	39.9	26.3	33.8	41.3	14.4	25.1	979.5	0.0
08.05.2022	NW	38.3	4.7	42.2	25.9	33.9	44.1	9.3	22.0	977.5	0.0
09.05.2022	NW	33.8	4.7	42.9	27.8	34.6	28.6	10.1	18.2	975.9	0.0
10.05.2022	NW	47.9	6.4	42.3	26.5	35.9	34.5	19.2	24.1	974.6	0.0
11.05.2022	NW	44.7	8.7	39.6	27.5	33.1	46.1	21.6	33.0	975.6	0.0
12.05.2022	ENE	61.3	6.2	39.8	26.8	32.7	47.5	21.3	33.2	975.6	0.0
13.05.2022	Ν	43.0	7.1	41.8	27.5	33.0	50.5	20.6	35.8	975.0	0.0
14.05.2022	Ν	37.0	5.9	43.7	28.8	35.0	45.7	13.5	30.6	975.0	0.0
15.05.2022	Ν	63.0	7.6	43.0	23.3	35.5	60.6	12.5	28.1	976.3	1.2
16.05.2022	ENE	61.3	8.4	38.9	24.0	32.6	53.2	24.8	37.6	977.4	0.0
17.05.2022	NNW	24.9	4.1	42.3	27.0	33.6	53.6	12.2	32.9	976.1	0.0
18.05.2022	Ν	63.0	7.9	41.7	27.4	32.7	47.4	19.8	35.4	976.9	0.0
19.05.2022	Ν	38.8	6.3	39.4	26.1	31.1	52.9	22.6	38.5	978.3	0.0
20.05.2022	Ν	42.7	6.7	40.7	26.8	32.6	54.2	22.5	38.8	976.6	0.0
21.05.2022	ENE	43.0	7.3	41.2	28.9	32.1	45.6	13.5	28.7	973.7	0.0
22.05.2022	ENE	50.6	7.0	41.8	28.7	32.2	44.6	13.5	28.0	973.5	0.0
23.05.2022	ENE	62.5	7.9	40.9	25.8	29.4	47.2	20.1	31.5	972.6	0.0
24.05.2022	Ν	45.7	4.5	38.2	25.7	30.2	50.0	24.4	37.4	977.5	0.0
25.05.2022	NNW	63.0	5.3	39.0	22.9	28.9	67.4	16.7	41.5	979.9	2.8
26.05.2022	ENE	49.6	5.1	38.8	22.4	27.3	68.0	17.8	41.9	978.7	1.2
27.05.2022	ENE	49.9	7.8	39.8	24.1	31.4	62.3	17.3	37.6	977.1	3.2
28.05.2022	E	51.6	6.9	38.9	25.5	31.9	55.4	15.7	31.0	976.0	0.0
29.05.2022	ENE	49.4	7.8	41.6	25.3	31.8	46.0	16.4	29.8	975.8	0.0
30.05.2022	E	55.1	6.8	40.9	27.2	31.7	46.0	18.3	33.2	976.5	0.0
31.05.2022	E	49.4	5.5	41.1	26.4	31.9	48.0	18.7	32.9	975.4	0.0

<u>Jun. 2022</u>

Date	Wind Direction	Wind (Km		Ten	nperature	(°C)	Humidity (%)		(%)	Barometric Pressure (mBar)	– Rainfall (mm)
	(Blowing From)	Max.	Avg.	Мах	Min	Avg.	Мах	Min	Avg	(Average)	
01.06.2022	Ν	49.4	5.5	43.9	26.4	31.9	48.0	18.7	32.9	975.4	0.0
02.06.2022	NNW	36.8	3.6	44.2	25.6	31.4	39.5	10.7	21.7	975.1	0.0
03.06.2022	NNW	37.8	3.4	45.2	26.9	35.6	44.5	10.5	21.9	974.5	0.0
04.06.2022	E	41.5	4.8	44.2	30.4	35.6	34.0	11.7	20.8	975.0	0.0
05.06.2022	NE	39.5	3.6	44.9	29.7	36.4	35.5	9.0	19.3	975.1	0.0
06.06.2022	NW	37.5	4.9	45.5	26.9	35.3	39.6	9.8	21.6	975.0	0.0
07.06.2022	NNW	36.6	4.0	44.8	27.3	35.3	48.7	9.7	25.0	974.8	0.0
08.06.2022	E	42.5	4.2	44.1	28.9	35.6	33.6	10.6	19.4	974.5	0.0
09.06.2022	ENE	51.1	9.4	42.2	28.5	34.5	33.6	15.2	25.0	974.6	0.0
10.06.2022	ENE	64.5	5.8	41.2	27.5	32.3	49.0	17.5	32.9	975.9	0.0
11.06.2022	ENE	62.5	8.2	40.7	25.9	30.8	52.4	18.8	38.3	976.9	0.0
12.06.2022	NNW	40.5	7.3	35.0	24.3	28.6	58.7	28.6	45.2	978.4	0.0
13.06.2022	ENE	48.4	7.1	37.5	26.0	31.5	54.4	25.5	38.2	978.9	0.0
14.06.2022	ENE	63.0	6.3	40.3	26.0	31.6	61.7	22.1	40.0	978.0	6.0
15.06.2022	NW	56.3	5.4	39.3	23.0	29.2	69.7	23.8	51.3	977.7	20.8
16.06.2022	ENE	38.8	6.4	34.1	26.4	29.5	70.1	34.5	54.7	978.6	0.0
17.06.2022	Ν	41.5	5.8	35.7	24.7	27.9	63.4	35.7	53.9	978.6	0.0
18.06.2022	NW	56.6	5.7	32.6	23.5	27.6	71.0	42.8	55.7	979.3	9.2
19.06.2022	NW	60.5	4.8	31.9	24.3	28.3	76.2	38.8	62.8	978.8	52.8
20.06.2022	NNW	63.0	5.2	32.2	19.4	27.4	77.9	38.5	63.7	976.9	50.8
21.06.2022	E	29.4	4.0	32.4	23.5	27.9	77.0	40.8	64.2	975.8	0.8
22.06.2022	NW	44.7	5.7	36.2	22.6	29.2	71.7	30.3	54.1	977.2	0.0
23.06.2022	NW	63.0	4.7	33.7	22.8	28.5	70.5	39.5	57.6	978.6	15.6
24.06.2022	ENE	57.3	4.7	32.0	23.1	27.7	74.9	35.1	58.3	977.2	18.0
25.06.2022	ENE	23.2	5.0	33.2	24.1	28.0	74.4	47.0	64.3	975.1	0.8
26.06.2022	NNW	27.2	6.1	32.2	23.8	29.1	70.2	48.4	62.7	975.7	0.0
27.06.2022	NNW	31.9	4.3	32.5	23.9	28.4	69.9	41.2	58.4	977.1	7.2
28.06.2022	NNW	22.5	4.0	33.1	23.5	29.6	69.8	40.2	55.6	976.4	0.0
29.06.2022	NE	63.0	5.2	32.3	21.6	28.1	76.9	36.6	60.4	975.3	28.8
30.06.2022	NNW	46.2	3.8	32.5	21.7	25.9	74.0	38.9	64.1	975.0	29.8

<u>July 2022</u>

Date	Wind Direction (Blowing		Speed 1/hr)	Ten	nperature	(°C)		Humidity	(%)	Barometric Pressure (mBar)	Rainfall (mm)
	From)	Max.	Avg.	Мах	Min	Avg.	Мах	Min	Avg	(Average)	
01.07.2022	ENE	60.8	4.1	32.9	24.8	29.1	75.1	36.1	62.6	975.4	29.6
02.07.2022	ENE	57.1	4.4	32.4	22.6	28.4	75.7	42.5	67.8	974.5	59.2
03.07.2022	ENE	31.6	3.9	33.2	24.8	28.7	75.3	52.9	70.9	974.6	11.2
04.07.2022	E	53.1	10.1	30.8	24.1	26.3	78.8	67.3	74.4	973.2	118.8
05.07.2022	Ν	44	6.3	32.5	23.4	27.5	83.9	43.5	66.3	972.7	117.2
06.07.2022	E	24.2	3.0	32.9	24.0	28.6	75.2	52.8	68.1	974.9	18.8
07.07.2022	ENE	31.9	3.4	32.6	23.1	26.4	75.0	50.7	67.3	976.1	3.6
08.07.2022	ENE	30.6	4.6	33.3	22.9	29.0	73.9	47.4	64.8	974.7	1.6
09.07.2022	ENE	43.5	4.0	33.1	23.2	26.9	76.5	43.3	65.8	972.1	8.4
10.07.2022	E	44.5	4.4	32.9	22.0	27.3	75.5	47.6	68.8	972.3	84.0
11.07.2022	E	45.4	6.2	33.2	23.2	28.7	76.0	52.5	69.9	973.1	82.4
12.07.2022	E	25.9	4.9	32.5	24.2	26.4	75.9	42.0	65.8	972.5	98.0
13.07.2022	E	33.3	3.8	33.2	23.4	26.5	78.2	54.5	70.1	969.0	94.4
14.07.2022	E	34.8	5.3	33.4	25.1	26.7	76.8	65.4	73.4	969.1	76.0
15.07.2022	ENE	36.6	5.6	33.4	24.3	27.8	83.8	61.2	73.9	972.0	93.6
16.07.2022	ENE	33.3	6.1	33.0	23.1	26.0	76.5	50.8	67.3	974.8	3.2
17.07.2022	E	34.1	4.4	33.4	25.2	27.4	77.1	69.6	75.1	974.7	59.2
18.07.2022	ENE	38.5	4.8	33.1	24.3	27.6	77.7	47.9	71.5	973.3	16.0
19.07.2022	ENE	52.4	8.3	31.3	25.5	27.3	75.6	64.7	71.2	976.8	2.0
20.07.2022	ENE	30.1	6.7	32.3	26.1	28.0	75.6	64.4	71.6	977.6	1.6
21.07.2022	E	45.0	8.3	32.6	25.8	28.7	75.9	57.0	69.0	977.4	2.4
22.07.2022	E	40.5	5.7	32.4	24.3	26.7	74.9	52.8	68.9	977.8	8.4
23.07.2022	ENE	31.6	6.6	32.9	25.9	28.0	76.5	64.6	73.5	975.5	13.6
24.07.2022	ENE	43.5	8.5	31.8	25.7	27.7	77.1	56.2	71.3	976.6	13.2
25.07.2022	NNW	42.7	6.6	32.9	26.3	29.3	77.1	57.8	70.5	979.1	62.4
26.07.2022	ENE	25.9	4.5	33.2	26.2	30.7	77.6	62.1	71.7	980.9	27.2
27.07.2022	E	24.5	3.4	32.7	25.2	27.6	76.4	53.2	69.2	981.4	9.2
28.07.2022	ENE	62.0	3.7	33.3	24.5	28.3	77.4	38.0	62.1	982.3	0.8
29.07.2022	NW	47.9	3.1	32.0	24.4	27.2	75.0	41.9	64.5	981.8	0.0
30.07.2022	ENE	40.8	3.5	32.0	23.3	27.2	74.6	42.9	64.0	980.4	0.0
31.07.2022	ENE	29.9	4.2	31.3	23.8	26.5	75.4	38.5	57.9	978.2	0.0

<u>Aug. 2022</u>

Date	Wind Direction (Blowing	Wind (Km	Speed //hr)	Ter	nperature	(°C)		Humidity	(%)	Barometric Pressure (mBar)	Rainfall (mm)
	From)	Max.	Avg.	Max	Min	Avg.	Max	Min	Avg	(Average)	
01.08.2022	ESE	23.7	3.4	31.7	24.4	26.8	68.9	37.8	52.3	978.3	0.0
02.08.2022	E	28.4	3.5	31.0	23.9	26.8	70.4	39.6	57.7	977.6	0.8
03.08.2022	NNW	45.0	2.8	32.2	24.9	27.5	70.8	43.5	61.1	977.2	0.0
04.08.2022	NW	35.1	4.8	32.4	25.6	28.0	74.7	44.5	64.2	976.8	3.6
05.08.2022	NW	37.3	3.9	31.4	24.4	27.7	74.4	45.8	63.5	975.8	0.8
06.08.2022	NNW	61.0	4.8	32.9	25.1	27.6	75.5	43.1	61.8	974.2	35.2
07.08.2022	E	28.7	3.1	33.0	25.9	29.2	75.5	41.9	64.7	972.5	9.6
08.08.2022	E	46.4	5.4	33.2	24.3	27.9	78.8	39.9	62.1	970.4	103.2
09.08.2022	ESE	41.5	5.7	32.4	26.8	28.4	92.4	78.5	84.2	970.4	132.0
10.08.2022	ENE	51.1	14.2	34.6	27.4	29.6	84.7	70.3	79.0	968.0	205.0
11.08.2022	ENE	36.8	4.7	33.1	26.2	30.4	82.3	62.1	71.7	972.7	5.2
12.08.2022	ENE	45.7	7.6	33.1	24.7	29.2	76.1	47.4	63.7	975.5	2.8
13.08.2022	E	60.5	9.1	33.0	25.9	28.4	88.3	57.4	69.4	976.2	43.2
14.08.2022	E	58.3	15.9	33.1	26.1	28.4	96.2	68.4	77.0	975.3	217.6
15.08.2022	ENE	61.5	16.8	33.0	26.5	30.0	81.5	71.9	76.4	974.1	139.2
16.08.2022	Ν	44.5	6.5	32.3	24.3	27.4	75.3	46.3	63.8	979.5	4.0
17.08.2022	ENE	46.4	6.2	31.2	24.1	26.8	74.7	43.4	62.2	980.6	2.0
18.08.2022	ENE	37.5	6.6	31.9	23.9	27.1	75.7	42.8	60.8	979.5	0.0
19.08.2022	ENE	41.6	6.1	32.1	22.4	28.4	81.6	40.2	64.2	977.6	12.0
20.08.2022	E	48.7	7.7	32.9	24.7	27.1	74.6	48.8	67.4	976.9	11.0
21.08.2022	ENE	57.6	14.6	31.8	25.4	26.9	75.0	63.4	68.8	974.2	6.6
22.08.2022	ENE	51.6	9.5	31.8	25.0	26.7	74.9	48.3	66.1	974.6	8.8
23.08.2022	NNW	25.7	6.7	31.3	24.2	26.1	74.8	41.0	60.7	978.2	0.0
24.08.2022	ENE	39.3	3.5	31.2	24.8	26.8	72.5	40.8	60.0	980.7	1.6
25.08.2022	E	29.4	2.8	31.1	24.1	26.5	75.0	40.2	60.3	980.3	0.0
26.08.2022	E	40.0	4.0	31.3	24.4	27.2	74.4	36.4	61.1	980.0	2.0
27.08.2022	E	29.6	3.5	31.4	24.4	27.2	74.8	42.0	63.9	979.6	1.4
28.08.2022	ENE	33.6	3.2	33.3	25.8	28.9	75.2	57.9	71.0	979.8	7.2
29.08.2022	ESE	26.9	1.8	32.9	26.3	28.7	88.4	48.7	68.4	981.7	35.2
30.08.2022	NNW	35.3	3.4	32.1	25.1	28.6	76.0	44.1	61.4	982.8	0.4
31.08.2022	ENE	27.7	4.5	32.6	24.6	27.6	75.1	39.8	59.9	981.6	0.0

<u>Sept. 2022</u>

Date	Wind Direction (Blowing		Speed n/hr)	Ten	nperature	(°C)		Humidity	(%)	Barometric Pressure (mBar)	Rainfall (mm)
	From)	Max.	Avg.	Мах	Min	Avg.	Мах	Min	Avg	(Average)	
01.09.2022	ENE	24.5	4.1	32.2	24.9	27.3	69.6	43.7	55.9	981.9	0.0
02.09.2022	ENE	23.5	3.8	32.2	25.2	28.4	75.7	39.9	59.8	982.7	0.0
03.09.2022	ENE	37.8	4.7	32.6	25.5	28.3	73.7	41.6	61.2	981.4	4.4
04.09.2022	NNW	45.7	5.9	32.3	25.9	29.2	77.3	57.0	71.1	981.4	25.4
05.09.2022	E	30.6	4.1	33.2	25.8	28.3	75.6	55.5	71.2	981.3	16.4
06.09.2022	NW	27.2	2.0	33.2	25.9	29.2	76.4	44.4	68.0	980.9	2.1
07.09.2022	Ν	41.2	2.8	33.1	25.4	29.0	76.7	46.0	63.4	980.6	0.0
08.09.2022	WNW	35.3	3.7	32.8	25.3	28.8	75.8	40.2	59.4	980.4	0.0
09.09.2022	W	36.3	4.4	31.9	24.7	26.8	62.9	39.5	49.7	979.9	0.0
10.09.2022	SSE	52.9	3.8	32.7	25.2	28.5	76.5	42.2	63.1	978.2	0.4
11.09.2022	SSW	50.9	3.9	34.0	23.7	31.9	77.9	40.5	67.1	974.2	6.0
12.09.2022	ENE	37.0	3.8	33.6	21.4	26.9	81.5	72.2	78.9	972.7	47.0
13.09.2022	ENE	57.1	5.9	31.8	21.6	26.2	81.3	61.1	76.0	976.4	7.0
14.09.2022	Ν	47.2	7.0	32.9	22.9	28.7	81.7	49.5	67.6	979.2	12.3
15.09.2022	ENE	45.9	7.2	33.0	25.0	29.5	80.9	51.6	68.9	980.5	2.6
16.09.2022	ENE	55.1	7.5	32.4	25.7	29.9	79.6	52.3	69.7	978.4	4.8
17.09.2022	ENE	30.9	6.5	32.5	22.2	29.9	80.1	54.3	72.1	979.9	15.6
18.09.2022	E	37.5	2.8	32.8	21.3	30.4	82.8	45.1	70.4	981.2	10.6
19.09.2022	E	24.5	2.0	34.6	24.8	29.8	81.5	41.1	66.0	980.3	0.0
20.09.2022	E	50.1	5.4	32.5	23.2	29.3	80.3	47.6	70.0	978.5	16.0
21.09.2022	E	33.8	7.0	33.3	27.4	30.7	84.4	58.4	73.4	978.4	4.1
22.09.2022	ENE	57.1	7.2	32.8	26.2	29.8	80.9	69.4	76.6	979.5	6.2
23.09.2022	ENE	61.0	7.2	32.2	25.6	28.9	80.9	52.3	69.9	981.0	7.8
24.09.2022	ENE	27.9	3.5	32.2	23.0	27.9	79.7	59.1	71.3	981.8	0.0
25.09.2022	E	24.2	2.6	32.3	24.3	29.2	79.3	47.3	69.1	982.2	0.2
26.09.2022	E	32.1	2.0	33.8	32.0	29.4	83.3	40.3	65.5	982.8	7.8
27.09.2022	SE	36.3	2.6	32.7	25.4	29.5	81.7	45.5	68.2	981.7	0.2
28.09.2022	NW	35.3	2.6	32.8	24.5	27.7	81.0	57.8	74.4	980.9	1.8
29.09.2022	NW	27.9	3.3	32.2	24.4	28.9	83.4	37.5	66.6	980.8	0.0
30.09.2022	NE	21.5	1.6	32.4	23.5	27.8	81.1	38.7	62.8	981.2	0.0

Annexure - IA

adani ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No: TC519322000000401F

Date 30.04.2022

	Issued To:	APML, Plot No. A	-1, Tirora Growth Cer	ntre, MIDC – 1	firora, Dist. Go	ndia – 441 911			
San	nple Particulars :	Ambient Air Qua	lity (Plant)						
Sam	ple Collected by :	Environment De	pt. APML						
			Test Report						
					Parameters				
Station	Sampling Location	Sampling Date	Analysis Starting	PM 10	PM 2.5	SO2	NOx		
			Date	µg/m3	µg/m3	µg/m3	µg/m3		
		04.04.2022	05.04.2022	63.8	34.0	12.5	22.2		
		08.04.2022	09.04.2022	76.5	25.5	11.9	19.6		
		11.04.2022	12.04.2022	88.7	30.4	11.4	24.8		
AAQ 1		15.04.2022	16.04.2022	82.5	41.9	11.0	26.7		
AAGT	Near AWRS	18.04.2022	19.04.2022	75.2	31.8	11.4	30.0		
		22.04.2022	23.04.2022	87.5	44.5	16.4	27.4		
		25.04.2022	26.04.2022	92.8	48.6	12.3	28.0		
		29.04.2022	30.04.2022	85.3	34.1	14.9	30.0		
		04.04.2022	05.04.2022	77.6	27.8	10.1	29.0		
		08.04.2022	09.04.2022	72.6	20.3	12.1	26.9		
		11.04.2022	12.04.2022	66.7	31.1	9.6	20.9		
AAQ 2	Near Brick Plant	15.04.2022	16.04.2022	78.9	27.8	13.0	31.0		
MAG 2	Near Brick Plant	18.04.2022	19.04.2022	63.6	25.4	11.3	29.8		
		22.04.2022	23.04.2022	75.4	27.9	14.0	36.2		
		25.04.2022	26.04.2022	67.6	27.2	10.5	32.4		
		29.04.2022	30.04.2022	72.9	35.2	11.0	34.0		
		04.04.2022	05.04.2022	88.0	15.4	12.2	23.0		
		08.04.2022	09.04.2022	90.8	26.3	13.0	24.0		
		11.04.2022	12.04.2022	88.7	44.5	10.4	22.5		
AAQ 3	China Colony	15.04.2022	16.04.2022	85.5	30.3	13.5	24.7		
-Aut o	onna colony	18.04.2022	19.04.2022	89.0	38.1	13.9	28.9		
		22.04.2022	23.04.2022	71.0	41.0	15.7	26.5		
		25.04.2022	26.04.2022	74.4	35.0	9.8	28.3		
	4474	29.04.2022	30.04.2022	75.1	30.7	11.7	30.1		
	NAAQ	MS Standard		100	60	80	80		

End of the Report

La Istron

harashira

Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

1. The report is referring only to the tested sample and for applicable parameter.

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

Page 1 of 1

ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519322000000501F

ani

Date 31.05.2022

	Issued To:	APML, Plot No. A	-1, Tirora Growth Cer	ntre, MIDC – 1	firora, Dist. Go	ondia – 441 911		
San	nple Particulars :	Ambient Air Qua	lity (Plant)					
Sam	ple Collected by :	Environment De	pt. APML					
			Test Report					
				Parameters				
Station	Sampling Location	Sampling Date	Analysis Starting Date	PM 10	PM 2.5	SO2	NOx	
			Date	µg/m3	µg/m3	µg/m3	µg/m3	
		02.05.2022	03.05.2022	78.7	32.5	12.0	24.0	
		06.05.2022	07.05.2022	93.0	49.3	10.7	28.0	
		09.05.2022	10.05.2022	94.6	57.8	13.0	26.1	
		13.05.2022	14.05.2022	72.2	50.0	13.5	26.7	
AAQ 1	Near AWRS	16.05.2022	17.05.2022	76.6	43.2	12.5	35.2	
		20.05.2022	21.05.2022	98.1	41.5	9.7	24.1	
		23.05.2022	24.05.2022	73.6	46.9	15.1	27.4	
		27.05.2022	28.05.2022	68.3	30.2	12.0	24.8	
		30.05.2022	31.05.2022	66.2	34.9	13.8	28.7	
		02.05.2022	03.05.2022	71.2	28.1	10.1	19.4	
		06.05.2022	07.05.2022	75.2	43.8	13.9	27.5	
		09.05.2022	10.05.2022	79.1	38.0	10.6	24.1	
		13.05.2022	14.05.2022	89.9	40.6	11.5	21.4	
AAQ 2	Near Brick Plant	16.05.2022	17.05.2022	74.0	44.9	12.1	21.2	
8 (1999) Here (2002)		20.05.2022	21.05.2022	87.9	46.2	15.1	22.1	
		23.05.2022	24.05.2022	85.0	34.1	14.1	22.2	
		27.05.2022	28.05.2022	76.9	50.0	10.9	26.0	
		30.05.2022	31.05.2022	66.5	28.7	12.5	24.9	
		02.05.2022	03.05.2022	82.1	37.5	15.9	24.7	
		06.05.2022	07.05.2022	98.0	43.2	10.0	21.1	
		09.05.2022	10.05.2022	89.8	38.6	8.2	24.3	
		13.05.2022	14.05.2022	73.9	41.6	9.7	16.8	
AAQ 3	China Colony	16.05.2022	17.05.2022	84.9	29.8	12.6	20.4	
and the second	A CONTRACTOR OF A CONTRACTOR OF A	20.05.2022	21.05.2022	73.0	23.6	8.7	22.8	
		23.05.2022	24.05.2022	91.8	28.4	15.5	21.0	
		27.05.2022	28.05.2022	97.0	27.5	16.0	26.5	
		30.05.2022	31.05.2022	87.4	33.4	16.5	22.8	
	NAAQ	MS Standard		100	60	80	80	

End of the Report

Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

TC - 5193

harasht

(.chi at

×

- 1. The report is referring only to the tested sample and for applicable parameter contai Lado
- 2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

05 Authorized Signatory (Technical Manager)

Page 1 of 1

ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519322000000601F

adani

1

Date 27.06.2022

	Issued To:	APML, Plot No. A	-1, Tirora Growth Cer	ntre, MIDC – 1	firora, Dist. Go	ondia – 441 911			
San	nple Particulars :	Ambient Air Qua	lity (Plant)						
Sam	ple Collected by :	Environment De	pt. APML						
			Test Report						
			Analysis Starting Date		Parameters				
Station	Sampling Location	Sampling Date		PM 10	PM 2.5	SO2	NOx		
				µg/m3	µg/m3	µg/m3	µg/m3		
	1.000	03.06.2022	04.06.2022	73.6	21.6	12.1	13.0		
		06.06.2022	07.06.2022	67.7	20.2	7.8	9.8		
		10.06.2022	11.06.2022	69.7	30.5	12.6	15.7		
		13.06.2022	14.06.2022	66.8	27.6	13.1	18.3		
AAQ 1	Near AWRS	17.06.2022	18.06.2022	54.1	18.5	11.1	15.0		
		20.06.2022	21.06.2022	40.1	13.0	8.2	14.3		
		24.06.2022	25.06.2022	61.1	21.9	9.7	13.0		
		26.06.2022	27.06.2022	67.6	20.8	10.2	11.7		
		03.06.2022	04.06.2022	53.8	22.6	12.5	8.0		
		06.06.2022	07.06.2022	61.1	23.2	7.5	13.5		
		10.06.2022	11.06.2022	56.3	26.4	4.9	5.1		
AAQ 2		13.06.2022	14.06.2022	62.3	21.0	8.9	11.1		
	Near Brick Plant	17.06.2022	18.06.2022	50.4	9.1	8.7	12.6		
		20.06.2022	21.06.2022	49.6	30.1	8.5	9.2		
		24.06.2022	25.06.2022	44.4	27.3	6.8	11.6		
		26.06.2022	27.06.2022	41.3	20.4	6.4	10.7		
_		03.06.2022	04.06.2022	54.5	19.4	8.0	18.5		
		06.06.2022	07.06.2022	57.9	22.5	13.5	17.3		
		10.06.2022	11.06.2022	66.6	25.1	5.1	14.3		
AAQ 3	China Colony	13.06.2022	14.06.2022	51.3	20.6	11.1	13.2		
AAG	China Colony	17.06.2022	18.06.2022	51.0	24.6	12.6	15.6		
		20.06.2022	21.06.2022	48.7	20.2	9.2	14.4		
	Ì	24.06.2022	25.06.2022	55.4	30.8	11.6	17.4		
		26.06.2022	27.06.2022	44.2	26.7	10.7	12.0		
N	NAAQ	MS Standard		100	60	80	80		

End of the Report

Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

30/6/2 Authorized Signatory (Technical Manager)

Page 1 of 1

arashtra Plot No. A-1, Tiroda Growth Centre, M.I.D.C., Dist: Gondia - 441911, Maharashtra, India Tel.: +917198255983, Fax: +917198253971, E-mail:arunpratap.singh@adani.com Website:www.adani.com

mental

FC - 5103

adani environment laboratory

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519322000000701F

Date 31.07.2022

	Issued To:	APML, Plot No. A	-1, Tirora Growth Cer	itre, MIDC – T	'irora, Dist. Go	ondia - 441 911		
Sar	nple Particulars :	Ambient Air Qua	lity (Plant)					
Sam	ple Collected by :	Environment De	pt. APML					
			Test Report					
				Parameters				
Station	Sampling Location	Sampling Date	Analysis Starting Date	PM 10	PM 2.5	SO2	NOx	
			Date	µg/m3	µg/m3	µg/m3	µg/m3	
		01.07.2022	02.07.2022	33.6	21.9	6.8	13.7	
		04.07.2022	05.07.2022		Monitoring no	t done due to r	ain	
		08.07.2022	09.07.2022	41.4	16.8	5.3	10.4	
		11.07.2022	12.07.2022	1	Monitoring no	t done due to r	ain	
AAQ 1	Near AWRS	15.07.2022	16.07.2022	39.3	16.5	9.2	12.4	
		18.07.2022	19.07.2022	37.0	17.0	7.3	11.1	
		22.07.2022	23.07.2022	45.4	18.6	8.7	10.4	
		25.07.2022	26.07.2022	N	Aonitoring no	t done due to ra	ain	
		29.07.2022	30.07.2022	60.1	21.4	8.2	11.7	
		01.07.2022	02.07.2022	42.0	18.1	7.8	14.4	
		04.07.2022	05.07.2022	N	Aonitoring no	t done due to ra	ain	
		08.07.2022	09.07.2022	35.0	20.5	8.6	11.4	
		11.07.2022	12.07.2022	N	Aonitoring no	t done due to ra	ain	
AAQ 2	Near Brick Plant	15.07.2022	16.07.2022	22.1	10.9	5.7	12.0	
00040394503402		18.07.2022	19.07.2022	27.8	16.1	7.4	15.6	
		22.07.2022	23.07.2022	35.8	20.6	9.2	16.2	
		25.07.2022	26.07.2022	N	Aonitoring no	t done due to ra	ain	
		29.07.2022	30.07.2022	36.4	20.4	10.6	15.0	
		01.07.2022	02.07.2022	51.5	17.7	8.6	15.6	
		04.07.2022	05.07.2022	N	Aonitoring no	t done due to ra	ain	
		08.07.2022	09.07.2022	31.5	19.9	6.5	11.4	
		11.07.2022	12.07.2022	N	Aonitoring not	t done due to ra	ain	
AAQ 3	China Colony	15.07.2022	16.07.2022	23.2	14.3	5.9	12.0	
299.999.999.999.999.999.999.999.999.999	a sanan di sanan sanan sa sa 1753)	18.07.2022	19.07.2022	30.5	20.0	6.1	12.6	
		22.07.2022	23.07.2022	35.8	18.2	8.4	10.2	
		25.07.2022	26.07.2022	Ň	Aonitoring not	t done due to ra	lin	
		29.07.2022	30.07.2022	46.5	26.8	11.0	12.0	
L	NAAC	MS Standard		100	60	80	80	

End of the Report

Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

1. The report is referring only to the tested sample and for applicable parameter.

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

D Authorized Signatory (Technical Manager)

Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia — 441 911, Maharashtra, India Tel.: +917198 255983, Fax : +917198 253971, E-mail: arunpratap.singh@adani.com

ENVIRONMENT LABORATORY

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

URL No : TC51932200000801F

adani

Date 30.08.2022

	Issued To:	APML, Plot No. A	-1, Tirora Growth Cer	ntre, MIDC - "	Firora, Dist. Go	ondia – 441 911	
Sar	nple Particulars :	Ambient Air Qua	lity (Plant)				
Sam	ple Collected by :	Environment De	pt. APML				
		· · · · · · · · · · · · · · · · · · ·	Test Report				
					Para	ameters	
Station	Sampling Location	Sampling Date	Analysis Starting Date	PM 10	PM 2.5	SO2	NOx
				µg/m3	µg/m3	µg/m3	µg/m3
		01.08.2022	02.08.2022	24.6	11.5	13.5	18.8
		05.08.2022	06.08.2022	20.4	6.5	13.6	15.0
		08.08.2022	09.08.2022	N	Ionitoring Not	Done Due to R	
0000000000000		12.08.2022	13.08.2022	25.6	14.3	18.9	22.2
AAQ 1	Near AWRS	16.08.2022	17.08.2022	18.6	12.2	14.1	17.0
		19.08.2022	20.08.2022	28.6	7.4	13.1	15.7
		22.08.2022	23.08.2022	27.2	11.4	17.0	18.3
		26.08.2022	27.08.2022	28.7	18.4	12.6	13.7
		29.08.2022	30.08.2022	19.9	11.3	14.5	17.6
		01.08.2022	02.08.2022	33.1	24.0	15.8	19.3
		05.08.2022	06.08.2022	20.8	13.8	13.7	18.4
		08.08.2022	09.08.2022	M	onitoring Not I	Done Due to Ra	and the second se
(internet) (i		12.08.2022	13.08.2022	23.1	19.4	15.0	17.0
AAQ 2	Near Brick Plant	16.08.2022	17.08.2022	29.8	17.6	13.6	20.9
	en e	19.08.2022	20.08.2022	30.5	16.8	17.0	17.6
		22.08.2022	23.08.2022	38.5	23.4	16.9	20.6
		26.08.2022	27.08.2022	34.7	24.7	22.0	23.5
		29.08.2022	30.08.2022	13.4	11.6	13.7	19.7
		01.08.2022	02.08.2022	25.6	14.1	16.0	21.6
		05.08.2022	06.08.2022	32.2	13.9	20.4	18.6
		08.08.2022	09.08.2022	M	onitoring Not D	one Due to Ra	
		12.08.2022	13.08.2022	27.5	18.4	17.0	15.0
AAQ 3	China Colony	16.08.2022	17.08.2022	30.9	18.2	19.9	20.4
		19.08.2022	20.08.2022	31.4	22.0	15.5	24.7
		22.08.2022	23.08.2022	20.5	8.5	14.5	20.4
		26.08.2022	27.08.2022	23.5	10.9	13.1	22.2
		29.08.2022	30.08.2022	26.9	11.6	12.6	19.8
	NAAQN	IS Standard		100	60	80	80

End of the Report

Note: Tested results are well within the permissible limits of National Ambient Air Quality Monitoring Stanadard (NAAQMS)

1. The report is referring only to the tested sample and for applicable parameter.

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signator (Technical Manager)

Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia – 441 911, Maharashtra, India Tel.: +91 7198 255983, Fax : +91 7198 253971, E-mail: arunpratap.singh@adani.com adani environment laboratory

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519322000000901F

Date 30.09.2022

	Issued To:	APML, Plot No. A	-1, Tirora Growth Cer	ntre, MIDC – T	irora, Dist. Go	ndla – 441 911		
San	nple Particulars :	Ambient Air Qua	lity (Plant)					
Sam	ple Collected by :	Environment De	pt. APML					
			Test Report					
			40.0404-00.500.000-04640-0-0-	Parameters				
Station	Sampling Location	Sampling Date	Analysis Starting Date	PM 10	PM 2.5	SO2	NOx	
		-	Date	µg/m3	µg/m3	µg/m3	µg/m3	
		02.09.2022	03.09.2022	62.3	21.6	15.0	20.2	
		05.09.2022	06.09.2022	Ν	Ionitoring Not	Done Due to R	ain	
		09.09.2022	10.09.2022	54.2	23.3	11.6	18.9	
		12.09.2022	13.09.2022	N	Aonitoring Not	Done Due to R	ain	
AAQ 1	Near AWRS	16.09.2022	17.09.2022	58.7	26.4	14.5	18.3	
		19.09.2022	20.09.2022	64.6	+36.6	11.6	20.9	
		23.09.2022	23.09.2022	56.5	30.5	13.6	18.3	
		26.09.2022	27.09.2022	36.7	27.9	9.2	17.0	
		29.09.2022	30.09.2022	66.7	29.1	12.1	23,5	
1757-548 web		02.09.2022	03.09.2022	60.0	42.2	15.7	20.4	
	-	05.09.2022	06.09.2022	N	Ionitoring Not	Done Due to R	ain	
		09.09.2022	10.09.2022	57.4	26.7	18.5	21.1	
		12.09.2022	13.09.2022	Monitoring Not Done Due to		Done Due to R	ain	
AAQ 2	Near Brick Plant	16.09.2022	17.09.2022	44.5	29.3	10.7	22.2	
1111111990 ==		19.09.2022	20.09.2022	43.1	30.9	18.3	21.6	
		23.09.2022	23.09.2022	44.7	29.0	15.5	18.9	
		26.09.2022	27.09.2022	41.1	22.0	14.5	19.6	
		29.09.2022	30.09.2022	45.8	29.2	12.6	19.1	
1		02.09.2022	03.09.2022	35.4	_21.9	12.1	18.0	
		05.09.2022	06.09.2022	N	Ionitoring Not	Done Due to R	ain	
		09.09.2022	10.09.2022	38.0	28.7	12.6	16.6	
		12.09.2022	13.09.2022	N	Ionitoring Not	Done Due to R	ain	
AAQ 3	China Colony	16.09.2022	17.09.2022	69.0	35.4	15.5	20.4	
www.2002.02017-02017	n pontenen din kutori din 5000	19.09.2022	20.09.2022	78.0	27.8	11.1	19.8	
		23.09.2022	23.09.2022	56.0	20.4	14.5	18.6	
		26.09.2022	27.09.2022	47.7	20.0	13.1	17.4	
		29.09.2022	30.09.2022	73.4	20.7	11.6	16.2	
	NAAG	MS Standard		100	+ 60	80	80	

End of the Report

Note: Tested results are well within the permissible limits of National Amblent Air Quality Monitoring Stanadard (NAAQMS)

1. The report is referring only to the tested sample and for applicable parameter.

2. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia — 441 911, Maharashtra, India Tel.: +91 7198 255983, Fax : +91 7198 253971, E-mail: arunpratap.singh@adani.com dani **ENVIRONMENTAL LABORATORY**

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

LC &	519322000000428F			Date: 2	23.04.2022			
	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cer 1 911	ntre, MIDC – Tirora	а,			
s	ample Particulars :	Stack Monitoring	9					
Sa	ample Collected by :	Environment De	pt. APML					
1	Sampling Location		Uni	t -1				
2	Date of Sampling	:	21.04	21.04.2022				
3	Time of Sampling		3:50					
4	Load (MW)	oad (MW) :		370				
5	Height of Stack (Me	ter) :	27					
6	Diameter of Stack (M	/leter) :	7.					
7	Type of Fuel	:	Co	al				
8	Flue Gas Temperatu	ure (⁰ C) :	12	4				
9	Flue Gas Velocity (N	e Gas Velocity (M/sec) :		ec) : 23.57				
10	Flow of Exit Gas at NTP (NM ³ /Hr) :		2636	117				
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *			
181		IS 11255	461.8	n				

РМ	IS 11255 (Part- 1):1985	50.0	Mg/Nm ³	42.1
SO ₂	IS 11255 (Part 2) 1985	200.0	Mg/Nm ³	803.3
NOx	IS 11255 (Part 7) 2005	450.0	Mg/Nm ³	321.8
Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0166
	PM SO ₂ NOx	PM IS 11255 (Part- 1):1985 SO2 IS 11255 (Part 2) 1985 NOx IS 11255 (Part 7) 2005	PM IS 11255 (Part-1):1985 50.0 SO ₂ IS 11255 (Part 2) 1985 200.0 NOx IS 11255 (Part 7) 2005 450.0	PM IS 11255 (Part- 1):1985 50.0 Mg/Nm ³ SO ₂ IS 11255 (Part 2) 1985 200.0 Mg/Nm ³ NOx IS 11255 (Part 7) 2005 450.0 Mg/Nm ³

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

TC - 5193 2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Maharashina

Page 1 of 1

Authorized Signatory (Technical Manager)

(Blitten

adani environmental laboratory

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To:		APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911				
S	Sample Particulars :	Stack Monitoring Environment Dept. APML				
S	ample Collected by :					
1	Sampling Location	;	Un	it -2		
2	Date of Sampling	1	21.04	.2022		
3	Time of Sampling	:	4:25	6 PM		
4	Load (MW)	1	30	34		
5	Height of Stack (Met	er) :	27	75		
6	Diameter of Stack (Meter)		7	7.4		
7	Type of Fuel :		Coal			
8	Flue Gas Temperature (⁰ C) :		12	122		
9	Flue Gas Velocity (M	ue Gas Velocity (M/sec) : 23.31		31		
10	0 Flow of Exit Gas at NTP (NM ³ /Hr) :		2619	2619986		

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	43.3
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	824.9
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	310.1
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0175

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially to TC-5193

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Maharashu Authorized Signator

(Technical Manager)

Page 1 of 1

montal La

ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

FC51932200000430F				Date: 2	3.04.2022		
Issued To: APML,Plot No. A Dist. Gondia – 4		1, Tirora Growth Cen 911	tre, MIDC – Tirora	a,			
s	ample Particulars :	Stack Monitoring Environment Dept. APML					
Sa	mple Collected by :						
1	Sampling Location		Unit -3				
2	Date of Sampling	:	21.04.2	21.04.2022			
3	Time of Sampling	:	5:05 PM				
4	Load (MW)		363	}			
5	Height of Stack (Meter) :		275				
6	Diameter of Stack (Meter)		7.4				
7	Type of Fuel :		Coal				
8	Flue Gas Temperatu	ıre (⁰ C) :	121				
9	Flue Gas Velocity (N	1/sec) :	23.15				
10 Flow of Exit Gas at NTP (NM ³ /Hr) : 2608885							
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *		
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	38.5		
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	833.9		
		The second s					

* Results are corrected with 6% oxygen

NOx

Mercury

3

4##

adani

End of the Report

450

0.030

Mg/Nm³

Mg/Nm³

omontel La

TC - 5193 (NABL Centificate No.)

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

IS 11255 (Part 7)

2005

USEPA - 0060

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law. 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

harashtra Authorized Signatory (Technical Manager)

288.1

0.0163

Page 1 of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C519322000000426F				Date: 16.04.2022
			TEST REPORT	
Issued To: APML,Plot No. A -1 Dist. Gondia – 441		-1, Tirora Growth Cent 1 911	re, MIDC – Tirora,	
S	ample Particulars :	Stack Monitoring	3	
Sa	ample Collected by :	Environment Dep	ot. APML	
1	Sampling Location	:	Unit	-4
2	Date of Sampling	2	14.04.2	022
3	Time of Sampling	:	11:40	AM
4	Load (MW)	;	634	
5	Height of Stack (Met	er) :	275	
6	Diameter of Stack (N	leter) :	7.4	
7	Type of Fuel	÷	Coa	I
8	Flue Gas Temperatu	re (⁰ C) :	126	
9	Flue Gas Velocity (M	/sec) :	22.8	В
10	Flow of Exit Gas at N	ITP (NM ³ /Hr) :	25458	04

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	35.1
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	791
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	301
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0169

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Charasha Authorized Signator (Technical Manager)

entel L

TC = 5193 (NABL Confidents

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C	519322000000427F	Date: 16.04.202		
		TEST	REPORT	
Issued To:		APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911		
S	ample Particulars :	Stack Monitoring		
s	ample Collected by :	Environment Dept. AP	МL	
1	Sampling Location		Unit -5	
2	Date of Sampling	2	14.04.2022	
3	Time of Sampling	:	12:20 PM	
4	Load (MW)	:	610	
5	Height of Stack (Met	er) :	275	
6	Diameter of Stack (M	Neter) :	7.4	
7	Type of Fuel	;	Coal	
8	Flue Gas Temperatu	re ([°] C) :	125	
9	Flue Gas Velocity (M	l/sec) :	23.48	
10	Flow of Exit Gas at N	NTP (NM ³ /Hr) :	2619023	

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	37.1
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	753
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	272
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0171

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially,

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Page 1 of 1

Authorized Signatory (Technical Manager)

mentel

TG - 5193 (NAUL Configuration

Maharashtra

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

TCS	19322000000528F			Date: 2	28.05.2022
	Issued To:	APML,Plot No. A - Dist. Gondia – 441	1, Tirora Growth Cen I 911	tre, MIDC – Tirora	a,
s	ample Particulars :	Stack Monitoring			
Sa	ample Collected by :	Environment Dep	ot. APML		
1	Sampling Location	:	Unit	-1	
2	Date of Sampling	:	26.05.2	2022	
3	Time of Sampling	:	4:10	4:10 PM	
4	Load (MW)	:	559		
5	Height of Stack (Met	ter) :	275		
6	Diameter of Stack (N	Neter) :	7.4		
7	Type of Fuel	:	Coal		
8	Flue Gas Temperatu	re (⁰ C) :	128		
9	Flue Gas Velocity (N	l/sec) :	22.26		
10	l0 Flow of Exit Gas at NTP (NM ³ /Hr) :		2464428		
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50.0	Mg/Nm ³	38.7
2#	50.	IS 11255 (Part 2)	200.0	B/L	040.2

		(rait-1).1000		82	
2#	SO2	IS 11255 (Part 2) 1985	200.0	Mg/Nm ³	819.2
3	NOx	IS 11255 (Part 7) 2005	450.0	Mg/Nm ³	299.3
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0166

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Page 1 of 1

Authorized Signatory (Technical Manager)

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cent 1 911	re, MIDC – Tirora	2	
s	ample Particulars :	Stack Monitoring	3			
Sa	ample Collected by :	Environment Dept. APML				
1	Sampling Location	:	Unit ·	-2		
2	Date of Sampling	:	26.05.2	022		
3	Time of Sampling	ł	3:35 F	M		
4	Load (MW)	•	632			
5	Height of Stack (Met	er) :	275			
6	Diameter of Stack (N	leter) :	7.4			
7	Type of Fuel	1	Coal			
8	Flue Gas Temperatu	re (⁰ C) :	129			
9	Flue Gas Velocity (M	l/sec) : 23.26				
10	10 Flow of Exit Gas at NTP (NM ³ /Hr) :		2568886			
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *	

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	40.1
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	803.9
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	303.1
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0175

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially TC -5103

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Maharashtra Authorized Signator

(Technical Manager)

Page 1 of 1

nontal La

a No.)

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

ТС5	19322000000530F			Date: 2	28.05.2022
	Issued To:	APML,Plot No. A - Dist. Gondia – 441	1, Tirora Growth Ce I 911	ntre, MIDC – Tirora	a,
s	ample Particulars :	Stack Monitoring			
Sa	mple Collected by :	Environment Dep	t. APML		
1	Sampling Location	:	Uni	t -3	
2	Date of Sampling	:	26.05	.2022	
3	Time of Sampling	ŝ	2:45	PM	
4	Load (MW)	:	653		
5	Height of Stack (Met	ter) :	275		
6	Diameter of Stack (M	Neter) :	7.4		
7	Type of Fuel		Coal		
8	Flue Gas Temperatu	re (⁰ C) :	130		
9	Flue Gas Velocity (M	l/sec) :	22.	89	
10	10 Flow of Exit Gas at NTP (NM ³ /Hr) :		2521	278	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	33.5
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	764.9
		10 44055 (0-4 7)			

* Results are corrected with 6% oxygen

NOx

Mercury

3

4##

End of the Report

450

0.030

Mg/Nm³

Mg/Nm³

unonmental La

TG = 5103 (NASL Contiliante)

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

IS 11255 (Part 7)

2005

USEPA - 0060

2. The sample will be destroyed after retention time unless otherwise specified specially

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024) 5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

aharashtra Authorized Signa (Technical Manager)

283.8

0.0163

Page 1 of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C519322000000526F				Date: 14.05.2022
			TEST REPORT	
	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cent 1 911	re, MIDC – Tirora,
s	Sample Particulars :	Stack Monitoring	3	
S	ample Collected by :	Environment De	pt. APML	
1	Sampling Location		Unit	-4
2	Date of Sampling	:	12.05.2	022
3	Time of Sampling	:	3:50 F	PM
4	Load (MW)	:	555	
5	Height of Stack (Met	er) :	275	
6	Diameter of Stack (M	leter) :	7.4	
7	Type of Fuel	ŝ	Coa	1
8	Flue Gas Temperatu	re (⁰ C) :	128	
9	9 Flue Gas Velocity (M/sec) :		23.61	
10	Flow of Exit Gas at N	ITP (NM ³ /Hr) :	26136	44
Sr.	Test Parameters	Test Method	MPCB Standards	Units Results *

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	37.3
2#	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	772
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	305
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0169

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially TC+5193

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law,

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Maharashtra 05 15 Authorized Signatory (Technical Manager)

ronmantal L

Page 1 of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

FC519322000000527F				Date: 14.05.2022
			TEST REPORT	
	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cent 1 911	re, MIDC – Tirora,
S	ample Particulars :	Stack Monitoring	3	
Sa	ample Collected by :	Environment De	pt. APML	
1	Sampling Location		Unit	-5
2	Date of Sampling	•	12.05.2	2022
3	Time of Sampling		3:10	PM
4	Load (MW)	:	565	
5	Height of Stack (Met	er) :	275	i i
6	Diameter of Stack (N	leter) :	7.4	
7	Type of Fuel	:	Coal	
8	Flue Gas Temperatu	re (⁰ C) :	126	
9	Flue Gas Velocity (M/sec) :		22.66	
10	Flow of Exit Gas at N	ITP (NM³/Hr) :	25209	85
Sr. No	Test Parameters	Test Method	MPCB Standards	Units Results *

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	43.6
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	758
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	272
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0171

Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Page 1 of 1

Authorized Signatory (Technical Manager)

inonmental (

aharashtra

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

TC5	519322000000626F			Date: 1	8.06.2022
	Issued To:	APML,Plot No. A - Dist. Gondia – 441	1, Tirora Growth Cen I 911	tre, MIDC – Tiror	а,
s	ample Particulars :	Stack Monitoring			
Sa	mple Collected by :	Environment Dep	t. APML		
1	Sampling Location		Unit	-1	
2	Date of Sampling	:	14.06.2	2022	
3	Time of Sampling	:	12:30	РМ	
4	Load (MW)		544		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (N	Neter) :	7.4		
7	Type of Fuel	:	Coal		
8	Flue Gas Temperatu	ıre (⁰ C) :	126		
9	Flue Gas Velocity (N	l/sec) :	22.97		
10	Flow of Exit Gas at N	NTP (NM ³ /Hr) :	25558	47	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50.0	Mg/Nm ³	35.7
2#	SO2	IS 11255 (Part 2) 1985	200.0	Mg/Nm ³	813.6
_		1			

* Results are corrected with 6% oxygen

NOx

Mercury

3

4##

End of the Report

450.0

0.030

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

IS 11255 (Part 7)

2005

USEPA - 0060

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law;

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory 30 (Technical Manager) Page 1 of 1

Mg/Nm³

Mg/Nm³

293.1

0.0171

. 510

*

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cent 1 911	tre, MIDC – Tirora	,
s	ample Particulars :	Stack Monitoring	1		
Sa	ample Collected by :	Environment Dep	ot. APML		
1	Sampling Location		Unit	-2	
2	Date of Sampling		14.06.2	2022	
3	Time of Sampling		11:55	AM	
4	Load (MW)	:	559)	
5	Height of Stack (Met	er) :	275		
6	Diameter of Stack (N	leter) :	7.4		
7	Type of Fuel	:	Coal		
8	Flue Gas Temperatu	re (⁰ C) :	128		
9	Flue Gas Velocity (M	/sec) :	22.28		
10	Flow of Exit Gas at N	NTP (NM ³ /Hr) :	24667	78	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255	50	Mg/Nm ³	39.9

PM 39.9 Mg/Nm (Part- 1):1985 IS 11255 (Part 2) 2# SO2 200 Mg/Nm³ 806.8 1985 IS 11255 (Part 7) 3 NOx 450 Mg/Nm³ 301.4 2005 **USEPA - 0060** 0.030 4## Mercury Mg/Nm³ 0.0166

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.
- 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)
- 5 ## Indicates this parameter is not covered in our NABL scope
- 6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Page 1 of 1

Authorized Signatory (Technical Manager)

*

mental La

TC - 5193

aharashtra

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

			-1, Tirora Growth Cent		
	Issued To:	Dist. Gondia – 44		tre, wide – filora	a,
s	ample Particulars :	Stack Monitoring	1		
Sa	mple Collected by :	Environment Dep	ot. APML	F	
1	Sampling Location		Unit	-3	
2	Date of Sampling	:	14.06.2	022	
3	Time of Sampling	i	11:20	AM	
4	Load (MW)	ŧ	565	565	
5	Height of Stack (Met	er) :	275		
6	Diameter of Stack (N	eter) : 7.4			
7	Type of Fuel		Coal		
8	Flue Gas Temperatu	re (⁰ C) :	127		
9	Flue Gas Velocity (M	l/sec) :	22.8	3	
10	Flow of Exit Gas at N	NTP (NM ³ /Hr) :	25339	26	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	39.2

4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0163
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	297.0
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	798.5
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	39.2

* Results are corrected with 6% oxygen

adani

End of the Report Note: Tested results are well within the permissible limits of MPCB. 1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Page 1 of 1

Auth

antal La

C- 610

ofized Signatory (Technical Manager)

2

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

CE	519322000000629F			Date: 18.06.2022
		M	TEST REPORT	
	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cent 1 911	re, MIDC – Tirora,
s	ample Particulars :	Stack Monitoring	3	
Sa	ample Collected by :	Environment De	pt. APML	
1	Sampling Location	•	Unit	-4
2	Date of Sampling	:	14.06.2	2022
3	Time of Sampling	:	3:30	PM
4	Load (MW)		558	
5	Height of Stack (Met	er) :	275	0
6	Diameter of Stack (N	leter) :	7.4	
7	Type of Fuel	i	Coal	
8	Flue Gas Temperatu	re (⁰ C) :	129	
9	Flue Gas Velocity (M	/sec) :	23.0	8
10	Flow of Exit Gas at N	ITP (NM ³ /Hr) :	25494	68
Sr.	Test Parameters	Test Method	MPCB Standards	Units Results *

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	34.7
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	762
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	312
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0162

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager)

onmental La

TC - 5103

1 Cent

Page 1 of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

C5	519322000000630F			Date: 18.06.2022	
			TEST REPORT		
	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cen 1 911	tre, MIDC – Tirora,	
s	ample Particulars :	Stack Monitoring	3		
Sa	ample Collected by :	Environment De	pt. APML		
1	Sampling Location	:	Unit	-5	
2	Date of Sampling	ì	14.06.	2022	
3	Time of Sampling	:	3:10	PM	
4	Load (MW)	:	57	D	
5	Height of Stack (Met	er) :	27	5	
6	Diameter of Stack (N	leter) :	7.4	ŧ.	
7	Type of Fuel	:	Coal		
8	Flue Gas Temperatu	re (⁰ C) :	127	7	
9	9 Flue Gas Velocity (M/sec) :		22.71		
10	Flow of Exit Gas at N	ITP (NM ³ /Hr) :	25210	058	
Sr.	Test Parameters	Test Method	MPCB Standards	Units Results	*

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	44.2
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	758
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	282
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0169

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

(Technical Manager) Page 1 of 1

Authorized Signatory

al Lab

10 . 519

-14

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

	Issued To:	APML,Plot No. A -1, Tiro Dist. Gondia – 441 911	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911				
S	ample Particulars :	Stack Monitoring					
Sa	mple Collected by :	Environment Dept. APM	ΛL.				
1	Sampling Location	:	Unit -1	(
2	Date of Sampling	:	22.07.2022				
3	Time of Sampling		9:36 AM				
4	Load (MW)	i	419				
5	Height of Stack (Me	ter) :	275				
6	Diameter of Stack (I	Meter) :	7.4				
7	Type of Fuel	÷	Coal				
8	Flue Gas Temperate	ıre (⁰ C) :	126				
9	Flue Gas Velocity (M	//sec) :	22.40				
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	2492183				

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50.0	Mg/Nm ³	33.6
2#	SO ₂	IS 11255 (Part 2) 1985	200.0	Mg/Nm ³	742.6
3	NOx	IS 11255 (Part 7) 2005	450.0	Mg/Nm ³	295.7
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0171

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Sighatory 25-7 (Technical Manager) Page 1 of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

°C51	9322000000729F	ý.		Date: 23	3.07.2022
	Issued To:	APML,Plot No. A -1 Dist. Gondia – 441	, Tirora Growth Centr 911	re, MIDC – Tirora,	
Sa	ample Particulars :	Stack Monitoring			
Sa	mple Collected by :	Environment Dept	. APML		
1	Sampling Location	;	Unit	-2	
2	Date of Sampling	:	22.07.2	022	
3	Time of Sampling	:	3:20 F	M	
4	Load (MW)	:	380		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (N	Meter) :	7.4		
7	Type of Fuel	:	Coal		
8	Flue Gas Temperatu	ıre (⁰ C) :	119		
9	Flue Gas Velocity (N	//sec) :	22.93		
10	Flow of Exit Gas at	NTP (NM ³ /Hr) :	25973	43	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	42.5
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	869.5
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	370.4
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0166

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Sig (Technical Manager) Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia – 441 911, Maharashtra, India Tel.: +917198 255983, Fax : +917198 253971, E-mail: arunpratap.singh@adani.com

adani **ENVIRONMENT LABORATORY**

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

C5	19322000000730F			Date: 23	3.07.2022
	Issued To:	APML,Plot No. A - Dist. Gondia – 441	1, Tirora Growth Centi 911	re, MIDC – Tirora,	
Sa	ample Particulars :	Stack Monitoring			
Sa	mple Collected by :	Environment Dep	t. APML		2
1	Sampling Location	:	Unit -	3	
2	Date of Sampling	:	22.07.2	022	
3	Time of Sampling		4:00 P	4:00 PM	
4	Load (MW)		361		
5	Height of Stack (Me	ter) :	275	275	
6	Diameter of Stack (I	Vleter) :	7.4		
7	Type of Fuel	ï	Coal		
8	Flue Gas Temperate	ure (⁰ C) :	127	127	
9	Flue Gas Velocity (M/sec) :	22.8	3	
10	10 Flow of Exit Gas at NTP (NM ³ /Hr):		2533926		
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	31.6

No	lest l'alameters				
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	31.6
2#	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	726.4
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	296.7
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0163

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law. 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager) Page 1 of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

C5	19322000000726F			Date: 2	3.07.2022
		·····	TEST REPORT		
	Issued To:	APML,Plot No. A - Dist. Gondia – 441	1, Tirora Growth Cent I 911	re, MIDC – Tirora	,
S	ample Particulars :	Stack Monitoring	1		
Sa	mple Collected by :	Environment Dep	t. APML		
1	Sampling Location		Unit	-4	
2	Date of Sampling	:	20.07.2	2022	
3	Time of Sampling	:	3:30 F	3:30 PM	
4	Load (MW)	a -	363		<u>چ</u>
5	5 Height of Stack (Meter) :		275		
6	Diameter of Stack (N	Meter) :	7.4		
7	Type of Fuel		Coal		
8	Flue Gas Temperatu	ıre (⁰ C) :	121		
9	Flue Gas Velocity (M	//sec) :	23.0	8	
10	Flow of Exit Gas at I	NTP (NM³/Hr) :	26011	90	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	36.0
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	772
				the second se	

4## Mercury
* Results are corrected with 6% oxygen

NOx

3

End of the Report

450

0.030

Mg/Nm³

Mg/Nm³

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

IS 11255 (Part 7)

2005

USEPA - 0060

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager) Page 1 of 1

316

0.0162

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

C5'	19322000000727F			Date: 23	3.07.2022
			TEST REPORT	,	
	Issued To:	APML,Plot No. A - Dist. Gondia – 441	1, Tirora Growth Centr I 911	e, MIDC – Tirora,	
S	ample Particulars :	Stack Monitoring			
Sa	mple Collected by :	Environment Dep	t. APML		
1	Sampling Location		Unit -	5	
2	Date of Sampling		20.07.2022		
3	Time of Sampling	1	3:10 PM		
4	Load (MW)		369		
5	Height of Stack (Me	ter) :	275		
6	Diameter of Stack (I	Vleter) :	7.4		
7	Type of Fuel		Coa	Coal	
8	Flue Gas Temperate	ure (⁰ C) :	120		
9	Flue Gas Velocity (//sec) :	22.60		
10	10 Flow of Exit Gas at NTP (NM ³ /Hr) :		2553617		
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255	50	Ma/Nm ³	35.1

1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	35.1
2#	SO₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	791
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	320
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0169

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

7 Authorized Signatory (Technical Manager) Page 1 of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

	Issued To:	APML,Plot No. A -1, Tire Dist. Gondia – 441 911	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911				
9	ample Particulars :	Stack Monitoring					
S	ample Collected by :	Environment Dept. APML					
1	Sampling Location		Unit -1				
2	Date of Sampling	:	04.08.2022				
3	Time of Sampling	;	4:45 PM				
4	Load (MW)	:	644				
5	Height of Stack (Mete	ər) :	275				
6	Diameter of Stack (M	eter) :	7.4				
7	Type of Fuel	ł	Coal				
8	Flue Gas Temperatur	re (⁰ C) :	126				
9	Flue Gas Velocity (M/	'sec) :	22.33				
10	Flow of Exit Gas at N	TP (NM ³ /Hr) :	2484696				

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50.0	Mg/Nm ³	39.4
2#	SO ₂	IS 11255 (Part 2) 1985	200.0	Mg/Nm ³	828.5
3	NOx	IS 11255 (Part 7) 2005	450.0	Mg/Nm ³	271.7
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0171

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially,

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory 66 8 22 (Technical Manager) Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia – 441 911, Maharashtra, India Tel.: +91 7198 255983, Fax: +91 7198 253971, E-mail: arunpratap.singh@adani.com

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

100	519322000000827F			Date: 0	06.08.2022
	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cer 1 911	itre, MIDC – Tirora	a,
s	ample Particulars :	Stack Monitoring		£	
Sa	ample Collected by :	Environment Dep	ot. APML	1	
1	Sampling Location		Unit	t -2	
2	Date of Sampling	:	04.08.	2022	
3	Time of Sampling	H	5:20	PM	
4	Load (MW)	:	64	0.	
5	Height of Stack (Met	er) :	27	5	
6	Diameter of Stack (Meter) :		7.4	4	
7	Type of Fuel :		Co	al	
8	Flue Gas Temperatu	re (⁰ C) :	12	5	
9	Flue Gas Velocity (M	/sec) :	23.39		
10	Flow of Exit Gas at N	ITP (NM ³ /Hr) :	2608	751	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	43.0
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	826.6
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	252.3
##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0166

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager) Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia – 441 911, Maharashtra, India Tel.: +917198 255983, Fax: +917198 253971, E-mail: arunpratap.singh@adani.com

adani **ENVIRONMENT LABORATORY**

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

ГС	C519322000000830F		Date: 20.08.2022		
	Issued To:	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911			
S	Sample Particulars :	Stack Monitoring			
S	ample Collected by :	Environment Dept. APML			
1	Sampling Location		Unit -3		
2	Date of Sampling	1	05.08.2022		
3	Time of Sampling		3:20 PM		
4	Load (MW)	:	641		
5	Height of Stack (Mete	ər) :	275		
6	Diameter of Stack (M	eter) :	7.4		
7	Type of Fuel	:	Coal		
8	Flue Gas Temperatur	re (⁰ C) :	129		
9	Flue Gas Velocity (M/	/sec) :	22.97		
10	Flow of Exit Gas at N	TP (NM ³ /Hr) :	2536287		

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	35.7
2#	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	820.4
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	326.9
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0163

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law. 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager) Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia - 441 911, Maharashtra, India Tel.: +91 7198 255983, Fax : +91 7198 253971, E-mail: arunpratap.singh@adani.com

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

1C	519322000000828F			Date:	20.08.2022
			TEST REPORT		
	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cent 1 911	tre, MIDC – Tirora	а,
S	Sample Particulars :	Stack Monitoring	9	×.	
S	ample Collected by :	Environment De	ot. APML		· / · · · · · · · · · · · · · · · · · ·
1	Sampling Location	:	Unit	-4	
2	Date of Sampling		18.08.2	2022	
3	Time of Sampling		3:20	PM	
4	Load (MW)	:	467	467	
5	Height of Stack (Meter) :		275		
6	Diameter of Stack (Meter) :		7.4		
7	Type of Fuel		Coal		
8	Flue Gas Temperatu	re (⁰C) :	120		
9	Flue Gas Velocity (M	/sec) :	22.45		
10	Flow of Exit Gas at N	ITP (NM ³ /Hr) :	25359	64	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	32.7
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	733
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	318
##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0162

* Results are corrected with 6% oxygen

adani

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

L Authorized Signatory (Technical Manager) Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia – 441 911, Maharashtra, India Tel.: +917198 255983, Fax : +917198 253971, E-mail: arunpratap.singh@adani.com

adani **ENVIRONMENT LABORATORY**

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

TC	519322000000829F			Date: :	27.08.2022
			TEST REPORT		
	Issued To:	APML,Plot No. A Dist. Gondia – 44	-1, Tirora Growth Cen 1 911	tre, MIDC – Tirora	а,
S	ample Particulars :	Stack Monitoring	3	ŭ.	
S	ample Collected by :	Environment Dep	pt. APML	ŝ x	
1	Sampling Location		Unit	-5	
2	Date of Sampling	2	18.08.3	2022	
3	Time of Sampling	:	3:55	PM	
4	Load (MW)	Load (MW) :		465	
5	Height of Stack (Meter) :		275		
6	6 Diameter of Stack (Meter) :		7.4		
7	Type of Fuel	3	Coal		
8	Flue Gas Temperatu	re (⁰ C) :	120		
9	Flue Gas Velocity (M	/sec) :	22.16		
10	Flow of Exit Gas at N	ITP (NM ³ /Hr) :	25031	19 .	
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	36.8
2#	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	772
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	330

Mercury * Results are corrected with 6% oxygen

4##

End of the Report

0.030

Mg/Nm³

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

USEPA - 0060

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD (March 2023-March 2024)

5 ## Indicates this parameter is not covered in our NABL scope

6 Mercury monitoring & analysis is being done on quaterly basis through third party.

Authorized Signatory (Technical Manager) Page 1 of 1

0.0169

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia – 441 911, Maharashtra, India Tel.: +91 7198 255983, Fax: +91 7198 253971, E-mail: arunpratap.singh@adani.com

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

CS	19322000000928F		Date: 24.09.202
	Issued To:	APML,Plot No. A -1, Tiro Dist. Gondia – 441 911	ora Growth Centre, MIDC – Tirora,
s	ample Particulars :	Stack Monitoring	
Sa	mple Collected by :	Environment Dept. APM	ML
1	Sampling Location	:	Unit -1
2	Date of Sampling	:	21.09.2022
3	Time of Sampling		10:50 AM
4	Load (MW)	:	456
5	Height of Stack (Met	ter) :	275
6	Diameter of Stack (M	Neter) :	7.4
7	Type of Fuel	:	Coal
8	Flue Gas Temperatu	ıre (⁰ C) :	119
9	Flue Gas Velocity (N	l/sec) :	23.15
10	Flow of Exit Gas at N	NTP (NM ³ /Hr) :	2621416

Sr. No	Test Parameters	Test Method	MPCB Standards	, Units	Results *
1	РМ	PM IS 11255 50.0 (Part- 1):1985		Mg/Nm ³	30.7
2#	SO ₂	IS 11255 (Part 2) 1985	200.0	Mg/Nm ³	755.8
3	NOx	IS 11255 (Part 7) 2005	450.0	Mg/Nm ³	281.1
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0146

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD

5 ## Mercury monitoring & analysis is being done on quaterly basis through third party.

DB Authorized Signatory

(Technical Manager)

Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia — 441 911, Maharashtra, India Tel.: +91 7198 255983, Fax : +91 7198 253971, E-mail: arunpratap.singh@adani.com

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

rC5	19322000000929F			Date: 2	4.09.2022			
	Issued To:	이 가슴을 걸려 가슴을 가슴을 다른 것이 다 가슴을 가셨다.	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911					
S	ample Particulars :	Stack Monitoring						
Sa	mple Collected by :	Environment Dept	. APML					
1	Sampling Location	14	Unit	-2				
2	Date of Sampling	:	21.09.2	2022 -				
3	Time of Sampling	:	11:30 AM					
4	Load (MW)	1	527					
5	Height of Stack (Me	ter) :	275					
6	Diameter of Stack (M	Meter) :	7.4					
7	Type of Fuel		Coal					
8	Flue Gas Temperatu	ıre (⁰ C) :	121					
9	Flue Gas Velocity (N	N/sec) :	23.09					
10	Flow of Exit Gas at I	NTP (NM ³ /Hr) :	26016	43				
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *			
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	38.7			
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	815.5			
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	351.7			
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0184			

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

- 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD
- 5 ## Mercury monitoring & analysis is being done on quaterly basis through third party.

21 8/10 Authorized Signatory (Technical Manager) Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia — 441 911, Maharashtra, India Tel.: +91 7198 255983, Fax : +91 7198 253971, E-mail: arunpratap.singh@adani.com

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

C	19322000000930F		Date: 24.09.2022			
	Issued To:	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911				
5	ample Particulars :	Stack Monitoring				
S	ample Collected by :	Environment Dept. APM	ИL			
1	Sampling Location	:	Unit -3			
2	Date of Sampling		21.09.2022			
3	Time of Sampling	÷	12:15 PM			
4	Load (MW)	:	528			
5	Height of Stack (Me	ter) :	275			
6	Diameter of Stack (M	/leter) :	7.4			
7	Type of Fuel		Coal			
8	Flue Gas Temperatu	ıre (⁰ C) :	120			
9	Flue Gas Velocity (N	1/sec) :	22.83			
10	Flow of Exit Gas at I	NTP (NM ³ /Hr) :	2579412			

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	44.4
2#	SO2	IS 11255 (Part 2) 1985	200	Mg/Nm ³	792.0
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	368.9
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0132

* Results are corrected with 6% oxygen

End of the Report

4

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law. 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD

5 ## Mercury monitoring & analysis is being done on quaterly basis through third party.

08/10/22

Authorized Signatory (Technical Manager) Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia – 441 911, Maharashtra, India Tel.: +91 7198 255983, Fax : +91 7198 253971, E-mail: arunpratap.singh@adani.com

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

C5	19322000000926F			Date: 1	7.09.2022
			TEST REPORT		
-	Issued To:	APML,Plot No. A - Dist. Gondia – 441	1, Tirora Growth Cent I 911	re, MIDC – Tirora	
s	ample Particulars :	Stack Monitoring			
Sa	ample Collected by :	Environment Dep	t. APML		
1	Sampling Location	1	Unit	-4	
2	Date of Sampling	:	15.09.2	2022	
3	Time of Sampling		3:15	PM	
4	Load (MW)	1	405	5	
5	Height of Stack (Met	ter) :	275	5	
6	Diameter of Stack (M	/leter) :	7.4	源	
7	Type of Fuel	:	Coa		
8	Flue Gas Temperatu	ıre (⁰ C) :	121		
9	Flue Gas Velocity (M	N/sec) :	23.00		
10	Flow of Exit Gas at I	NTP (NM ³ /Hr) :	25921	07	9
Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	РМ	IS 11255 (Part- 1):1985	50	Mg/Nm ³	35.4
2#	S0.	IS 11255 (Part 2)	200	Ma/Nm ³	715

* Results are corrected with 6% oxygen

SO2

NOx

Mercury

2#

3

4##

End of the Report

200

450

0.030

Mg/Nm³

Mg/Nm³

Mg/Nm³

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

1985 IS 11255 (Part 7)

2005

USEPA - 0060

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD

5 ## Mercury monitoring & analysis is being done on quaterly basis through third party.

08/10/2 Authorized Signatory

305

0.0146

(Technical Manager) Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia – 441 911, Maharashtra, India Tel.: +91 7198 255983, Fax : +91 7198 253971, E-mail: arunpratap.singh@adani.com

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

C	519322000000927F		Date: 17.09.2022			
		TEST	REPORT			
	Issued To:	APML,Plot No. A -1, Tiro Dist. Gondia – 441 911	ora Growth Centre, MIDC – Tirora,			
ę	Sample Particulars :	Stack Monitoring				
s	ample Collected by :	Environment Dept. APML				
1	Sampling Location		Unit -5			
2	Date of Sampling	:	15.09.2022			
3	Time of Sampling	:	3:50 PM			
4	Load (MW)	1	390			
5	Height of Stack (Met	ter) :	275			
6	Diameter of Stack (N	Aeter) :	7.4			
7	Type of Fuel	i.	Coal			
8	Flue Gas Temperatu	ıre (⁰ C) :	120			
9	Flue Gas Velocity (N	l/sec) :	22.28			
10	Flow of Exit Gas at I	NTP (NM ³ /Hr) :	2517248			

Sr. No	Test Parameters	Test Method	MPCB Standards	Units	Results *
1	PM	IS 11255 (Part- 1):1985	50	Mg/Nm ³	36.3
2#	SO ₂	IS 11255 (Part 2) 1985	200	Mg/Nm ³	742
3	NOx	IS 11255 (Part 7) 2005	450	Mg/Nm ³	308
4##	Mercury	USEPA - 0060	0.030	Mg/Nm ³	0.0188

* Results are corrected with 6% oxygen

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

- 4 # As per MoEF&CC Notification the SO2 Limit will be applicable after installation of FGD
- 5 ## Mercury monitoring & analysis is being done on quaterly basis through third party.

08/10/22

Authorized Signatory (Technical Manager) Page 1 of 1

Plot No A -1, Tirora Growth Centre, M.I.D.C., Dist: Gondia – 441 911, Maharashtra, India Tel.: +917198 255983, Fax: +917198 253971, E-mail: arunpratap.singh@adani.com ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

TC-5193

JRL No : TC51932000000	00417F		Date: 30.04.2022
Issued To:	APML,Plot No. A -1, Tirora	a Growth Centre, MIDC – Tirora, D	list. Gondia – 441 911
Sample Collection Date	20.04.2022	Analysis Starting Date	20.04.2022
Quantity received	3 Lit /Sample	Sampled by	Environment Dept
ample Particulars : Trea	ated Waste Water		
ocation of sample:STP	-1 & 2 Out Let		

			TEST R	EPORT		
Sr	Parameter (NABL SCOPE)	Unit	Test Methods	MPCB Standards	Results	
no					STP-1	STP-2
1	TSS	mg / I	APHA-23rd - 2540 D	50	41	13
2	COD	mg / I	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	60	70
3	BOD at 27ºC for 3 days	mg / I	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	12	23

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

adani

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

Authorized Signatory (Technical Manager)

mental /

Maharashira

111

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519320000000414F

adani

Date: 30.04.2022

Sample Collection Date	20.04.2022	Analysis Starting Date :	20.04.2022
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APML

TEST REPORT

	Parameter (NABL SCOPE)			MPCB	Results				
Sr no		Unit Test Methods	Standards	U # 1	U # 2	U # 3	U # 4	U # 5	
1	Free Available Chlorine	mg/l	APHA-23rd – 4500- Cl G, DPD Colorimetric Method	0.5	0.2	0.2	0.2	0.1	0.1
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chloride Method	5	0.7	1.4	1.1	0.5	0.7
3	Zinc as (Zn)	mg/l		1	BDL	BDL	BDL	BDL	BDL
4	Total Chromium as (Cr)	mg/l		0.2	BDL	BDL	BDL	BDL	BDL.

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

montal TC + 5191 ndont Pould Authorized Signator (Technical Manager)

Page 1 Of 1

ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

TC-5193

Issued To:	APML,Plot No. A -1, Tirora Gi	owth Centre, MIDC – Tirora, Dist. 0	Gondia – 441 911
Sample Collection Date	20.04.2022	Analysis Starting Date	20.04.2022
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APML

TEST REPORT

	Description	a 1. and 11.0	and an entropy and and		R	esults
Sr no	Parameter (NABL SCOPE)	Unit	Test Methods	MPCB Standards	N-pit	ETP Outlet
1	pH Value		APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	7.9	8.4
2	TSS	mg / I	APHA-23rd - 2540 D	100.0	21	17
3	TDS	mg / l	APHA-23rd - 2540 C	2100.0	356	361
4	COD	mg/l	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	51	62
5	BOD at 27 ⁰ C for 3 days	mg / I	IS: 3025 (P-44)-1993 R- 1999 Ad.1 BOD 3-days at 27 °C	30.0	12	18
6	Oll & Grease	mg / I	APHA-23rd Ed 2017- 5520 B Llquid Llquid Partition Gravemetric method	10.0	BDL	2.2

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

adani

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

TC - 5193 Authorized Signato (Technical Manager)

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No: TC519320000000413F

adani

Date: 30.04.2022

Sample Collection Date	20.04.2022	Analysis Starting Date	1	20.04.2022
Quantity received	1 Ltr / Sample	Sampled by		Environment Dept. APML

TEST REPORT

Sr	Deverseter	11.414	Test Matheda	MPCB			Results	()	
no	Parameter	Unit	Test Methods	Standards	U#1	U # 2	U#3	U#4	U # 5
1	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.3	8.3	8.2	8.4	8.3
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5°C than that of intake water	33.0	34.0	33.0	34.0	34.0
3	Free Available Chlorine	PPM	APHA-23rd – 4500-CI G, DPD Colorimetric Method	0.5	0.2	0.2	0.2	0.1	0.1

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signator (Technical Manager)

ental La

TC + 5193

Page 1 Of 1

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No: TC519320000000502F

Date: 31.05.2022

Issued To:	APML,Plot No. A -1, Tiro	ra Growth Centre, MIDC – Tirora	ı, Dist	t. Gondia – 441 911
Sample Collection Date	04.05.2022	Analysis Starting Date		04.05.2022
Quantity received	1 Ltr / Sample	Sampled by		Environment Dept. APML
Sample Particulars : Co	ondenser Cooling Water			

TEST REPORT

Sr	Devenueter	Unit	Test Methods	MPCB			Results		
no	Parameter	Unit	Test Wethods	Standards	U#1	U # 2	U # 3	U#4	U # 5
1	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.1	8.3	8.4	8.2	8.3
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5°C than that of intake water	36.0	35.0	36.0	36.0	36.0
3	Free Available Chlorine	PPM	APHA-23rd – 4500-CI G, DPD Colorimetric Method	0.5	0.3	0.3	0.3	0.2	0.2

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

mr Authorized Signator (Technical Manager)

Page 1 Of 1

adani ENVIRONMENTAL LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC5193200000000503F

Date: 31.05.2022

Issued To:	APML,Plot No. A -1, Tirora	i Growth Centre, MIDC – Tirora, D	lst. Go	ondia – 441 911
Sample Collection Date	04.05.2022	Analysis Starting Date :		04.05.2022
Quantity received	1 Ltr / Sample	Sampled by :		Environment Dept. APML

TEST REPORT

8	Parameter	33 - 34	THE R HAN ARE R	MPCB			Results		
Sr no	(NABL SCOPE)	Unit	Test Methods	Standards	U # 1	U # 2	U # 3	U#4	U # 5
1	Free Available Chlorine	mg/l	APHA-23rd – 4500- Cl G, DPD Colorimetric Method	0.5	0.1	0.2	0.1	0.2	0.2
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chloride Method	5	0.9	0.7	1.1	0.9	1.1
3	Zinc as (Zn)	mg/l	1000	1	BDL	BDL	BDL	BDL	BDL
4	Total Chromium as (Cr)	mg/l		0.2	BDL	BDL	BDL	BDL	BDL

End of the Report

Salsonmental Lo

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially c. 5103

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law,

Waharashtra 05 -21

Page 1 Of 1

Authorized Signatory (Technical Manager)

adani ENVIRONMENTAL LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

TC-5103

Issued To:	APML,Plot No. A -1, Tirora G	rowth Centre, MIDC – Tirora, Dist. (Gondia – 441 911
Sample Collection Date	04.05.2022	Analysis Starting Date	04.05.2022
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APML

TEST REPORT

	Parameter	322.00 AM			R	esults
Sr no	(NABL SCOPE)	Unit	Test Methods	MPCB Standards	N-pit	ETP Outlet
1	pH Value	127	APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	8.4	8.3
2	TSS	mg / I	APHA-23rd - 2540 D	100.0	43	33
3	TDS	mg / I	APHA-23rd - 2540 C	2100.0	346	231
4	COD	mg / I	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	61	71
5	BOD at 27ºC for 3 days	mg/l	IS: 3025 (P-44)-1993 R- 1999 Ad.1 BOD 3-days at 27 °C	30.0	9	15
6	Oil & Grease	mg / I	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	1.7

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law,

4. # Indicates this parameter is not covered in our NABL scope

ental La TC - 5193 MAHL Certilic Maharashtra

31052

Authorized Signatory (Technical Manager)

Page 1 Of 1

ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

TC-5193

IRL No: TC51932000000	00506F		Date: 31.05.2022
Issued To:	APML,Plot No. A -1, Tiror	a Growth Centre, MIDC – Tirora, D	ist. Gondia – 441 911
Sample Collection Date	04.05.2022	Analysis Starting Date	04.05.2022
Quantity received	3 Lit /Sample	Sampled by	Environment Dept
ample Particulars : Trea	ited Waste Water		

				EPORT		
Sr	Parameter	Unit	Test Methods	MPCB Standards	Res	ults
no	(NABL SCOPE)				STP-1	STP-2
1	TSS	mg / I	APHA-23rd - 2540 D	50	40	30
2	COD	mg / I	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	70	60
3	BOD at 27ºC for 3 days	mg / I	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	18	14

End of the Report

*

TC - 5193 (NASL Confilicate No.)

Maharashtra

31 05

Page 1 Of 1

Authorized Signatory (Technical Manager)

Note: Tested results are well within the permissible limits of MPCB.

adani

1. The report is referring only to the tested sample and for applicable parameter, mental Los

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

ENVIRONMENTAL LABORATORY (Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

Issued To:	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911					
Sample Collection Date	15.06.2022	Analysis Starting Date	15.06.2022			
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APML			

TEST REPORT

Sr no	Parameter (NABL SCOPE)	Unit	Test Methods	MPCB Standards	Results	
					N-pit	ETP Outlet
1	pH Value		APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	8.3	8.0
2	TSS	mg / I	APHA-23rd - 2540 D	100.0	52	48
3	TDS	mg / I	APHA-23rd - 2540 C	2100.0	470	345
4	COD	mg/l	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	71	102
5	BOD at 27 ⁰ C for 3 days	mg / I	IS: 3025 (P-44)-1993 R- 1999 Ad.1 BOD 3-days at 27 °C	30.0	12	21
6	Oll & Grease	mg / I	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	2.3

End of the Report

rommer

In Lini

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4, # Indicates this parameter is not covered in our NABL scope

adani

Authorized Signat (Technical Manager)

Page 1 Of 1

adani ENVIRONMENTAL LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519320000000606F

Date: 27.06.2022

Issued To:	APML,Plot No. A -1, Tiro	ra Growth Centre, MIDC – Tirora	a, Dist	t. Gondia – 441 911
Sample Collection Date	15.06.2022	Analysis Starting Date	:	15.06.2022
Quantity received	1 Ltr / Sample	Sampled by	:	Environment Dept. APML
Sample Particulars : Co	ondenser Cooling Water	(Waste Water)		

TEST REPORT

Sr	B	11-14	Tool Matheade	MPCB			Results		
no	Parameter	Unit	Test Methods	Standards	U#1	U # 2	U#3	U#4	U # 5
1	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.3	8.2	8.1	8.0	8.3
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5°C than that of intake water	31.0	32.0	31.0	33.0	32.0
3	Free Available Chlorine	PPM	APHA-23rd – 4500-CI G, DPD Colorimetric Method	0.5	0.2	0.2	0.2	0.1	0.1

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law darashua

Authorized Signator (Technical Manager)

Page 1 Of 1

mental I

540;

adani ENVIRONMENTAL LABORATORY

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

URL No : TC519320000000607F

Date: 27.06.2022

TC-5193

Sample Collection Date	15.06.2022	Analysis Starting Date :	15.06.2022
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APML

TEST REPORT

	Parameter			MPCB			Results		
Sr no	(NABL SCOPE)	Unit	Test Methods	Standards	U#1	U # 2	U # 3	U # 4	U # 5
1	Free Available Chlorine	mg/l	APHA-23rd – 4500- Cl G, DPD Colorimetric Method	0.5	0.3	0.3	0.3	0.1	0.1
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chloride Method	5	1.3	1.4	1.2	0.9	1.2
3	Zinc as (Zn)	mg/l		1	BDL	BDL	BDL	BDL	BDL
4	Total Chromium as (Cr)	mg/l		0.2	BDL	BDL	BDL	BDL	BDL

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law,

Oker Mahati Authorized Signa (Technical Manager)

abo

Page 1 Of 1

adani ENVIRONMENTAL LABORATORY

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

RL No : TC5193200000	000610F		Date: 27.06.2022
Issued To:	APML,Plot No. A -1, Tirora	ı Growth Centre, MIDC – Tirora, D	ist. Gondia – 441 911
Sample Collection Date	15.06.2022	Analysis Starting Date	15.06.2022
		Sampled by	

			TEST R	EPORT		
Sr	Parameter	Unit	Test Methods	MPCB Standards	Res	ults
no (NABL SCOPE	(NABL SCOPE)			STP-1	STP-2	
1	TSS	mg / I	APHA-23rd - 2540 D	50	45	31
2	COD	mg / I	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	68	55
3	BOD at 27ºC for 3 days	mg / I	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	22	15

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

rashira \ Authorized Signatory

mental

C . 619:

(Technical Manager) Page 1 Of 1

TC-5193

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519320000000707F

Date: 31.07.2022

Issued To:	APML, Plot No. A -1, Tirora	a Growth Centre, MIDC – Tirora, Dist. G	5hula – 441 511
Sample Collection Date	13.07.2022	Analysis Starting Date :	13.07.2022
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APML
ample Particulars : Coolin	g tower blowdown (Waste	Water)	

TEST REPORT

				MDOD			Results		
Sr no	Parameter (NABL SCOPE)	Unit	Test Methods	MPCB Standards	U # 1	U # 2	U # 3	U # 4	U # 5
1	Free Available Chlorine	mg/l	APHA-23rd – 4500- Cl G, DPD Colorimetric Method	0.5	0.2	0.2	0.2	0.1	0.1
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chloride Method	5	0.6	0.7	0.6	0.2	0.2
3	Zinc as (Zn)	mg/l		1	BDL	BDL	BDL	BDL	BDL
4	Total Chromium as (Cr)	mg/l		0.2	BDL	BDL	BDL	BDL	BDL

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of lay

Authorized Signatory

(Technical Manager)

Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

Issued To:	APML,Plot No. A -1, Tirora Gro	owth Centre, MIDC – Tirora, Dist. G	ondia – 441 911
Sample Collection Date	13.07.2022	Analysis Starting Date	13.07.2022
Quantity received	3 Lit /Sample	Sampled by	Environment Dept. APML

TEST REPORT

					Re	sults
Sr no	Parameter (NABL SCOPE)	Unit	Test Methods	MPCB Standards	N-pit	ETP Outlet
a,	pH Value		APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	8.5	8.3
2	TSS	mg / I	APHA-23rd - 2540 D	100.0	24	26
3	TDS	mg / I	APHA-23rd - 2540 C	2100.0	291	162
4	СОД	mg / I	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	51	31
5	BOD at 27ºC for 3 days	IS: 3025 (P-44)-1993 R-		30.0	15	12
6	Oil & Grease	mg / l	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	2.9

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

URL No : TC5193200000000706F

Date: 31.07.2022

uia - 441 011	Tirora, Dist.	a Growth Centre, MIDC – Tiror	APML, Plot No. A -1, Tiro	Issued To:
13.07.2022	Date :	Analysis Starting Date	13.07.2022	Sample Collection Date
nvironment Dept. APML	:	Sampled by	1 Ltr / Sample	Quantity received
vironment Dept.	:		1 Ltr / Sample	

TEST REPORT

Sr				MPCB			Results		
no	Parameter	Unit	Test Methods	Standards	U # 1	U # 2	U # 3	U#4	U # 5
1	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.3	8.2	8.4	8.0	8.1
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5°C than that of intake water	32.0	31.0	30.0	31.0	30.0
3	Free Available Chlorine	РРМ	APHA-23rd – 4500-Cl G, DPD Colorimetric Method	0.5	0.1	0.1	0.1	0.2	0.2

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

6-Authorized Signatory (Technical Manager)

Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

adani

Format No: APML/ENV-LB/7.8/F01

IRL No : TC5193200000	00710F		Date: 31.07.2022
Issued To:	APML,Plot No. A -1, Tirora	i Growth Centre, MIDC – Tirora, D	ist. Gondia – 441 911
Sample Collection Date	13.07.2022	Analysis Starting Date	13.07.2022
Quantity received	3 Lit /Sample	Sampled by	Environment Dept.

			TEST R	EPORT		
Sr	5% 수업자이 있는 것 같은 것 같	Unit	Test Methods	MPCB Standards	Res	ults
no	(NABL SCOPE)	Onic	rest methods		STP-1	STP-2
1	TSS	mg / I	APHA-23rd - 2540 D	50	32	36
2	COD	mg / I	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	50	60
3	BOD at 27ºC for 3 days	mg / I	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	8	10

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

Authorized Signatory (Technical Manager)

Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519320000000806F

adani

Date: 30.08.2022

Issued To:	APML,Plot No. A -1, Tiro	ra Growth Centre, MIDC – Tirora	, Dist	t. Gondia – 441 911
Sample Collection Date	10.08.2022	Analysis Starting Date	1	10.08.2022
Quantity received	1 Ltr / Sample	Sampled by		Environment Dept. APML
Sample Particulars : Co			ř.	

TEST REPORT

Sr	Parameter	Unit	Test Methods	MPCB			Results		
no		Unic	rest methods	Standards	U#1	U # 2	U # 3	U#4	U # 5
1	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.1	8.2	8.2	7.9	8.1
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5°C than that of intake water	33.0	33.0	32.0	32.0	32.0
3	Free Available Chlorine	PPM	APHA-23rd – 4500-CI G, DPD Colorimetric Method	0.5	0.3	0.4	0.3	0.3	0.3

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

09 01 **Authorized Signatory** (Technical Manager)

Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

Date:

URL No : TC519320000000807F

adani

30.08.2022

Issued To:	APMIL, PIOT NO. A -1, TIFOT	a Growth Centre, MIDC – Tirora, Dist. Go	ondia – 441 911
Sample Collection Date	10.08.2022	Analysis Starting Date :	10.08.2022
Quantity received	1 Ltr / Sample	Sampled by :	Environment Dept. APML

TEST REPORT

0-10-10-10-10-10-10-10-10-10-10-10-10-10	Parameter	1.000000000		MPCB			Results		4
Sr no	(NABL SCOPE)	Unit	Test Methods	Standards	U # 1	U # 2	U # 3	U#4	U # 5
1	Free Available Chlorine	mg/l	APHA-23rd – 4500- Cl G, DPD Colorimetric Method	0.5	0.4	0.4	0.2	0.2	0.2
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chloride Method	[,] 5	1.2	0.7	1.0	0.9	0.8
3	Zinc as (Zn)	mg/l		1	BDL	BDL	BDL	BDL	BDL
4	Total Chromium as (Cr)	mg/l		0.2	BDL	BDL	BDL	BDL	BDL

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

Authorized Sig (Technical Manager)

Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

L No : TC519320000000080	8F		Date: 30.03	
Issued To:	APML,Plot No. A -1, Tirora Gro	owth Centre, MIDC – Tirora, Dist. Go	ondia – 441 911	
Sample Collection Date	10.08.2022	Analysis Starting Date	10.08	8.2022
Quantity received	3 Lit /Sample	Sampled by	Environmen	t Dept. APML
ample Particulars : Treated	Effluent Water			
ocation of sample : DM Plant	N-Pit , ETP Outlet	7		

TEST REPORT

	Baramatan	Carl House			R	esults
Sr no	Parameter (NABL SCOPE)					ETP Outlet
1	pH Value		APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	8.0	7.4
2	TSS	mg / l	APHA-23rd - 2540 D	100.0	38	41
) 3	TDS	mg / l	APHA-23rd - 2540 C	2100.0	491	252
4	COD	mg / l	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	61	41
5	BOD at 27ºC for 3 days	mg / l	IS: 3025 (P-44)-1993 R- 1999 Ad.1 BOD 3-days at 27 °C	30.0	9	12
6	Oil & Grease	mg / I	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	3.7

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager) Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

JRL No : TC51932000000	00810F		Date: 30.08.2022
Issued To:	APML,Plot No. A -1, Tirora	ı Growth Centre, MIDC – Tirora, D	list. Gondia – 441 911
Sample Collection Date	10.08.2022	Analysis Starting Date	10.08.2022
Quantity received	3 Lit /Sample	Sampled by	Environment Dept
ample Particulars · Tros	ated Waste Water	4	

			TEST R	EPORT		
Sr	Parameter	Unit	Test Methods	MPCB Standards	Res	ults
no	(NABL SCOPE)	Contraction of the			STP-1	STP-2
1	TSS	mg / I	APHA-23rd - 2540 D	50	30	37
2	COD	mg / I	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	31	51
3	BOD at 27ºC for 3 days	mg / I	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	10	7

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

Authorized Signato (Technical Manager) Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519320000000906F

Date: 30.09.2022

Issued To:	APML,Plot No. A -1, Tiro	ra Growth Centre, MIDC – Tirora,	, Dist	. Gondia – 441 911
Sample Collection Date	21.09.2022	Analysis Starting Date	:	21.09.2022
Quantity received	1 Ltr / Sample	Sampled by	:	Environment Dept. APML
Sample Particulars : Co	ondenser Cooling Water	(Waste Water)		4

TEST REPORT

Sr			Torot Martheoute	MPCB			Results		
no	Parameter	Unit	Test Methods	Standards	U#1	U # 2	U#3	U#4	U # 5
4	pH Value		APHA-23rd - 4500-H+B Electrometric Method	6.5-8.5	8.2	['] 7.8	8.0	8.0	8.1
2	Temperature	Deg C	APHA-23rd - 2550 B	Not to exceed 5°C than that of intake water	35.0	35.0	35.0	34.0	34.0
3	Free Available Chlorine	PPM	APHA-23rd – 4500-Cl G, DPD Colorimetric Method	0.5	0.3	0.3	0.2	0.1	0.2

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signato (Technical Manager)

Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

URL No : TC519320000000907F

Date: 30.09.2022

Issued To:	APML,Plot No. A -1, Tirora	ı Growth Centre, MIDC – Tirora,	Dist. G	ondia – 441 911
Sample Collection Date	21.09.2022	Analysis Starting Date	:	21.09.2022
Quantity received	1 Ltr / Sample	Sampled by	:	Environment Dept. APML
Sample Particulars : Cooling	g tower blowdown (Waste	Water)		
Location of sample : Unit1,U	nit-2,Unit-3,Unit-4 & Unit-6.			

TEST REPORT

		Demonster		МРСВ -	Results				
Sr no	Parameter (NABL SCOPE)	Unit	t Test Methods	Standards	U # 1	U # 2	U # 3	U#4	U # 5
1	Free Available Chlorine	mg/l	APHA-23rd – 4500- Cl G, DPD Colorimetric Method	0.5	0.4	0.2	0.4	0.2	0.4
2	Phosphate as (PO4)	mg/l	APHA-23rd -4500-P D Stannous Chloride Method	5	0.8	1.0	0.7	1,1	0.9
3	Zinc as (Zn)	mg/l	<u></u>	1	BDL	BDL	BDL	BDL	BDL
4	Total Chromium as (Cr)	mg/l		0.2	BDL	BDL	BDL	BDL	BDL

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

Authorized Signato (Technical Manager)

Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

RL No : TC519320000000090	Date:	30.09.2023		
Issued To:	APML,Plot No. A -1, Tirora Gro	owth Centre, MIDC – Tirora, Dist. Go	ondia – 441 911	
Sample Collection Date	21.09.2022	Analysis Starting Date	21.0	9.2022
Quantity received	3 Lit /Sample	Sampled by	Environmer	t Dept. APML
ample Particulars : Treated	Effluent Water	*		

TEST REPORT

					Results	
Sr no (NABL SCOPE)	I IINIT JEST WEIDOOS	MPCB Standards	N-pit	ETP Outlet		
1	pH Value		APHA-23rd -4500-H+B Electrometric Method	5.5-9.0	8.1	7.0
2	TSS	mg / I	APHA-23rd - 2540 D	100.0	16	25
3	TDS	mg / I	APHA-23rd - 2540 C	2100.0	605	530
4	СОД	mg / l	APHA-23rd Ed 2017- 5220B Open Reflux Method	250.0	41	31
5	BOD at 27ºC for 3 days	mg / l	IS: 3025 (P-44)-1993 R- 1999 Ad.1 BOD 3-days at 27 °C	30.0	6	15
6	Oil & Grease	mg / l	APHA-23rd Ed 2017- 5520 B Liquid Liquid Partition Gravemetric method	10.0	BDL	2.5

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signator (Technical Manager Page 1 Of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

IRL No: TC51932000000		Date: 30.09.2022			
Issued To:	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441				
Sample Collection Date	21.10.2022	Analysis Starting Date	21.10.2022		
Sample Collection Date	and a second				

			TEST R	EPORT		
Sr Parameter no (NABL SCOPE)	I Unit I Lest Methods	Test Methods	MPCB Standards	Results		
			STP-1	STP-2		
1	TSS	mg / I	APHA-23rd - 2540 D	50	33	29
2	COD	mg / I	APHA-23rd Ed 2017- 5220B Open Reflux Method	100	40	30
3	BOD at 27⁰C for 3 days	mg / I	IS: 3025 (P-44)-1993 R-1999 Ad.1 BOD 3- days at 27 °C	30	10	8

End of the Report

Note: Tested results are well within the permissible limits of MPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

4. # Indicates this parameter is not covered in our NABL scope

08 10 Authorized Signatory (Technical Manager)

Page 1 Of 1

(Accredited by NABL)

adani

ADANI POWER MAHARASHTRA LIMITED, TIRODA

TC-5193

Format No: APML/ENV-LB/7.8/F01

URL No	b. : TC519320000000423F	Date: 30.04.2022 APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911			
ssued	То:				
Sample	Particulars :	Ambient Noise Level (Plant)			
Sample	Collected by :	Environment Dept. APML			
Date of	Sampling:	09.04.2022			
		Test Report			
1.55		Day Time in dB (A)	Night Time in dB (A)		
S. No	. No Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)		
1	Near Shanti Niketan I II & III	54.1	50.2		
2	Near Labour Hutment	67.4	62.3		
3	Near Store Area	63.9	58.8		
4	Gate No.1	55.1	52.5		
5	Gate No.2	62.5	54.7		
6	Gate No.3	70.9	62.2		
7	Near OHC	59.1	50.0		
8	Railway Siding	58.1	49.9		
9	Near Reservoir 2	53.1	40.4		
10	Near Ash Water Recovery Pump House	60.5	52.2		
11	In China Colony	38.2	34.4		
C	PCB Standards (Industrial Area)	75	70		

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

1. The report is referring only to the tested sample and for applicable parameter.

2. The sample will be destroyed after retention time unless otherwise specified specially.

3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

Authorized Signatory (Technical Manager)

amental

*

Page 1 of 1

(Accredited by NABL)

adani

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

JRL No. : TC5193200000000523F		Date: 31.05.2022			
ssued	То:	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911			
Sample	e Particulars :	Ambient Noise Level (Plant)			
Sample	e Collected by :	Environment Dept. APML	1		
Date of	Sampling:	07.05.2022			
		Test Report			
S. No	Locations	Day Time in dB (A)	Night Time in dB (A)		
5. NO	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)		
1	Near Shanti Niketan I II & III	57.5	47.2		
2	Near Labour Hutment	66.5	52.3		
3	Near Store Area	64.7	54.3		
4	Gate No.1	57.2	50.2		
5	Gate No.2	63.3	53.3		
6	Gate No.3	72.0	60.7		
7	Near OHC	61.6	49.9		
8	Railway Siding	61.6	51.6		
9	Near Reservoir 2	54.4	44.3		
10	Near Ash Water Recovery Pump House	64.4	51.3		
11	In China Colony	44.8	38.8		
CI	PCB Standards (Industrial Area)	75	70		

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter
- TC 5193 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

IAS Authorized Signator (Technical Manager)

mental La

Maharashira

Page 1 of 1

adani

(Accredited by NABL)

ADANI POWER MAHARASHTRA LIMITED, TIRODA

Format No: APML/ENV-LB/7.8/F01

URL No. : TC519320000000623F		Date: 27.06.2022			
Issued	To:	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911 Ambient Noise Level (Plant)			
Sample	Particulars :				
Sample	Collected by :	Environment Dept. APML			
Date of	Sampling:	04.06.2022			
		Test Report			
		Day Time in dB (A)	Night Time in dB (A)		
S. No	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)		
1	Near Shanti Niketan I II & III	54.7	46.2		
2	Near Labour Hutment	63.7	51.1		
3	Near Store Area	62.4	55.5		
4	Gate No.1	56.7	50.2		
5	Gate No.2	62.5	53.4		
6	Gate No.3	70.3	61.1		
7	Near OHC	54.4	47.0		
8	Railway Siding	62.2	51.8		
9	Near Reservoir 2	57.0	44.7		
10	Near Ash Water Recovery Pump House	61.9	50.3		
11	In China Colony	44.3	34.4		
C	PCB Standards (Industrial Area)	75	70		

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

Authorized Signa (Technical Manager

TC - 5103

RABL Cords

Page 1 of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

JRL No. : TC519320000000723F		Da	te: 31.07.2022		
ssued '	То:	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911 Ambient Noise Level (Plant)			
Sample	Particulars :				
Sample	Collected by :	Environment Dept. APML			
Date of Sampling:		23.07.2022			
		Test Report			
125 28	1	Day Time in dB (A)	Night Time in dB (A)		
S. No	. No Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)		
1	Near Shanti Niketan I II & III	57.4	44.5		
2	Near Labour Hutment	61.4	50.8		
3	Near Store Area	63.6	53.3		
4	Gate No.1	55.7	51.2		
5	Gate No.2	64.1	54.4		
6	Gate No.3	71.9	68.8		
7	Near OHC	53.5	44.0		
8	Railway Siding	64.6	50.0		
9	Near Reservoir 2	55.1	43.3		
10	Near Ash Water Recovery Pump House	62.4	49.8		
11	In China Colony	46.6	30.4		
C	PCB Standards (Industrial Area)	75	70		

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

Page 1 of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

adani

Format No: APML/ENV-LB/7.8/F01

URL N	o. : TC519320000000823F	Date: 31.08.2022			
Issued	То:	APML,Plot No. A -1, Tirora Growth Centre, MIDC – Tirora, Dist. Gondia – 441 911			
Sample	e Particulars :	Ambient Noise Level (Plant)			
	e Collected by :	Environment Dept. APML	-*		
Date of	f Sampling:	20.08.2022			
		Test Report	v		
S. No	Locations	Day Time in dB (A)	Night Time in dB (A)		
0.110	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)		
1	Near Shanti Niketan I II & III	59.6	51.6		
2	Near Labour Hutment	62.7	56.7		
3	Near Store Area	64.2	57.2		
4	Gate No.1	55.1	49.7		
5	Gate No.2	63.2	57.4		
6	Gate No.3	70.8	63.7		
7	Near OHC	49.9	43.5		
8	Railway Siding	62.4	54.3		
9	Near Reservoir 2	53.1	44.2		
10	Near Ash Water Recovery Pump House	59.3	50.6		
11	In China Colony	42.0	38.2		
CF	PCB Standards (Industrial Area)	75	70		

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law

0 Authorized Signatory

(Technical Manager)

Page 1 of 1

ADANI POWER MAHARASHTRA LIMITED

TIRORA

Format No: APML/ENV-LB/7.8/F01

URL No.	: TC51	9320000000923F	İ
---------	--------	----------------	---

Date: 30.09.2022

lssued	То:	APML,Plot No. A -1, Tirora Gro MIDC – Tirora, Dist. Gondia – 4	
Sample	Particulars :	Ambient Noise Level (Plant)	
Sample	Collected by :	Environment Dept. APML	441 911 Night Time in dB (A) (10.00 p.m. to 06.00 a.m.) 50.4 53.3 57.7 44.9 58.7 59.3 44.3 54.9 42.8 54.2 34.6
Date of	Sampling:	17.09.2022	
		Test Report	
5 87		Day Time in dB (A)	Night Time in dB (A)
S. No	Locations	(6.00 a.m. to 10.00 p.m.)	(10.00 p.m. to 06.00 a.m.)
1	Near Shanti Niketan I II & III	59.4	50.4
2	Near Labour Hutment	59.3	53.3
3	Near Store Area	64.7	57.7
4	Gate No.1	50.3	44.9
5	Gate No.2	64.5	58.7
6	Gate No.3	68.2	59.3
7	Near OHC	50.7	44.3
8	Railway Siding	63.0	54.9
9	Near Reservoir 2	51.7	42.8
10	Near Ash Water Recovery Pump House	62.9	54.2
11	In China Colony	38.4	34.6
C	PCB Standards (Industrial Area)	75	70

*** End Of the Report***

Note: Tested results are well within the permissible limits of MPCB / CPCB.

- 1. The report is referring only to the tested sample and for applicable parameter.
- 2. The sample will be destroyed after retention time unless otherwise specified specially.
- 3. This report is not to be reproducing wholly or in part, and can't be used as evidence in court of law.

Authorized Signatory (Technical Manager)

Page 1 of 1

Maharashtra Pollution Control Board

Site Name: M/s.Adani Power Maharashtra Private Ltd

From Date: 2022/04/01 To Date: 2022/09/30

Report Name: Custom Report, M/s.Adani Power Maharashtra Private Ltd Report Created by APMPL on 2022-11-05 14:45:42

								11-05 14:45:					
SI No.	Time	CAAQMS_1	CAAQMS_1	CAAQMS_1						CAAQMS_3		CAAQMS_3	CAAQMS_3
		PM10 (ug/m3)	PM2.5 (ug/m3)	NOx (ug/m3)	SO2 (ug/m3)	PM10 (ug/m3)	PM2.5 (ug/m3)	NOx (ug/m3)	SO2 (ug/m3)	PM10 (ug/m3)	PM2.5 (ug/m3)	NOx (ug/m3)	SO2 (ug/m3)
1	2022-04-01	69.91	34.31	21.97	21.45	85.67	32.71	22.19	14.23	80.86	29.61	22.4	12.78
2	2022-04-02	69.88	34.39	21.73	21.39	85.68	33.16	22.18	14.28	79.76	29.24	22.4	12.77
3	2022-04-03	70.31	34.78	21.79	21.52	85.67	33.27	22.19	14.25	79.6	29.93	22.41	12.87
4	2022-04-04	71.85	35.36	22.23	21.7	85.65	33.6	22.19	14.23	81.84	31.01	22.4	12.85
5	2022-04-05	67.28	31.18	24.07	23.49	82.29	32.03	24.33	13.21	73.77	27.93	24.53	14.15
6	2022-04-06	67.27	29.91	24.07	24.27	81.1	31.5	25.16	12.87	73.7	28.11	25.36	14.74
7	2022-04-07	68.08	31.01	25.87	21.96	77.52	33.72	27.04	15.35	73.38	29.32	28.87	13.93
8	2022-04-08	70.27	32.48	27.83	20.8	73.83	41.03	29.25	16.99	76.69	34.19	33.75	15.47
9	2022-04-09	66.82	30.98	27.85	20.9	72.76	43	32.63	17.27	74.99	35.07	35.11	16.41
10	2022-04-10	65.46	30.84	27.81	21.01	71.79	42.67	39.41	17.67	73.71	35.44	35.23	16.45
11	2022-04-11	64.14	30.18	28.04	21.16	71.81	46.11	39.41	17.62	72.23	34.28	35.11	16.56
12	2022-04-12	67.2	31.75	30.18	21.59	71.81	46.39	39.41	17.63	74.25	34.83	35.12	16.58
13	2022-04-13	65.88	30.58	27.8	21.76	71.79	42.66	39.41	17.62	75.12	34.9	35.11	16.63
14	2022-04-14	67.78	30.91	27.98	21.98	71.82	43.69	39.41	17.62	74.95	35.19	35.12	16.8
15	2022-04-15	68.99	31.38	27.9	22.12	71.97	54.96	39.42	17.62	75.44	35.67	35.12	16.69
16	2022-04-16	70.94	31.79	27.83	22.27	71.94	54.96	39.42	17.62	77.27	36.43	35.11	16.83
17	2022-04-17	69.67	31.3	27.82	22.39	71.9	54.96	39.42	15.49	76.82	35.47	35.11	16.9
18	2022-04-18	69.64	31.31	27.52	22.52	72.64	54.57	34.98	15.85	76.19	35.42	35.11	16.84
19	2022-04-19	70.19	31.33	27.82	22.66	73.04	44.9	29.79	17.12	77.17	36.05	35.12	16.93
20	2022-04-20	72.44	31.79	30.35	22.9	73.41	44.32	29.73	17.18	78.24	36.44	35.12	17.09
21	2022-04-21	70.62	31.76	31.88	23.25	73.29	44.72	29.76	17.21	76.84	36.3	35.11	17.18
22	2022-04-22	67.04	30.6	31.89	23.37	73.07	41.95	29.88	17.13	73.4	34.59	35.11	16.97
23	2022-04-23	66.01	30.87	31.21	23.61	73.1	42.85	29.83	17.14	75.57	35.14	35.12	16.59
24	2022-04-24	64.83	30.12	30.91	23.91	73.09	41.49	29.81	17.14	73.94	34.46	35.12	16.46
25	2022-04-25	74.48	30.9	30.98	24.23	73.08	42.59	29.79	17.13	75.73	35.57	35.12	16.65
26	2022-04-26	74.48	30.83	30.58	24.52	73.08	42.49	29.77	17.15	74.93	35.48	35.11	16.76
27	2022-04-27	74.48	31.24	30.43	24.79	73.11	42.82	29.77	17.15	76.81	35.67	35.12	16.85
28	2022-04-28	70.43	31.17	30.19	25.03	73.11	42.57	29.76	17.14	75.67	35.55	35.12	16.97
29	2022-04-29	71.65	30.25	29.21	26.5	73.15	41.41	27.98	18.92	74.48	36.36	33.8	15.83
30	2022-04-30	77.79	29.98	28.48	28.28	73.11	40.3	25.79	21.15	75.45	38.13	32.17	14.64
31	2022-05-01	79	30.46	28.45	28.65	73.1	40.49	25.79	21.14	77.08	38.1	32.17	14.9
32	2022-05-02	79.99	30.88	43.93	29.87	73.13	39.7	25.79	21.17	77.39	37.71	32.16	14.64
33	2022-05-03	79.08	29.36	51.59	30.26	73.08	42.46	25.79	21.14	76.27	37.04	32.16	14.56
34	2022-05-04	75.31	29.28	50.93	30.49	73.11	49.81	25.79	21.16	72.62	37.1	32.16	14.68
35	2022-05-05	77.2	29.89	51.07	30.8	73.05	49.13	25.79	21.14	74.76	37.58	32.17	14.88
36	2022-05-06	80.87	30.01	50.85	30.77	73.02	40.49	26.49	20.2	76.86	38.11	32.17	15.29
37	2022-05-07	80.96	29.24	50.61	29.61	72.99	38.89	28.76	16.33	77.41	38.49	32.16	15.46
38	2022-05-08	82.83	29.28	51.03	30	72.96	40.7	28.76	16.32	78.43	38.44	32.17	15.13
39	2022-05-09	83.13	29.35	50.69	30.26	73.03	40.18	28.76	16.34	78.27	38.12	32.17	14.95
40	2022-05-10	81.44	28.56	49.63	30.47	72.99	38.17	28.76	16.33	72.63	36.9	32.16	14.63
41	2022-05-11	77.67	28.21	49.59	30.69	72.94	35.59	28.75	16.32	70.18	36.28	32.16	14.58
42	2022-05-12	76.26	28.24	49.42	30.87	72.97	36.69	28.76	16.33	69.8	36.42	32.16	14.88
43	2022-05-13	77.19	28.5	49.5	31.1	72.98	37.49	28.76	16.33	71.87	37.24	32.17	15.23
44	2022-05-14	78.82	28.92	49.41	31.39	73	37.98	28.76	16.33	74.34	37.71	32.16	15.84
45	2022-05-15	79.97	28.25	41.14	29.32	75.41	41.58	26.2	18.2	76.76	37.97	32.16	16.29
46	2022-05-16	75.97	27.76	36.5	28.24	76.73	40.47	24.82	19.24	72.76	37.37	32.17	17.16
47	2022-05-17	76.51	27.78	36.64	28.55	76.71	41.42	24.81	19.23	73.34	37.61	32.17	18.28

									10.07		07.07		10.01
48	2022-05-18	73.14	28.27	31.13	26.71	75.49	38.88	23.71	19.97	72.57	37.87	28.12	19.61
49	2022-05-19	69.24	28.58	19.79	20.96	73.9	35.7	22.28	20.93	69.49	38.54	22.3	20.26
50	2022-05-20	70	28.85	19.75	21.03	73.96	36.26	22.28	20.94	70.79	38.92	22.31	20.35
51	2022-05-21	74.03	28.94	19.71	21.13	73.92	36.92	22.28	20.93	73.64	39.12	22.3	18.21
52	2022-05-22	76.74	28.55	19.83	21.19	73.92	37.01	22.3	20.93	75.47	38.92	22.31	17.56
53	2022-05-23	77.04	27.79	20.71	22.06	72.95	36.24	23.6	20.26	73.94	39.12	22.31	17.56
54	2022-05-24	71.24	25.87	21.94	23.09	71.72	34.45	25.28	19.38	69.7	38.49	22.3	17.58
55	2022-05-25	75.2	27.47	21.95	23.05	71.94	35.43	25.35	19.41	71.64	38.91	22.29	17.61
56	2022-05-26	71.97	26.58	22.33	23	72.07	34.39	25.43	19.42	68.15	38.53	22.29	17.65
57	2022-05-27	71.77	26.57	22.02	23.02	72.06	34.59	25.31	19.41	75.05	43.15	22.3	17.7
58	2022-05-28	75.56	27.66	24.16	21.67	72.05	22.56	27.46	20.1	80.32	44.98	25.1	16.78
59	2022-05-29	75.68	27.24	24.87	21.13	71.62	20.57	39.49	20.43	80.89	44.98	26.24	16.37
60	2022-05-30	74.48	27.41	24.86	21.13	71.89	17.47	34.44	20.41	76.98	44.98	26.24	16.37
61	2022-05-31	74.19	28.57	24.85	21.14	72.15	19.22	30.17	20.41	71.83	44.98	26.25	16.36
62	2022-06-01	77.25	29.33	24.85	21.16	72.26	23.88	28.23	20.39	74.8	44.98	26.24	16.36
63	2022-06-02	78.52	30.78	24.85	21.19	72.31	26.34	29.37	20.4	78.08	44.98	26.22	16.38
64	2022-06-03	77.85	28.56	23.94	20.32	71.4	33.89	40.53	20.43	77.83	44.98	27.38	15.32
65	2022-06-04	74.71	28.38	23.74	22.59	70.87	26.07	42.22	19.32	75.42	44.97	25.9	14.91
66	2022-06-05	71.48	28.24	24.65	24.52	72.34	15.06	36.66	18.58	74.88	44.97	26	15.98
67	2022-06-06	70.95	28.16	23.75	23.63	73.81	17.58	34.41	19.48	NA	NA	NA	NA
68	2022-06-07	68.49	27.84	23.74	23.65	73.84	26.14	34.42	19.48	NA	NA	NA	NA
69	2022-06-08	NA	NA	NA	NA	74.42	24.03	26.7	19.44	NA	NA	NA	NA
70	2022-06-09	NA	NA	NA	NA	74.05	21.39	31.16	19.45	NA	NA	NA	NA
71	2022-06-10	NA	NA	NA	NA	74.22	31.3	28.76	19.75	79.16	44.96	31.13	17.68
72	2022-06-11	71.7	29.62	19.94	21.61	74.22	28.41	28.26	20.14	52.76	19.7	11.45	7.37
72	2022-00-11	69.58	23.02	21.64	22.24	76.97	29.17	31.79	18.92	73.85	30.2	29.39	19.21
74	2022-00-12	60.88	21.57	18.83	17.49	73.28	24.15	32.41	13.2	79.67	32.68	30.88	20.08
74	2022-00-13	57.39	18.91	22.06	21.03	64.85	26.53	22.24	15.15	73.07	28.75	31.95	22.95
76	2022-00-14	43.25	23.61	31.82	21.03	51.56	20.55	25.35	25.33	59.36	24.3	35.43	25.5
70	2022-06-15	62.12	30.45	30.08	26.78	51.76	30.94	35.98	31.86	66.62	30.44	37.7	22.25
78	2022-06-18			30.08			30.94						22.23
		69.1	28.94		27.84	55.29		34.52	33.19	56.31	29.02	37.35	
79	2022-06-18	69.1	29.84	30.78	27.83	53.64	31.75	34.37	33.17	56.48	29.39	37.37	21.22
80	2022-06-19	69.1	21.88	31.43	27.83	40.33	24.63	34.6	33.56	34.32	25.35	37.37	21.22
81	2022-06-20	59.23	18.63	25.41	20.9	56.76	22.59	30.25	29.32	43.54	17.41	25.44	14.97
82	2022-06-21	59.1	18.25	25.36	20.36	48.96	17.51	26.71	24.31	45.16	17.06	24.73	14.49
83	2022-06-22	59.1	20.33	26.55	19.74	48.99	23.08	27.61	25.1	54.37	22.72	26.66	17.63
84	2022-06-23	59.1	19.81	27.1	19.39	49.01	22.1	28.11	25.73	53.98	23.5	27.63	19.29
85	2022-06-24	59.1	20.89	26.96	19.4	46.6	22.72	28.07	26.14	54.22	24.07	27.67	19.3
86	2022-06-25	59.1	21.95	26.94	19.4	28.67	18.78	30.39	25.63	44.63	21.22	27.69	19.3
87	2022-06-26	59.1	31.16	27.93	19.39	32.02	20.97	32.68	24.96	50.52	22.77	27.65	19.3
88	2022-06-27	59.1	26.3	26.9	19.4	31.78	20.08	32.68	24.01	54.51	22.5	27.65	19.3
89	2022-06-28	59.1	19.9	26.77	19.41	33.1	20.86	32.6	24.04	52.66	22.68	27.67	19.3
90	2022-06-29	59.1	24.16	26.71	19.41	31.87	20.1	32.55	24.83	48.12	21.75	27.64	19.3
91	2022-06-30	59.1	31.17	27.98	19.4	29.24	18.6	32.65	24.85	46.49	20.85	27.67	19.3
92	2022-07-01	59.1	31.17	26.94	19.4	28.88	18.46	32.67	24.64	45.59	20.88	27.68	19.3
93	2022-07-02	59.11	31.18	27.17	19.41	25.82	16.13	32.68	24.69	42.06	18.82	27.64	19.3
94	2022-07-03	59.11	31.18	27.65	19.4	24.75	16.45	32.7	24.08	38.34	18.56	27.64	19.3
95	2022-07-04	59.11	31.18	26.99	19.41	26.57	16.83	32.63	24.08	37.94	18.81	27.7	19.3
96	2022-07-05	59.11	25.88	28.98	19.41	22.03	14.2	32.57	23.52	36.44	17.45	27.66	19.3
97	2022-07-06	59.11	18.22	27.53	19.4	24.99	16.65	32.5	22.13	38.63	18.6	27.6	19.3
98	2022-07-07	59.1	19.12	26.99	19.4	27.74	18.92	32.28	21.64	43.44	21.35	27.65	19.29
99	2022-07-08	59.11	18.6	27.05	19.41	28.65	18.93	32.25	21.87	45.19	21.31	27.65	19.3
100	2022-07-09	59.11	17.51	27.06	19.41	26.41	16.98	32.24	22.74	41.59	19.4	27.68	19.3
										•	•		

										07.40	10.00		
101	2022-07-10	59.1	18.44	27.75	19.4	24.65	16.4	32.3	22.07	37.12	18.36	27.64	19.3
102	2022-07-11	59.11	17.49	27.67	19.4	22.81	15.36	32.26	21.47	36.23	17.28	27.62	19.3
103	2022-07-12	59.1	17.16	27.07	19.4	24.6	16.33	31.03	21.63	39.46	18.43	27.68	19.29
104	2022-07-13	62.47	21.16	29.86	18.26	28.11	16.85	31.48	24.71	36.71	19.03	27.01	18.68
105	2022-07-14	64.1	22.2	30.68	17.71	30.38	14.98	33.7	32.77	37.63	19.86	26.68	18.31
106	2022-07-15	64.1	20.91	28.86	17.69	28.52	14.7	33.6	39.81	37.66	20.15	26.7	18.31
107	2022-07-16	64.11	21.97	28.89	17.7	32.57	15.84	33.7	40.78	43.53	21.15	26.7	18.31
108	2022-07-17	64.1	21.11	29.07	17.69	29.93	15.45	33.96	39.26	37.72	20.82	26.67	18.31
109	2022-07-18	64.1	21.63	28.72	17.69	28.91	14.32	33.94	36.79	37.15	20.03	26.67	18.31
110	2022-07-19	64.1	22.13	28.37	17.69	31.61	15.97	33.71	31.91	40.71	20.71	26.65	18.31
111	2022-07-20	64.1	22.07	28.83	17.69	33.66	16.42	33.81	28.48	43.56	21.51	26.69	18.32
112	2022-07-21	64.1	23.58	29.69	17.69	35.05	16.71	34.32	25.9	45.62	21.82	26.74	18.32
113	2022-07-22	64.1	22.89	29.1	18.79	34.37	16.63	34.29	23.78	44.63	21.62	26.67	18.32
114	2022-07-23	64.1	20.92	29.08	20.44	31.48	16.96	33.94	23.84	39.64	20.81	26.65	18.32
115	2022-07-24	64.1	21.9	28.8	20.46	29.81	15.03	33.51	24.87	39.88	20.63	26.71	18.32
116	2022-07-25	64.1	21.85	28.98	20.49	30.88	16.99	33.44	27.38	42.27	21.72	26.62	18.32
117	2022-07-26	54	19.85	30.07	21.15	28.75	14.82	32.31	28.17	38.16	19.1	27.38	17.3
118	2022-07-27	35.48	17.55	31.61	22.35	29.79	15.02	29.79	29.38	41.89	18.96	28.69	15.43
119	2022-07-28	35.48	18.24	32.11	22.38	31.74	16.61	29.9	27.52	45.72	20.57	28.71	15.41
120	2022-07-29	35.48	17.44	31.62	22.56	29.5	14.27	30.29	32.99	43.84	19.13	28.58	15.34
121	2022-07-30	35.48	19.03	31.47	22.45	33.14	17.64	29.83	28.16	52.98	23.05	28.63	15.4
122	2022-07-31	35.48	18.98	32.01	22.45	34.57	17.07	29.14	25.16	54.91	22.2	28.63	15.39
123	2022-08-01	35.48	20.5	31.51	22.47	38.52	18.04	29.21	23.46	58.66	22.71	28.61	15.39
123	2022-08-02	35.48	18.02	31.52	22.48	35.04	16.34	29.34	22.18	54.25	20.33	28.65	15.5
124	2022-08-02	35.48	20.55	31.32	22.40	35.44	16.37	29.65	21.05	57.97	21.26	28.63	15.39
125	2022-08-03	36.18	20.33	32.43	25.33	39.17	18.15	29.67	16.48	53.88	21.20	33.16	16.55
120	2022-08-04	37.53	24.82	33.5	30.81	37.09	16.09	29.08	10.48	55.64	23	40.31	18.29
128	2022-08-06	37.51	21.15	32.33	30.82	36.43	15.94	28.83	10.66	52.31	21.18	40.29	18.29
129	2022-08-07	37.53	22.43	34.75	30.81	34.12	14.81	28.21	13.13	46.3	19.68	40.29	18.3
130	2022-08-08	37.52	21.76	32.93	30.82	35.21	14.74	28.56	16.61	44.6	19.81	40.27	18.31
131	2022-08-09	37.53	22.49	34.38	30.83	31.53	14.04	28.97	17.75	37.32	18.36	40.22	18.31
132	2022-08-10	31.13	19.54	29.88	25.53	28.41	12.58	28.26	17.4	30.67	14.45	35.68	16.33
133	2022-08-11	25.25	17.24	25.56	20.68	26.42	10.55	27.59	14.47	26.21	11.39	29.58	14.45
134	2022-08-12	25.25	16.54	22.88	20.67	26.71	10.64	27.83	15.75	32.82	11.9	30.21	14.44
135	2022-08-13	25.25	17.05	25.07	20.68	26.69	10.62	27.8	16.74	28.9	11.83	29.83	14.44
136	2022-08-14	28.46	17.87	22.24	19.79	29.05	11.89	26.12	15.81	28.01	12.93	30.36	13.15
137	2022-08-15	30.2	18.33	21.53	19.31	30.77	12.81	24.87	14.36	21.88	9.44	27.64	12.55
138	2022-08-16	30.2	18.94	22.22	19.3	31.22	12.99	25.12	10.56	31.98	9.96	27.67	12.52
139	2022-08-17	30.2	18.94	22.32	19.29	31.44	12.97	25.19	8.37	33.33	10.58	27.6	12.51
140	2022-08-18	30.2	19.65	23.21	19.29	32.32	13.44	25.51	8	36.74	10.73	27.68	12.51
141	2022-08-19	30.2	18.83	21.87	19.3	31.66	13.05	26.29	7.7	33.18	10.45	27.61	12.51
142	2022-08-20	30.2	18.08	20.96	19.31	31.31	12.91	25.61	8.98	29.5	9.7	27.69	12.52
143	2022-08-21	30.2	18.31	20.85	19.31	31.69	13.07	24.74	10.42	29.55	10.53	27.63	12.54
144	2022-08-22	30.2	18.85	20.74	19.32	32.36	13.28	24.91	9.22	37.36	11.56	27.69	12.54
145	2022-08-23	30.2	18.55	20.99	19.31	33.17	13.08	24.94	6.45	40.55	11.4	27.61	12.53
146	2022-08-24	30.2	18.7	21.19	19.3	32.34	13.3	25.11	3.86	42.57	11.81	27.66	12.53
147	2022-08-25	33.48	19.58	22.72	18.68	35.59	15.23	25.01	7.73	40.31	13	25.67	12.54
148	2022-08-26	35.07	20.32	23.32	18.39	36.76	16.27	24.34	9.38	40.51	13.5	24.72	12.55
149	2022-08-27	35.07	19.97	23.24	18.4	36.34	16.18	24.35	8.8	38.43	13.6	24.74	12.55
150	2022-08-28	35.07	20.32	23.46	18.39	36.18	16.31	24.66	8.34	38.81	14.24	24.77	12.55
151	2022-08-29	41.82	21.79	22.69	17.59	36.4	18.25	25.89	8.47	32.45	15.23	24.1	13.5
152	2022-08-30	44.75	21.5	22.26	17.27	37.08	19.38	26.37	7.65	34.87	15.86	23.74	13.92
153	2022-08-31	42.28	23.28	21.7	16.23	44.16	24.29	25.8	8.99	51.78	20.77	23.14	15.21
		0	10.20	L	_0.20	1	5		5.55		/		

154	2022-09-01	10.22	23.77	21.12	15.44	10 67	27.11	24.79	10.65	EQ 16	23.32	22 50	16.2
154 155	2022-09-01	40.32	23.77	21.12 21.12	15.44 15.43	48.62 48.5	27.11 26.05	24.79	10.65 10.52	58.16 57.27	23.32	22.58 22.58	16.2
155	2022-09-02	40.32	22.78	21.12	15.43	48.21	25.35	24.73	10.32	52.08	22.08	22.58	16.21
150	2022-09-03	40.32	19.71	21.08	15.44		23.33	24.3		35.09	18.83	22.61	16.21
-						47.07			7.41				
158	2022-09-05	40.31	20.41	21.07	15.46	47.38	23.61	24.35	7.45	39.29	19.29	22.57	16.23
159	2022-09-06	40.3	21.62	21.59	15.34	47.67	24.87	24.64	7.31	46.34	20.55	22.54	16.24
160	2022-09-07	40.32	22.16	20.96	15.25	47.89	25.74	24.65	6.37	52.91	21.39	22.57	16.23
161	2022-09-08	40.31	22.51	20.9	15.25	48.94	26.1	24.5	4.98	58.44	21.96	22.59	16.23
162	2022-09-09	42.58	22.26	20.26	16.05	48.45	25.98	24.63	5.02	59.25	22.76	23.8	18.52
163	2022-09-10	47.67	21.62	22.1	17.19	48.6	26.07	26.7	8.11	60.79	25.47	24.85	21.13
164	2022-09-11	48.49	17.88	24.75	17.23	48.86	25.03	28.22	11.9	52.69	25.41	23.98	19.88
165	2022-09-12	48.48	16.93	24.6	17.24	48.79	24.7	28.35	12.61	43.76	25.13	23.93	19.88
166	2022-09-13	48.49	17.17	24.22	17.23	48.72	25.02	28.47	6.31	45.2	25.2	23.98	19.88
167	2022-09-14	52.08	16.95	23.01	16.27	48.62	24.75	28.61	1.45	47.35	25.44	23.98	19.88
168	2022-09-15	54.21	18.84	23.14	15.71	48.73	24.63	28.56	0.44	45.48	25	23.98	19.86
169	2022-09-16	54.19	17.61	22.44	15.74	48.72	24.62	28.34	0.58	45.84	25.13	23.96	19.86
170	2022-09-17	54.19	19.08	22.73	15.74	49.01	25.78	28.14	0.46	51.56	25.82	25.25	19.86
171	2022-09-18	54.2	20.65	23.72	15.74	49.05	26.18	28.39	0.53	55.34	25.87	23.97	19.88
172	2022-09-19	58.42	21.93	25.44	17.65	54.96	25.37	28.02	15.35	58.09	27.69	27.09	20.23
173	2022-09-20	58.64	23.01	28.67	20.45	59.08	25.06	28.49	25.07	57.83	29.23	29.82	19.91
174	2022-09-21	55.96	20.78	29.36	21.14	58.94	24.79	28.47	25.15	52.46	29.17	29.82	19.9
175	2022-09-22	55.97	21.93	29.28	21.14	59.02	24.97	28.68	25.08	52.54	29.19	29.78	19.9
176	2022-09-23	55.96	23.91	29.26	21.13	59.33	25.62	28.32	24.96	57.11	29.23	29.81	19.92
177	2022-09-24	55.95	20.74	29.48	21.14	59.05	24.71	28.52	24.72	55.54	29.14	29.76	19.92
178	2022-09-25	55.95	21.63	29.68	21.13	59.3	25.09	28.53	24.35	62.28	29.24	30.73	19.93
179	2022-09-26	55.95	21.99	29.63	21.13	59.32	25.18	28.54	24.03	58.47	29.25	29.8	19.93
180	2022-09-27	59.43	22.74	26.63	19.44	64.29	29.16	28.64	26.21	58.42	32.33	27.98	18.78
181	2022-09-28	59.5	25.09	26.26	17.7	67.58	31.96	28.57	24.25	59.69	33.93	26.9	18.03
182	2022-09-29	56.09	22.8	28.76	18.08	62.71	26.2	32.1	19.23	60.37	36.05	28.36	27.29
183	2022-09-30	59.64	21.5	29.7	19.63	66.59	21.26	33.58	19.35	63.97	34.93	28.02	30.02
184	Prescribed Standards	100	60	80	80	100	60	80	80	100	60	80	80
185	Maximum Value	83.13	35.36	51.59	31.39	85.68	54.96	42.22	40.78	81.84	44.98	40.31	30.02
187	Minimum Value	25.25	16.54	18.83	15.25	22.03	10.55	22.18	0.44	21.88	9.44	11.45	7.37
189	Geometric Mean	58.46	24.66	28.22	21.71	53.43	26.47	29.32	18.64	57.3	27.17	28.73	17.08
190	Median	59.46	23.15	27.52	21.13	51.56	24.71	28.76	19.24	56.31	25.41	27.67	16.85
194	Data Availablity %	98.36	98.36	98.36	98.36	100	100	100	100	97.81	97.81	97.81	97.81

Online Continuous Emission Monitoring System Report

Unit# 1 CEMS

CEMS DAYWISE VALUES FOR THE PERIOD FROM APR '2022 -SEPT' 2022

S. NO.	DATE	UNIT# 1 LOAD(MW)		NIT# 1 S((mg/nm3)		UNIT# 1 NOx (mg/nm3)			L	JNIT# 1 DU (mg/nm3)	
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	1-Apr-22				Uni	t in shutdo	wn cond	ition			
2	2-Apr-22					t in shutdo					
3	3-Apr-22					t in shutdo					
4	4-Apr-22 5-Apr-22					t in shutdo t in shutdo					
6	6-Apr-22					t in shutdo					
	•	100.11	052.0	0707	1				70.07	77	70.10
7	7-Apr-22	160.11	852.6	838.3	863.8	328.25	322.3	333.17	38.23	37	39.12
8	8-Apr-22	592.95	846.1	804.9	876.8	325.79	314.6	337.28	37.73	35.28	40.03
9	9-Apr-22	588.03	851.3	820.6	880.9	327.98	317.3	339.08	38.11	36.01	40.35
10	10-Apr-22	587.1	850.4	823.5	872.3	327.7	317.2	336.43	38.05	36	39.84
11	11-Apr-22	567.89	843.1	811.5	866.2	325.75	314.6	333.93	37.65	35.51	39.33
12	12-Apr-22	459.37	799.7	755.4	855.2	313.73	298.1	331.4	35.44	32.3	38.86
13	13-Apr-22	410.18	783.6	761.6	809.7	308.58	300.2	317.57	34.35	32.97	36.17
14	14-Apr-22	413.16	773.9	750.4	799.7	304.99	296.4	315.65	33.64	31.97	35.82
15	15-Apr-22	381.44	766.9	736.9	794.6	303.61	294.6	313.44	33.42	31.67	35.39
16	16-Apr-22	385	766.3	740.5	799.7	302.93	293.9	315.64	33.26	31.51	35.82
17	17-Apr-22	363.75	767.5	747	794.2	304.02	296.2	313.8	33.52	31.65	35.45
18	18-Apr-22	269.49	744.8	715.3	763.6	299.08	289.2	304.69	32.52	30.32	33.69
19	19-Apr-22	248.85	727.2	718	733.6	293.67	289.7	296.64	31.6	30.92	32.14
20	20-Apr-22	249.45	714.7	702.1	731.9	288.68	283.8	295.39	30.53	29.48	32.18
21	21-Apr-22	245.32	704.7	698.4	711.1	284.65	282.1	287.17	29.74	29.24	30.24
22	22-Apr-22	281.6	763.2	704	789.3	303.08	284.4	312.69	33.27	29.35	35.25
23	23-Apr-22	391	777	727.3	802.8	307.14	291.5	316.09	34.06	31.06	35.86
24	24-Apr-22	380.99	769.1	730.5	806.8	304.36	292.1	317.6	33.56	31.17	36.19
25	25-Apr-22	392.8	773.3	738.3	804.9	305.67	294.7	316.83	33.84	31.68	36.28
26	26-Apr-22	391.03	771.6	725.7	805.9	304.95	292.5	317.36	33.69	31.29	36.15
27	27-Apr-22	412.62	783.4	745.2	809.1	308.78	295.5	318.33	34.42	31.72	36.34
28	28-Apr-22	418.13	781.6	752.8	817.5	307.77	297.6	319.52	34.25	32.22	36.54
29	29-Apr-22	422.89	779.4	750	811.2	306.66	296.5	319.08	33.97	31.87	36.49
30	30-Apr-22	420.43	785.6	748.3	809.4	309.37	297.2	318.35	34.61	32.29	36.34
31	1-May-22	347.63	752.8	707.5	812.6	299.42	284.2	319.46	36.72	32.19	40.71
32	2-May-22	393.52	771.7	736	803.7	304.9	292.3	316.56	38.98	33.55	40.71
33	2-May-22 3-May-22	129.76	769.5	738.6	809.1	304.9	292.5	318.4	34.59	28.31	41.34
33 34	3-May-22 4-May-22	531.53	858.8	751.9	809.1	329.91	295.7	341.95	36.97	33.84	40.69
35	5-May-22	600.47	849	762	885.1	326.66	301.6	339.8	36.02	33.48	39.31
36	6-May-22	600.31	853.2	762.3	891	322.32	296.2	343.42	35.9	33.52	38.71
37	7-May-22	604.93	862.1	813.3	888.6	322.89	298.6	342.38	38.93	36.03	40.7
38	8-May-22	565.49	836.5	751.7	874.6	313.24	294	341.52	37.25	32.02	39.68
39	9-May-22	597.3	850.1	776	892.7	327.27	303.5	342.24	38.02	33.35	40.96
40	10-May-22	577.77	846.1	780.8	887.9	326.56	304.9	340.86	37.83	33.62	40.69
41	11-May-22	593.67	824.5	754	889.9	329.95	313.1	344.83	38.49	35.19	41.47
42	12-May-22	568.11	848.8	778.6	879.7	323.87	299.6	342.22	37.4	32.59	40.48
43	13-May-22	594.21	868.3	837.3	895.1	326.83	314.2	340.87	37.95	35.61	40.69

		-									
44	14-May-22	586.96	869	833.8	893.8	327.09	297.4	340.9	37.97	32.19	40.69
45	15-May-22	600.7	860.9	785	891.8	319.01	300.4	336.63	38.41	32.96	41.19
46	16-May-22	627.69	862.8	826.9	886.8	324.47	301.1	339.12	38.69	35.99	40.56
47	17-May-22	631.45	868.9	840.2	892.4	329.79	311	342.24	39.18	37.32	40.97
48	18-May-22	637.32	866.3	820.5	893.6	327.4	294.3	340.29	38.86	35.85	41.04
49	19-May-22	634.6	870.5	841.8	896.1	323.91	300.7	338.28	39.24	37.14	41.22
50	20-May-22	530.95	823.2	752.5	884	319.68	298.1	339.31	36.56	32.34	40.38
51	21-May-22	489.16	807.9	753	892.2	315.56	297.9	342.19	35.71	32.29	40.95
52	22-May-22	456.21	795.3	744.6	871.4	311.86	294.5	335.02	34.99	31.61	39.6
53	23-May-22	529.99	825.7	762.8	891.9	320.44	302.7	341.74	36.65	33.01	40.85
54	24-May-22	634.27	868.8	846.7	902.9	332.94	324.3	345.43	39.07	37.38	41.58
55	25-May-22	648.4	879.3	858.4	899.8	336.54	327.6	344.74	39.86	38.08	41.44
56	26-May-22	642.65	874	841.2	898.2	334.64	323	344.1	39.44	37.12	41.32
57	27-May-22	608.92	860	779	891.3	330.66	305.1	340.9	38.64	33.68	40.79
58	28-May-22	612.12	856.6	769.3	899	329.23	302.4	344.31	38.38	33.16	41.36
59	29-May-22	591.78	852.6	762	887.5	328.53	300	340.79	38.25	32.67	40.68
60	30-May-22	632.97	864.6	812.7	892.2	331.29	314.1	341.4	38.79	35.4	40.78
61	31-May-22	617.06	861.6	786.2	894	331	309.2	342.26	38.75	34.5	40.95
62	1-Jun-22	604.55	859	784.4	890.3	330.35	306.5	341.34	39.57	33.93	40.77
63	2-Jun-22	612.13	862.1	816.5	891.5	331.29	315.2	341.79	38.8	35.83	42.7
64	3-Jun-22	584.86	849.6	788.2	897.5	327.7	307.5	343.62	38.1	34.13	41.22
65	4-Jun-22	625.32	857.3	842.7	887.5	328.71	323.1	341.11	38.26	37.11	40.75
66	5-Jun-22	607.48	864.6	806.7	896	332.56	315.2	342.61	39.04	35.68	41.06
67	6-Jun-22	630.48	867.9	830.7	896.7	332.68	319.8	343.26	39.06	36.5	42.22
68	7-Jun-22	612.35	856.7	822.2	898.5	329.16	318.3	344.2	38.36	36.24	41.34
69	8-Jun-22	607	858.6	814.3	890.2	316.62	308.3	331.98	38.6	35.85	42.7
70	9-Jun-22	552.07	833.1	777.5	886.6	328.25	322.3	333.17	37.13	33.45	40.62
71	10-Jun-22	596.45	856.8	800.1	894.5	325.79	314.6	337.28	38.48	34.96	40.85
72	11-Jun-22	563.39	839.6	761.6	892.7	327.98	317.3	339.08	37.48	32.46	40.87
73	12-Jun-22	520.84	819.9	745.9	902.9	327.7	317.2	336.43	36.34	31.69	41.53
74	13-Jun-22	607.51	858.1	791.3	902.2	325.75	314.6	333.93	38.55	34.2	41.55
75	14-Jun-22	607.98	855.8	806.3	895.6	329.01	312.9	343.13	38.33	35.19	41.13
76	15-Jun-22	629.66	866.6	827.4	896.5	332.19	319.5	343.68	38.93	36.46	41.24
77	16-Jun-22	627.08	867.2	840	899.5	332.72	323.2	343.96	39.11	37.14	41.29
78	17-Jun-22	609.16	855.7	800	888.9	328.85	311.7	340.24	38.31	34.97	40.55
79	18-Jun-22	573.98	840.2	770.6	892.5	324.94	301.9	342.15	37.58	33.04	40.94
80	19-Jun-22	512.97	819.2	753.2	878.3	318.64	297	337.41	36.33	32.08	39.94
81	20-Jun-22	504.06	820.1	740.7	894.3	319.97	294	343.1	36.46	31.53	41.12
82	21-Jun-22	533.18	823.4	739.1	891.1	319.79	293.4	341.45	36.58	31.39	40.8
83	22-Jun-22	579.8	847.6	770.7	888.5	308.78	295.5	318.33	38	33.66	40.77
84	23-Jun-22	522.42	820.3	758.7	884.3	307.77	297.6	319.52	36.36	32.79	40.56
85	24-Jun-22	523.2	822.6	746.7	883.2	306.66	296.5	319.08	36.61	31.96	40.28
86	25-Jun-22	522.64	818	746.5	869.3	309.37	297.2	318.35	36.19	32.92	39.5
87	26-Jun-22	536.03	826.1	751.1	890.4	313.33	301.5	325.6	36.77	32.29	40.69
88	27-Jun-22	503.39	811.2	737.7	890.1	316.26	292.9	340.74	35.87	32.31	41.03
89	28-Jun-22	544.64	824.3	742.1	889.6	319.55	294.2	341.35	36.48	30.19	40.66
90	29-Jun-22	572.12	846.2	784.6	877.2	326.95	307.5	336.8	38	34.15	42.88
91	30-Jun-22	526.71	824.3	744.9	892	320.4	295	342.4	36.66	31.37	41
92	1-Jul-22	521.02	821.8	738	892.3	319.23	292.9	342.17	36.48	31.3	40.95
<u> </u>	1 301 22	221.02	521.0	00	0,2,0	212.22		J-TL.11	20.40	ر.,ر	-0.0

07											
93	2-Jul-22	529.91	817.4	734.1	887.8	317.48	291.4	340.19	36.1	31.2	40.55
94	3-Jul-22	507.12	812.3	744.5	893.9	316.58	295.4	342.68	35.97	31.79	41.04
95	4-Jul-22	514.61	826.6	752.1	890.9	321.18	298.5	341.41	36.82	32.38	40.79
96	5-Jul-22	529.03	826.1	749.9	884.5	320.89	297.6	339.95	36.77	32.23	40.52
97	6-Jul-22	533.61	829.2	754.9	897.9	321.98	299.1	343.33	36.96	32.17	41.31
98	7-Jul-22	529.43	821.6	741.6	876.9	319.25	293.7	335.52	36.46	31.45	39.61
99	8-Jul-22	524.43	821.9	741.5	874.8	319.27	294	336.19	36.43	31.51	39.77
100	9-Jul-22	415.11	771.3	744.7	822.8	304.49	294.9	322.33	33.63	31.68	37.11
101	10-Jul-22	393.81	769.5	737.9	816.9	304.19	292.8	320.47	33.57	31.27	36.29
102	11-Jul-22	411.3	785.1	745.2	881.8	309.47	295.4	339.31	34.58	31.8	40.4
103	12-Jul-22	440.53	795.1	738.7	889.8	312.09	292.9	341.1	35.06	31.3	40.74
104	13-Jul-22	420.95	784.5	740.5	856.1	308.94	293.6	329.36	34.47	31.45	38.41
105	14-Jul-22	461.82	796.8	734.4	904.2	311.84	291.5	345.66	35.02	31.03	41.62
106	15-Jul-22	454.64	795.7	740.1	880.4	312.05	293.4	338.81	35.02	31.39	40.3
107	16-Jul-22	505.47	815	747.7	890	317.44	295.8	341.07	36.08	31.77	40.64
108	17-Jul-22	511.85	813.3	745.6	880	316.65	295.8	336.98	35.91	31.87	39.9
109	18-Jul-22	531.61	823.8	740.4	887.5	319.51	293.5	340.56	36.51	31.43	40.68
110	19-Jul-22	543.07	832.2	748.5	885.5	322.64	297.2	339.45	37.12	32.15	40.54
111	20-Jul-22	539.39	822	741.4	882.5	318.9	294.2	338.78	36.38	31.46	40.28
112	21-Jul-22	549.46	832	746	888.4	322.4	296.3	340.81	37.08	31.98	40.68
113	22-Jul-22	552.86	829.4	743.7	894.1	321.13	294.6	342.27	36.78	31.63	40.95
114	23-Jul-22	489.22	807.2	760.3	888.9	315.42	301.7	341.22	35.7	32.91	40.73
115	24-Jul-22	446.18	786.4	741.8	854.4	308.64	294.7	327.92	34.38	31.41	38.11
116	25-Jul-22	504.67	810.9	739.6	878.9	315.84	293.2	337.66	35.77	31.23	40.06
117	26-Jul-22	583.47	846.4	792.3	889.4	326.37	309.4	340.52	37.82	34.52	40.63
118	27-Jul-22	607.96	855.4	788.1	890.1	328.91	308.8	341.7	38.32	34.41	40.86
119	28-Jul-22	565.49	838.9	765.6	880.7	324.29	301.4	338.75	37.45	32.96	40.28
120	29-Jul-22	554.96	839.6	750.7	891.7	324.99	297	342.06	37.53	32.1	40.73
121	30-Jul-22	559.35	833.9	751.4	893.1	322.62	298.8	342.67	37.13	32.8	41.05
122	31-Jul-22	504.4	814.5	735.4	884.2	317.61	292	338.67	36.16	31.12	40.24
123	1-Aug-22	511.85	766.9	736.9	794.6	303.61	294.6	313.44	33.42	31.67	35.39
124	2-Aug-22	531.61	766.3	740.5	799.7	302.93	293.9	315.64	33.26	31.51	35.82
125	3-Aug-22	543.07	767.5	747	794.2	304.02	296.2	313.8	33.52	31.65	35.45
126	4-Aug-22	539.39	744.8	715.3	763.6	299.08	289.2	304.69	32.52	30.32	33.69
127	5-Aug-22	549.46	727.2	718	733.6	293.67	289.7	296.64	31.6	30.92	32.14
128	6-Aug-22	583.47	829.2	754.9	897.9	321.98	299.1	343.33	36.96	32.17	41.31
129	7-Aug-22	607.96	821.6	741.6	876.9	319.25	293.7	335.52	36.46	31.45	39.61
130	8-Aug-22	565.49	850.1	776	892.7	327.27	303.5	342.24	38.02	33.35	40.96
131	9-Aug-22	554.96	846.1	780.8	887.9	326.56	304.9	340.86	37.83	33.62	40.69
132	10-Aug-22	559.35	824.5	754	889.9	329.95	313.1	344.83	38.49	35.19	41.47
133	11-Aug-22	607.48	848.8	778.6	879.7	323.87	299.6	342.22	37.4	32.59	40.48
134	12-Aug-22	630.48	868.3	837.3	895.1	326.83	314.2	340.87	37.95	35.61	40.69
135	13-Aug-22	612.35	869	833.8	893.8	327.09	297.4	340.9	37.97	32.19	40.69

											1
136	14-Aug-22	608.15	823.2	752.5	884	319.68	298.1	339.31	36.56	32.34	40.38
137	15-Aug-22	629.66	807.9	753	892.2	315.56	297.9	342.19	35.71	32.29	40.95
138	16-Aug-22	627.08	795.3	744.6	871.4	311.86	294.5	335.02	34.99	31.61	39.6
139	17-Aug-22	609.16	825.7	762.8	891.9	320.44	302.7	341.74	36.65	33.01	40.85
140	18-Aug-22	573.98	868.8	846.7	902.9	332.94	324.3	345.43	39.07	37.38	41.58
141	19-Aug-22	512.97	831	796.9	854.9	355.76	343.7	366.79	38.75	36.51	40.93
142	20-Aug-22	539.39	835.3	807.5	860	357.62	348	368.22	39.1	37.18	42.17
143	21-Aug-22	549.46	814.9	736	857.4	350.86	321.6	367.69	37.87	32.4	41.09
144	22-Aug-22	552.86	825.5	767.7	859.3	354.53	333.6	367.57	38.59	34.66	41.03
145	23-Aug-22	489.22	795.6	720.1	836.4	344.92	316.5	360.23	36.83	31.47	39.73
146	24-Aug-22	446.18	843.7	801.9	875.7	302.58	294.3	312.7	37.8	34.84	40.23
147	25-Aug-22	504.67	829.5	779.8	871.8	303.29	292.5	311.15	36.82	33.24	39.89
148	26-Aug-22	567.73	837.2	794.5	867.6	300.03	292.9	309.8	37.32	34.31	39.45
149	27-Aug-22	605.5	805.1	722.9	874.1	321.95	294.7	345.79	35.22	29.42	40.11
150	28-Aug-22	643.18	827.3	746.1	874.7	328.7	301.7	345.83	36.6	30.98	41.12
151	29-Aug-22	523.97	803.1	721.9	872.5	321.47	294.3	345	35.11	29.88	39.95
152	30-Aug-22	553.61	805.2	719.7	876.4	322.17	293.4	346.47	35.18	29.37	40.09
153	31-Aug-22	557.58	801.5	727	867	321.09	296.7	342.58	35.03	30.87	39.61
154 155	1-Sep-22	520.79	825.9	768.6	894.6	320.91	303.8	342.87	36.71	33.42	40.62
	2-Sep-22	605.44	855.4	774.2	895.2	329.01	304.2	342.78	38.33	33.5	41.21
156 157	3-Sep-22	626	858.1	807.4	893.4	329.13	313.1	342.69	38.36	35.08	41.05
157	4-Sep-22	568.49	839.9	789.7	904	324.63	307.5	345.87	37.51	34.4	41.67
159	5-Sep-22	588.59	849.6	787.2	890.9	327.53	309	340.71	38.1	34.47	41.04
160	6-Sep-22	622.77	865	808.1	900.6	332.07	314.8	344.82	38.9	35.58	41.46
161	7-Sep-22	588.5	849.2	811	891.9	327.31	313.8	341.26	37.97	35.34	40.97
162	8-Sep-22 9-Sep-22	607.15 565.23	854.6 837.2	825.4 754.9	885.6 888.4	328.54 323.69	319.4 298	339.63 340.18	38.22 37.33	36.46 32.29	40.44 40.54
163	10-Sep-22	564.23	835.2	782.2	892.6	322.84	306.4	341.44	37.1	33.94	40.79
164	10-Sep-22 11-Sep-22	541.92	830.8	745	880	322.04	294.6	338.14	37.06	31.61	40.16
165	12-Sep-22	532.44	826.9	771.4	865.2	321.13	303.9	333.38	36.87	33.67	39.22
166	13-Sep-22	507.65	815.1	760.1	873.9	317.42	299.2	334.62	36.14	32.51	39.92
167	14-Sep-22	500.19	807.6	758.4	880.1	314.69	299.4	337.35	35.6	32.87	39.98
168	15-Sep-22	485.84	807.4	736.2	875	315.63	292.1	337.16	35.75	31.36	39.98
169	16-Sep-22	458.65	803.7	755	887.4	314.89	300	340.11	35.65	32.72	40.98
170	17-Sep-22	464.35	800.8	755.1	874.9	313.6	297.6	336.26	35.34	32.2	39.78
171	18-Sep-22	466.88	803.2	758.7	868.2	314.02	298.7	334.97	35.45	32.42	39.55
172	19-Sep-22	504.96	816.6	761.8	882.1	317.91	299.7	339.17	36.15	32.73	40.36
173	20-Sep-22	497.05	815.6	760.2	891.8	317.83	299.2	341.8	36.21	32.89	40.87
174	21-Sep-22	477.29	800.6	745.4	859.2	312.82	295.1	332.35	35.19	32.05	38.72
175	22-Sep-22	469.12	799.5	755.6	872.4	312.64	298.3	334.5	35.16	32.34	39.81
176	23-Sep-22	431.7	784.8	742.5	830.9	308.55	294	324.61	34.39	31.5	37.23
177	24-Sep-22	493.66	811.5	778.5	880.8	316.25	305.1	337.42	35.91	33.68	39.8
178	25-Sep-22	516.03	825.1	770.7	882.1	320.62	302	337.36	36.76	33.05	39.97
179	26-Sep-22	490.56	811.1	756.9	893.6	316.41	298	342.37	35.88	32.28	40.72
180	27-Sep-22	493	811.4	755.6	876.2	316.38	299.1	334.9	35.93	32.52	39.48
181	28-Sep-22	491.72	808.6	762.1	862	315.27	299.7	331.32	35.71	32.62	38.8
182	29-Sep-22	508.32	818.9	772.3	889.6	318.75	303.1	341.08	36.4	33.14	40.73
183	30-Sep-22	490.37	810.3	766.8	881.5	316.09	301	338.29	35.82	32.87	40.18
201	50-Sep-22	490.37	010.5	700.8	001.0	90.09	301	220.29	22.02	J2.01	40.18

Unit# 2 CEMS

54

55

56

57

58

59

60

24-May-22

25-May-22

26-May-22

27-May-22

28-May-22

29-May-22

30-May-22

857.4

849.6

829.5

851.8

846.8

839.6

848.4

828.4

826.9

725.8

825.8

820

779

823.1

651.29

648.93

638.69

616.63

633.53

618.97

650.3

874.3

871.3

872.7

877.5

875.6

876

873.4

S.		UNIT# 2	U	NIT# 2 SC)x	U	NIT# 2 N()x	L	INIT# 2 DUS	ST		
NO.	DATE	LOAD(MW)		(mg/nm3)			(mg/nm3)		-	(mg/nm3)			
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX		
1	1-Apr-22	642.73	838.4	786	867.4	357.83	339.6	371.53	39.13	36.21	41.49		
2	2-Apr-22	618.48	833.3	804.8	863.5	356.93	345.8	369.45	38.99	36.83	41.4		
3	3-Apr-22	615.77	831	791.9	859.5	355.86	343.9	368.28	38.8	36.7	41.19		
4	4-Apr-22	640.2	842	814.7	866.7	359.74	347.6	370.31	39.51	37.55	41.63		
5	5-Apr-22	623.71	834	809.9	858.3	356.93	348.5	368.34	38.96	37.29	41.23		
6	6-Apr-22	600.85	822.6	798.2	855.2	352.76	342.5	366.93	38.17	36.24	40.95		
7	7-Apr-22	635.25	843	822.4	861.4	360.26	353.6	367.94	39.57	38.21	41.12		
8	8-Apr-22	610.94	829.6	779.4	860.2	355.62	338	368.85	38.75	35.47	41.43		
9	9-Apr-22	624.18	835	798.1	860.6	357.39	342.6	368.81	39.05	36.24	41.3		
10	10-Apr-22	624.10	833.1	809.7	857.6	356.49	345.9	367.32	38.9	36.8	41.5		
10	11-Apr-22	640.16	841.2	814.6	872.8	359.34	347.8	373.24	39.41	37.16	42.12		
12	12-Apr-22	647.62	851	823.7	868.8	363.86	350.8	371.69	40.3	37.72	41.83		
12	13-Apr-22	648.96	846.8	828.6	871	361.64	352.2	372.67	39.88	37.95	42.02		
13	13-Apr-22 14-Apr-22	638.74	840.8	828.6	855.8	359.67	350.2	366.22	39.88	37.95	42.02		
14	14-Apr-22 15-Apr-22	615.54	830.9	764.4	868.7	355.97	332.5	371.28	38.76	34.46	41.74		
16	16-Apr-22	556.73	807.7	735.5	868.3	348.55	322	371.28	37.46	32.44	41.74		
10	17-Apr-22	401.03	753.2	725.5	783.4	330.67	318.1	343.4	34.21	31.76	36.68		
17	17-Apr-22 18-Apr-22	382.38	744.5	725.5	783.4	327.85	318.5	342.37	33.74	31.87	36.57		
18	18-Apr-22 19-Apr-22	369.1	744.5	724	767.1				33.52		35.78		
						326.8	316.9	338.36		31.54			
20	20-Apr-22	370.61	739.4	721.3	759.7	325.88 325.04	316.8	336.07	33.35	31.52	35.38		
21	21-Apr-22	368.91	737.6	722	758.7	325.04	317.5	335.72	33.21 34.97	31.83	35.31		
22	22-Apr-22	445.57	768.1	725.6	842.3	. –	318.8 333.9	362.81	-	31.9	39.98		
23	23-Apr-22	628.59	838.5	768.5	865.4	358.65		370.97 368.71	39.32	34.71	41.72		
24	24-Apr-22	595.05	825	762.5	861.6	354.5	332.9		38.63	34.58	41.26		
25	25-Apr-22	599.41	823.9	774.6	853.1	353.56	336	364.79	38.36	35.44	40.48		
26	26-Apr-22	618.68	836.2	749.4	865.8	358.03	326.7	371.02	39.18	33.36	41.73		
27	27-Apr-22	620.58	832.9	779.5	863.5	356.64	336.3	369.81	38.97	35.08	41.73		
28	28-Apr-22	618.63	835.4	775.6	862.2	357.76	334.9	369.24	39.16	34.82	41.37		
29	29-Apr-22	621.35	833.5	814.8	855.9	356.85	347.7	366.85	39	37.14	40.95		
30	30-Apr-22	627.21	836.3	801.2	861.9	357.7	344.4	369.15	39.08	36.6	41.36		
31	1-May-22	605.51	834.7	795.6	875.2	319.71	307.8	334.15	37.64	35.21	40.3		
32	2-May-22	627.23	844.3	800	877.5	322.8	308	335.06	38.06	35.8	40.74		
33	3-May-22	652.31	853.6	823.7	881.9	325.54	315.6	336.36	37.77	35.94	40.31		
34	4-May-22	647.45	854.5	826.6	876.9	326.15	315.2	334.77	38.45	35.43	41.09		
35	5-May-22	638.06	843.8	805.6	874.3	322.26	308.8	334.13	38	35.33	40.92		
36	6-May-22	638.78	841	811.2	864.2	321.05	310.2	330.16	38.43	35.46	40.66		
37	7-May-22	640.62	844.2	811.6	873.6	322.3	310.3	333.59	37.84	35.13	40.54		
38	8-May-22	256.26	829.4	766.2	857.2	318.05	299.4	327.54	37.24	34.5	39.26		
39	9-May-22					t in shutdo							
40	10-May-22					t in shutdo							
41	11-May-22	333.83	834.3	709.5	869.1	319.49	279.6	331.35	37.46	30.62	39.82		
42	12-May-22	615.34	836.8	794.9	858.5	320.28	305.7	328.2	37.62	35.02	39.51		
43	13-May-22	389.43	841.9	807.2	877.8	322.45		335.06	38.18	35.61	40.82		
44	14-May-22		Unit in shutdown condition										
45	15-May-22					t in shutdo							
46	16-May-22					t in shutdo				•			
47	17-May-22	199.17	838.2	812.5	854.7	320.45		328.16	37.45	35.15	39.77		
48	18-May-22					t in shutdo							
49	19-May-22					t in shutdo							
50	20-May-22				Uni	t in shutdo	own cond	ition					
51	21-May-22					t in shutdo							
52	22-May-22	120.11	822.1	802.7	845.8	315.8	307.8	323.79	36.88	34.79	38.45		
53	23-May-22	596.17	832	749.8	876.5	319.02	293.1	334.73	37.5	33.24	40.79		
54	24-May-22	651 29	8574	828.4	874 3	327 14	315 5	333.83	38 91	35 99	40 57		

315.5

315.4

312.4

309.5

306.2

285.3

309

333.83

342.9

339.96

335.2

329.4

346.12

331.54

38.91

38.18

38.48

37.93

38.04

37.79

38.04

35.99

36.09

35.86

35.76

34.34

33.67

35.92

40.57

40.4

40.51

40.23

40.29

40.77

40.37

327.14

324.16

324.73

323.59

316.38

319.86

323.58

CEMS DAYWISE VALUES FOR THE PERIOD FROM APR '2022 -SEPT' 2022

61	31-May-22	634.17	846.3	805.3	872.9	320.03	311.2	334.29	38.19	35.58	40.67			
62	1-Jun-22	628	845.8	798.3	873.3	323.33	306.7	333.57	38.28	34.72	41.54			
63	2-Jun-22	633.4	839.9	803.5	868.6	320.84	309.4	367.94	37.52	35.33	42.01			
64	3-Jun-22	592.4	823.3	758.7	864.6	315.82	294.3	368.85	36.72	32.61	39.53			
65	4-Jun-22	645.79	848.9	823.2	873.5	323.93	313.8	368.81	38.16	35.7	42.46			
66	5-Jun-22	610.92	836.9	772.6	878	320.46	298.9	367.32	37.66	33.48	41.76			
67	6-Jun-22	646.12	849.5	812.7	878.5	324	312.4	373.24	38.14	35.77	40.78			
68	7-Jun-22	623.13	841	787.2	872.2	321.69	304.5	371.69	37.89	34.34	39.41			
69	8-Jun-22	631.24	838.8	803	878	320.48	307.7	372.67	37.47	34.72	42.83			
70	9-Jun-22	582.24	829.6	768.7	877.7	318.75	297.5	366.22	37.61	33.2	40.83			
71 72	10-Jun-22	609.62	840.3	790.4	873.8	321.69	304.4	371.28	37.98	34.38	41.76			
72	11-Jun-22 12-Jun-22	570.47	819.1	762.2	865.5	314.89	296.2	371.48	36.74 35.37	33.23	40.24			
74	12-Jun-22 13-Jun-22	526.61 611.51	796 840.4	728.1 771.8	876.4 878.8	307.43 321.96	285.3 298.8	343.4 332.74	38.09	31.28 33.52	39.7 40.9			
75	14-Jun-22	616.28	838.4	799.9	873	320.9	307.3	334.65	37.77	34.88	42.77			
76	15-Jun-22	638.77	853.3	808	874.5	326	309.6	332.98	38.76	35.05	40.69			
77	16-Jun-22	646.83	852.3	819.1	879.9	325.29	313.3	336.47	38.5	35.9	41.84			
78	17-Jun-22	613.45	834.2	784.2	871.6	319.3	304.9	335.72	37.38	34.77	40.19			
79	18-Jun-22	596.18	832.6	775	876.7	319.41	301.9	362.81	37.61	34.82	40.73			
80	19-Jun-22	518.1	796.2	733.1	872.2	307.71	287.6	370.97	35.48	31.99	41.55			
81	20-Jun-22	512.05	799.2	720.9	873.2	309	283	368.71	35.88	29.88	40.41			
82	21-Jun-22	543.68	811.8	734.6	863.6	313.17	288.1	364.79	36.65	32.05	39.85			
83	22-Jun-22	596.99	829.2	766.7	871.3	318	297.7	371.02	37.24	33.13	40.58			
84	23-Jun-22	533.94	802.7	734.1	879.9	309.92	288	369.81	35.95	31.97	40.9			
85	24-Jun-22	540.1	803.1	723.1	875.9	309.8	283.8	329.91	35.84	31.07	43.66			
86 87	25-Jun-22	157.47	57.47 809.6 749 859.3 311.36 292.5 322.77 35.93 32.74 39.12											
87	26-Jun-22 27-Jun-22		Unit in shutdown condition Unit in shutdown condition											
89	27-Jun-22 28-Jun-22		Unit in shutdown condition Unit in shutdown condition											
90	29-Jun-22													
91	30-Jun-22		Unit in shutdown condition Unit in shutdown condition											
92	1-Jul-22					t in shutdo								
93	2-Jul-22					t in shutdo								
94	3-Jul-22				Uni	t in shutdo	wn cond	ition						
95	4-Jul-22				Uni	t in shutdo	wn cond	ition						
96	5-Jul-22				Uni	t in shutdo	wn cond	ition						
97	6-Jul-22					t in shutdo								
98	7-Jul-22				-	t in shutdo								
99	8-Jul-22					t in shutdo								
100 101	9-Jul-22 10-Jul-22					t in shutdo								
101	10-Jul-22 11-Jul-22				-	t in shutdo t in shutdo								
102	12-Jul-22					t in shutdo								
104	13-Jul-22					t in shutdo								
105	14-Jul-22					t in shutdo								
106	15-Jul-22					t in shutdo								
107	16-Jul-22			_	Uni	t in shutdo	wn cond	ition						
108	17-Jul-22					t in shutdo								
109	18-Jul-22					t in shutdo								
110	19-Jul-22					t in shutdo								
111	20-Jul-22	04 4 7	007.10	000.00		t in shutdo			40.00	00.0	44.00			
112 113	21-Jul-22	214.3	887.13	830.33	968.12	380.33	361.18	406.01	40.39	36.6	44.83			
115	22-Jul-22 23-Jul-22	561.14 499.72	934	840.11	985.2	394.08 386.20	363.54	411.14	42.3	36.74	45.63			
114	23-Jul-22 24-Jul-22	499.72	907.54 897.81	844.12 844.32	989.37 980.61	386.20 383.52	365.13 365.08	412.99 409.62	41.21 40.84	37.13 37.08	46.14 45.65			
116	24-Jul-22 25-Jul-22	527.89	926.41	848.52	990.01	392.48	366.51	409.02	40.84	37.08	45.65			
117	26-Jul-22	598.8	954.57	884.25	997.66	401.07	379.66	415.9	43.76	40.09	46.75			
118	27-Jul-22	629.18	963.94	903.51	997.81	403.63	383.66	416.05	44.02	40.26	46.81			
119	28-Jul-22	587.7	946.61	875.49	992.75	398.36	376.61	414.21	43.18	39.23	46.41			
120	29-Jul-22	578.24	942.4	866.67	998.47	396.97	372.6	416.22	42.94	38.55	46.83			
121	30-Jul-22	577.17	939.78	850.59	996.27	396.06	367.01	415.56	42.75	37.4	46.73			
122	31-Jul-22	510.84	913.77	848.14	981.25	388.24	366.97	410.91	41.5	37.66	45.65			
123	1-Aug-22	478.51	861.2	844.9	880.9	380.98	365.1	396.72	40.46	37.02	44.29			
124	2-Aug-22	574.54	883.9	873.1	898.3	388.81	374.1	399.66	42.12	38.6	44.94			
125	3-Aug-22	651.47	864.7	811.7	866.3	398.35	397.7	399.04	43.71	42.32	44.95			
126	4-Aug-22	622.41	890.3	890.3	890.3	393.59	380.3	399.71	43.39	39.99	44.93			

127	E Aug 22	ECE 74	070 7	0407	0007	706.01	767 4	700.01	41.00	77 77	44.01
127	5-Aug-22	565.74	870.7	849.7	889.7	386.21	367.4	399.91	41.89	37.73	44.91
	6-Aug-22	468.24	871	843.5	897.7	382.22	364.7	399.9	40.68	36.96	43.42
129	7-Aug-22	501.12	860.8	843.7	889.5	376.42	364.8	396.36	40.49	37	44.86
130	8-Aug-22	527.87	884.6	867.7	896.8	389.44	373.3	399.42	41.71	39.07	43.17
131	9-Aug-22	449.91	869.3	843.9	888	380.01	365.5	398.62	40.6	37.37	44.2
132	10-Aug-22	452.38	868.7	840.9	897.8	377.36	363.9	398.86	40.42	36.83	44.95
133	11-Aug-22	433.94	865.7	841.6	891.4	377.81	364.3	397.38	39.82	36.24	43.61
134	12-Aug-22	454.5	866.7	842.4	887.4	377.99	364.4	399.74	40.25	36.95	43.82
135	13-Aug-22	480.52	875.8	853.4	858.7	380.71	367.6	398.07	40.9	37.47	44.66
136	14-Aug-22	476.33	874.2	838.5	879.6	381.97	363.2	398.63	41.15	36.74	44.92
137	15-Aug-22	433.73	867.9	848	889.6	376.37	366.5	395.99	40	37.61	44.2
138	16-Aug-22	500	863.7	841.4	877.1	378.21	364	398.92	40.75	36.86	44.54
139	17-Aug-22	530.64	865.6	843	888	385.87	364.8	399.12	41.56	37.09	44.23
140	18-Aug-22	569.4	881.2	873.4	896.1	389.23	374.8	399.87	41.9	38.87	43.95
141	19-Aug-22	551.57	869	828	897	385.84	360.5	399.25	41.75	36.64	44.48
142	20-Aug-22	549.32	869.8	845.8	892.8	386.97	366.1	399.43	41.88	37.46	44.81
143	21-Aug-22	476.38	876.4	857.3	891.1	382.96	370.4	399.11	40.67	38.18	42.93
144	22-Aug-22	484.52	877	845.8	884.7	384.34	365.7	396.47	41.08	37.27	43.7
145	23-Aug-22	557.74	882.7	876.1	895.9	389.33	375	399.72	42.33	38.55	44.7
146	24-Aug-22	613.3	871.8	850.4	878.7	393.67	388.1	399.94	43.05	41.4	44.81
147	25-Aug-22	648.28	864.5	847.9	896	397.77	396.3	399.88	43.09	41.92	44.97
148	26-Aug-22	657.57	881.1	846.9	899.5	397.46	396.9	398.04	43.52	42.26	44.43
149	27-Aug-22	639.75	867.7	812.7	896.3	394.85	385.7	399.76	43.42	40.31	44.97
150	28-Aug-22	634.67	866	817.8	898.9	394.68	387.7	399.02	43.16	40.77	44.84
151	29-Aug-22	648.81	872.8	841.1	893.3	397.12	394.3	398.5	43.72	41.48	44.98
152	30-Aug-22	642.84	871.3	826.3	893.1	393.33	390.5	398.12	43.36	41.31	44.88
153	31-Aug-22	638.12	865.1	831.6	898.4	396.51	392.2	399.93	42.99	41.59	44.45
154	1-Sep-22	514.22	819.7	768	893.2	390.07	372.1	414.56	41.79	38.14	46.64
155	2-Sep-22	609.75	856.6	770.6	895.6	401.46	373.9	415.43	43.76	38.8	46.74
156	3-Sep-22	626.71	862.2	804.2	896.4	403.07	383.7	415.37	43.92	40.2	46.61
157	4-Sep-22	575.18	838.5	775.2	897.8	395.6	374.2	415.99	42.66	38.42	46.78
158	5-Sep-22	584.77	841.9	786.4	878.5	396.59	379.3	408.23	42.79	39.56	44.84
159	6-Sep-22	611.2	857.3	808.1	886	401.65	385.3	411.92	43.72	40.6	45.96
160	7-Sep-22	605.77	856.8	808.3	901	401.69	386	417.13	43.83	40.97	47.02
161	8-Sep-22	603.61	856.2	804.8	893.7	401.38	383.5	414.67	43.74	40.01	46.57
162	9-Sep-22	569.48	839.2	760.5	898	396.1	371.8	416.04	42.86	38.67	46.79
163	10-Sep-22	579.36	841.3	792.9	893.2	396.42	380.6	414.36	42.77	39.72	46.44
164	11-Sep-22	546.67	837.9	750	892.3	396.41	367.7	414.46	43.15	37.72	46.59
165	12-Sep-22	524.97	823.3	776.2	882.1	391.4	377.4	410.12	42.12	39.31	45.43
166	13-Sep-22	519.65	820.8	770.2	885.9	390.6	374.1	411.92	41.95	38.94	45.97
167	14-Sep-22	502.84	812.7	743	879.2	387.95	364.9	409.98	41.48	37.13	45.69
168	15-Sep-22	495.87	815.1	742.1	893.9	389.2	364.5	414.87	41.9	37.04	46.64
169	16-Sep-22	470.85	799.6	743.9	874.9	383.66	365	408.33	40.74	37.07	45.3
170	17-Sep-22	562.19	836.2	765.2	875	395.03	372	406.91	42.62	38.27	44.91
171	18-Sep-22	564.37	844.1	774.7	897.1	398.04	375.7	415.95	43.34	39.27	46.85
172	19-Sep-22	573.5	839.7	791.7	879.2	396.12	379.5	409.62	42.77	39.22	45.5
173	20-Sep-22	570.39	840	797.9	880.9	396.17	383.4	409.45	42.82	40.36	45.74
174	21-Sep-22	516.27	821.4	762.9	896.1	390.78	372.2	415.29	41.99	38.78	46.6
175	22-Sep-22	534.97	829.6	787.7	893.3	393.18	378.5	414.63	42.38	39.29	46.57
176	23-Sep-22	514.13	816.7	752.8	853.8	389.05	368.9	402.45	41.66	38.17	44.57
177	24-Sep-22	537.34	825.2	780.8	867.1	391.45	376.6	403.92	42.01	38.92	44.59
178	25-Sep-22	603.56	854	819.7	892.2	400.66	389.4	414.36	43.58	40.92	46.56
179	26-Sep-22	607.33	846.4	803.2	897.2	397.42	382.8	415.73	42.72	40.1	46.71
180	27-Sep-22	561.52	833.5	799.5	888.9	393.84	381.9	413.28	42.28	39.77	46.35
181	28-Sep-22	567.83	842.1	800.8	887.4	397.02	382	412.26	42.97	39.69	46.09
182	29-Sep-22	542.63	827.5	778.6	887.6	392.34	375.3	412.33	42.17	38.64	45.99
183	30-Sep-22	536.74	835	810.8	872.4	395.37	387.1	406.2	42.91	41.26	44.59
L	•										

Unit# 3 CEMS

58

59

60

28-May-22

29-May-22

30-May-22

S.		UNIT# 3	IU	NIT# 3 NO	Эx	UNIT# 3 DUST					
NO.	DATE	LOAD(MW)		(mg/nm3)		((mg/nm3))		(mg/nm3))
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX
1	1-Apr-22	640.8	846.1	821.3	869.2	334.7	325.6	343.58	37.92	36.03	39.9
2	2-Apr-22	641.51	852	824.8	878.9	336.95	327	347.04	38.34	36.35	40.26
3	3-Apr-22	633.08	843.1	820	862.7	333.87	324.6	342.11	37.7	35.85	39.33
4	4-Apr-22	456.1	833.7	744.2	869.5	330.78	304.6	343.78	37.18	31.4	40.13
5	5-Apr-22	643.81	852.9	830	876.1	337.33	328.4	346.39	38.41	36.62	40.24
6	6-Apr-22	653.77	851.1	830.3	875.1	336.33	328	345.68	38.24	36.56	40.11
7	7-Apr-22	653.65	850.9	831.3	879.1	336.23	328.2	347.09	38.2	36.61	40.4
8	8-Apr-22	649.58	846.7	802.6	877.2	334.67	319.2	346.56	37.89	34.7	40.17
9	9-Apr-22	657.28	852.5	823.8	877.1	336.77	325.8	346.75	38.32	36.1	40.31
10	10-Apr-22	648.54	850.5	827.3	869.8	336.23	326.9	344.26	38.2	36.33	39.81
11	11-Apr-22	651.41	849.8	825.9	877.2	335.88	326.4	346.74	38.15	36.23	40.31
12	12-Apr-22	634.72	842.4	811.5	873.1	333.48	322	345.02	37.63	35.3	39.97
13	13-Apr-22	643.58	850.2	819.6	874.5	336.31	324.5	345.73	38.23	35.82	40.1
14	14-Apr-22	650.73	854	820.1	874.8	337.61	325.8	345.68	38.48	36.03	40.1
15	15-Apr-22	639.09	844.1	811.2	870.5	333.97	322.1	343.87	37.77	35.11	39.74
16	16-Apr-22	638.12	845.2	786.8	869.1	334.53	314.7	343.93	37.92	33.73	39.73
17	17-Apr-22	607.06	834.1	767.3	864.5	330.93	309.1	342.3	37.04	32.5	39.39
17	•		743.7	717.8	820.2		293	328.71	31.15	29.13	36.27
18 19	18-Apr-22	382.04			769	302.9	295				
	19-Apr-22 20-Apr-22	366.94	742.5	721.5		302.58		312.7	31.03	29.4 29.02	33.08
20		365.37	744.2	715.6	763.6	303.29	292.5	311.15	31.25		32.98
21	21-Apr-22	366.13	736	717.7	760.7	300.03	292.9	309.8	30.59	29.1	32.5
22	22-Apr-22	425.12	765.5	718.9	853.8	309.62	293.4	339.33	32.62	29.2	38.74
23	23-Apr-22	625.48	839.4	809.9	866.1	332.42	322.7	342.74	37.41	35.38	39.49
24	24-Apr-22	630.46	849.7	804.7	872.9	336.62	320.4	345.31	38.27	35.2	40.01
25	25-Apr-22	626.69	845.1	816.2	879.9	334.87	325.3	347.57	37.86	36.08	40.49
26	26-Apr-22	641.24	846.1	802.4	877.3	334.66	319.3	346.53	37.93	34.71	40.4
27	27-Apr-22	644.56	849.7	829.6	873.6	336.07	327.9	345.92	38.14	36.54	40.14
28	28-Apr-22	652.34	855.4	811.8	876.1	338.06	322.2	346.01	38.61	35.66	40.17
29	29-Apr-22	658.17	852.4	830.6	877.7	336.67	328	346.82	38.29	36.57	40.33
30	30-Apr-22	650.88	854.6	818.7	880.4	337.82	324.7	347.57	38.5	35.72	40.49
31	1-May-22	598.43	829.4	771.8	871.1	329.48	310.1	344.26	36.79	32.74	39.82
32	2-May-22	632.24	843.7	792.5	872.6	334.05	316	344.53	37.72	34.03	39.88
33	3-May-22	651.82	860.1	828.2	876.8	339.94	327.2	346.38	38.98	36.39	40.25
34	4-May-22	649.57	848.2	813.3	872.1	335.29	322.9	344.71	38.06	35.47	40.11
35	5-May-22	638.45	845.6	821.4	873.1	334.64	325.4	344.92	37.88	36	40.09
36	6-May-22	645.23	849	822.6	874.6	335.74	326.4	345.43	38.15	36.18	40.06
37	7-May-22	650.61	852.3	819.4	879.3	336.92	324.7	347.36	38.25	35.85	40.44
38	8-May-22	634.07	848.2	812	879.1	335.86	323.8	347.33	38.07	35.59	40.43
39	9-May-22	632.03	846.9	804.7	872	335.33	320.8	344.37	37.96	34.98	39.85
40	10-May-22	631.26	836.2	793.4	869.8	337.75	326.5	347.43	37.18	34.09	39.71
41	11-May-22	643.1	848.6	808.7	877.8	337.17	326.7	346.02	38.1	35.41	40.3
42	12-May-22	612.36	849.9	827.8	882.8	336.87	326.8	344.52	37.11	34.94	39.87
43	13-May-22	615.38	855.3	830.6	881.1	336.02	325.4	346.49	37.38	35.51	39.64
44	14-May-22	628.56	854.4	825.5	879.5	331.71	318.7	344.74	37.25	34.58	39.92
45	15-May-22	637.8	853	826.6	875	336.02	322.6	347.46	38.17	35.34	40.46
46	16-May-22	627.49	851.7	826.5	872.1	334.21	322.9	343.64	41.91	40.19	38.34
47	17-May-22	647.98	854.8	823.6	881.4	337.98	326.1	348.04	43.2	41.11	38.61
48	18-May-22	639.38	849.8	811	872.7	336.27	322.1	345.34	42.61	40.86	38.3
49	19-May-22	657.97	854.1	834.2	874.5	337.35	329.3	345.9	42.8	40.75	38.89
50	20-May-22	589.3	827.2	792.2	867.4	329.06	316.5	343.23	43.53	41.45	38.61
50 51	20-May-22 21-May-22	527.41	802.9	735.2	875.8	321.63	299.3	346.25	42.18	40.48	38.65
52	21-May-22 22-May-22	498.93	793.3	723.2	866.6	318.65	299.5	343.3	34.48	29.74	39.59
52 53										32.57	
	23-May-22	589.24	826.2	762.8	871.1	328.67	309.8	344.81	36.58		39.9
54	24-May-22	654.46	858.3	830.9	875.6	339.13	328.2	346.17	38.66	36.44	40.19
55	25-May-22	650.28	851.8	830.7	874	336.73	328.1	345.75	38.33	36.58	40.1
56	26-May-22	647.5	846.6	822.9	870.7	334.71	325.8	344.58	37.9	36.09	39.86
57	27-May-22	460.22	835.2	807.4	861.8	330.87	321.1	341.59	37.08	34.85	39.24
58	28-May-22				Lloi	r in chutde	hnop nwa				

Unit in shutdown condition

Unit in shutdown condition

Unit in shutdown condition

61	31-May-22				Uni	t in shutdo	wn condi	tion			<u> </u>	
62	1-Jun-22	477.88	831.8	717.86	870.61	330.58	294.64	344.12	36.96	29.38	39.78	
63	2-Jun-22	636.6	845.59	789.07	877.38	334.76	315.55	346.72	37.91	34.35	41.31	
64	3-Jun-22	597.71	828.21	762.08	879.22	337.61	325.76	345.68	36.64	32.06	40.43	
65	4-Jun-22	655.15	853.82	830.01	879.99	333.97	322.07	343.87	38.48	36.54	41.45	
66	5-Jun-22	626.41	842.19	788.32	880.92	334.53	314.73	343.93	37.65	33.59	40.55	
67	6-Jun-22	650.6	854.47	827.76	878.62	330.93	309.08	342.3	38.5	36.36	40.34	
68	7-Jun-22	628.29	844.85	796.23	879.77	302.9	293.02	328.71	37.9	34.33	40.46	
69	8-Jun-22	630.98	843.66	801.94	875.69	302.58	294.31	312.7	37.8	34.84	40.23	
70	9-Jun-22	593.41	829.48	779.81	871.81	303.29	292.47	311.15	36.82	33.24	39.89	
71	10-Jun-22	616.8	837.15	794.46	867.55	300.03	292.86	309.8	37.32	34.31	39.45	
72	11-Jun-22	579.99	823.9	770.63	878.95	309.62	293.37	339.33	36.45	32.7	41.41	
73	12-Jun-22	523	797.86	725.66	875.41	319.7	295.64	345.82	34.71	32.8	40.36	
74	13-Jun-22	610.86	832.68	770.41	869.86	329.08	306.71	343.54	36.97	32.67	39.69	
75	14-Jun-22	636.42	843.64	796.52	876.31	336.43	326.56	347.59	37.68	34.27	40.22	
76	15-Jun-22	643.03	855.88	810.22	879.53	335.82	326.98	348.46	38.67	35.53	40.47	
77	16-Jun-22	647.26	852.11	828.56	870.21	337.97	328.09	347.83	38.38	36.62	39.88	
78	17-Jun-22	624.34	841.79	791.44	876	333.66	318.37	346.39	37.64	34.38	40.45	
79	18-Jun-22	591.55	825.39	764.71	873.95	328.3	308.08	345.38	36.56	32.3	40.04	
80	19-Jun-22	511.84	797.96	719.23	868.79	320.02	293.25	343.33	34.8	30.19	39.63	
81	20-Jun-22	516.6	799.36	721.66	877.57	320.24	294.12	346.58	34.81	29.37	40.29	
82	21-Jun-22	543.08	805.06	722.89	874.06	321.95	294.7	345.79	35.22	29.42	40.11	
83	22-Jun-22	603.19	827.32	746.09	874.74	328.7	301.7	345.83	36.6	30.98	41.12	
84	23-Jun-22	534.81	803.11	721.9	872.47	321.47	294.33	345	35.11	29.88	39.95	
85	24-Jun-22	537.52	805.15	719.71	876.42	322.17	293.4	346.47	35.18	29.37	40.09	
86	25-Jun-22	526.81	801.5	727	866.97	321.09	296.65	342.58	35.03	30.87	39.61	
87	26-Jun-22	554.28	813.05	739.18	873.76	324.75	300.64	345.29	35.76	30.69	41.02	
88	27-Jun-22	495.43	788.66	718.1	865.03	317.12	293.07	342.72	34.15	31.69	39.47	
89	28-Jun-22	554.29	805.86	724.51	877.01	321.86	295.32	346.55	35.21	29.61	40.28	
90	29-Jun-22	580.66	824.23	752.88	877.01	328.15	304.46	346.41	36.47	31.63	41.25	
91	30-Jun-22	538.12	804.62	720.71	868.4	321.95	294.07	343.58	35.15	29.34	39.66	
92	1-Jul-22	525.52	803.15	728.02	868.97	321.45	296.84	344.05	35.06	29.91	39.75	
93 94	2-Jul-22 3-Jul-22	532.87 514.94	802.73 788.29	721.38 720.06	872.48 867.52	321.3 316.29	294.05 293.55	344.68 343.14	35.01 33.97	29.35 29.25	39.71 39.58	
94	4-Jul-22	514.94	801.63	720.00	853.62	321.24	293.55	338.38	34.99	29.25	39.58	
96	5-Jul-22	528.17	801.25	718.46	872.12	320.77	293.21	344.73	34.95	29.43	39.91	
97	6-Jul-22	545.38	809.7	733.44	877.47	323.7	298.71	346.51	35.49	29.9	40.28	
98	7-Jul-22	538.08	800.27	742.26	874.88	320.15	300.87	345.64	34.84	30.78	40.1	
99	8-Jul-22	550.54	811.74	721.61	871.71	324.34	294.46	344.55	35.67	29.42	39.98	
100	9-Jul-22	431.92	763.27	720.62	801.79	309.32	293.92	322.42	32.43	29.51	35.19	
101	10-Jul-22	394.46	747.77	717.68	806.14	304.03	293.02	324.63	31.36	29.13	35.61	
102 103	11-Jul-22 12-Jul-22	408.07 430.01	757.49 767.26	723.41 725.27	852.16 855.45	307.12 310.32	294.76 295.85	337.61 338.64	31.95 32.72	29.5 29.87	38.44 38.66	
105	12-Jul-22 13-Jul-22	422.25	765.65	723.85	831.48	309.97	293.83	329.27	32.61	29.53	36.78	
105	14-Jul-22	454.41	780.96	721.19	874.77	314.93	294	345.56	33.69	29.48	40.08	
106	15-Jul-22	452.82	778.59	726.25	853.31	314.25	296.06	337.69	33.47	29.75	38.01	
107	16-Jul-22	506.46	796.43	750	874.03	319.6	304.52	345.78	34.67	31.49	40.1	
108	17-Jul-22	533.21	804.22	735.57	863.11	321.89	299.63	341.53	35.15	30.78	39.06	
109	18-Jul-22	545.8	809.98	740.39	876.74	323.54	300.74	346.22	35.5	30.73	40.22	
110	19-Jul-22	566.92	822.39	724.84	873.97	328.05	295.05	345.59	36.44	29.57	40.23	
111 112	20-Jul-22 21-Jul-22	546.12 545.1	808.4 810.16	736.64 719.27	875.41 878.28	323.18 323.86	300.27 293.34	345.9 346.86	35.4 35.52	30.59 29.2	40.03 40.35	
113	22-Jul-22	569.79	821.24	719.87	894.98	327.47	293.81	349.53	36.3	29.29	41.05	
114	23-Jul-22	529.74	799.04	724.53	933.15	320.3	295.21	360.58	34.85	29.59	43.45	
115	24-Jul-22	444.35	771.91	726.21	863.88	311.87	296.19	341.78	33.04	30.18	39.3	
116	25-Jul-22	514.27	797.3	736.27	863.21	319.68	299.3	341.93	34.68	30.46	39.73	
117	26-Jul-22	582.74	824.89	721.6	870.1	328.38	294.85	344.11	36.54	29.48	39.9	
118	27-Jul-22	Unit in shutdown condition										
119 120	28-Jul-22	Unit in shutdown condition										
120	29-Jul-22 30-Jul-22	Unit in shutdown condition Unit in shutdown condition										
121	30-Jul-22 31-Jul-22											
	5. V01 22	Unit in shutdown condition										

123	1-Aug-22	Unit in shutdown condition												
124	2-Aug-22	Unit in shutdown condition												
125	3-Aug-22	Unit in shutdown condition												
126	4-Aug-22	Unit in shutdown condition												
127	5-Aug-22		Unit in shutdown condition											
128	6-Aug-22				Unit	t in shutdo	wn condi	ition						
129	7-Aug-22		Unit in shutdown condition											
130	8-Aug-22	Unit in shutdown condition												
131	9-Aug-22		Unit in shutdown condition											
132	10-Aug-22	Unit in shutdown condition												
133	11-Aug-22	Unit in shutdown condition												
134	12-Aug-22	Unit in shutdown condition												
135	13-Aug-22													
136	14-Aug-22		Unit in shutdown condition Unit in shutdown condition											
137	15-Aug-22					t in shutdo								
138	16-Aug-22					t in shutdo								
139														
	17-Aug-22					t in shutdo								
140	18-Aug-22		707.0	77.0.0		t in shutdo			77.00	00.07	76.00			
141	19-Aug-22	329.55	787.2	730.2	832.5	316.34	297	330.57	33.99	29.97	36.99			
142	20-Aug-22	553.57	807.5	737.1	868.2	322.47	299.6	343.01	35.29	30.5	39.57			
143	21-Aug-22	470.22	782	739.9	856.1	315.22	300.2	339.78	33.7	30.66	38.85			
144	22-Aug-22	477.81	789.4	725.2	868.5	317.55	295.6	343.17	34.18	29.66	39.44			
145	23-Aug-22	567.73	815.9	746.6	870.2	325.37	302.1	343.62	35.9	31.04	39.5			
146	24-Aug-22	605.5	827.3	757.5	868.5	328.52	305.8	343.38	36.6	31.82	39.63			
147	25-Aug-22	643.18	847.2	819.7	866.7	335.07	325.4	342.44	37.97	35.96	39.26			
148	26-Aug-22	656.51	853.5	827.6	879.4	337.11	327.3	347.31	38.36	36.41	40.44			
149	27-Aug-22	644.38	851.6	805	878.7	336.83	320.1	347.22	38.32	35.31	40.41			
150	28-Aug-22	635.54	842.3	795.1	877.9	333.45	317.1	346.83	37.6	34.24	40.17			
151	29-Aug-22				Unit	t in shutdo	wn condi	ition						
152	30-Aug-22				Uni	t in shutdo	wn condi	ition						
153	31-Aug-22				Uni	t in shutdo	wn condi	ition						
154	1-Sep-22				Uni	t in shutdo	wn condi	ition						
155	2-Sep-22	133.12	818.9	785.6	841.6	325.93	315.8	334.02	36	33.86	37.69			
156	3-Sep-22	615.64	841.9	802.8	874.4	333.88	319.7	345.52	37.7	34.79	40.19			
157	4-Sep-22	575.73	822.5	763.3	869.4	327.76	307.3	343.32	36.44	32.16	39.64			
158	5-Sep-22	589.61	825.3	771.8	875.8	328.35	310.7	345.93	36.48	32.88	40.16			
159	6-Sep-22	631.79	845.6	799.8	878.2	334.9	320	346.73	37.84	34.46	40.32			
160	7-Sep-22	618.68	840.3	791.8	884.6	333.17	317.2	348.76	37.58	34.2	40.75			
161	8-Sep-22	619.18	839.6	764.1	871.6	332.95	307.3	344.78	37.53	32.57	39.89			
162	9-Sep-22	560.35	817.5	736.3	870.4	326.27	300	344.52	36.05	30.54	39.84			
163	10-Sep-22	595.02	830.4	777.3	877.7	330.05	311.5	346.59	36.86	33.05	39.97			
164	10 Gcp 22 11-Sep-22	554.54	812.9	737.2	865.3	324.61	299.8	342.76	35.74	30.52	39.48			
165	12-Sep-22	530.32	800	744.4	864.4	320.23	302.8	342.33	34.82	31.12	39.4			
166	12-Sep-22 13-Sep-22	523.45	800	747.1	859.8	320.25	303.9	339.59	34.82	31.34	38.89			
167	13-Sep-22 14-Sep-22	507.2	789.2	737.9	851.4	316.77	300.3	336.54	34.02	30.62	38.26			
167	14-Sep-22 15-Sep-22	502.42	789.2	733.7	851.4	317.24	298.9	332.5	34.09	30.62	37.8			
168	15-Sep-22 16-Sep-22	477.37	789.7	737.3	868.6	314.87	300.6	344.08	33.67	30.66	39.74			
170	17-Sep-22	560.18	815.8	739.5	862.6	325.48	300.3	340.62	35.93	30.64	39.1			
171	18-Sep-22	562.44	819.4	773.3	872.4	326.71	312.7	344.73	36.18	32.79	39.91			
172	19-Sep-22	576.78	824.4	775.5	867.6	328.21	310.9	343.67	36.5	32.93	39.66			
173	20-Sep-22	539	815.6	782.2	863.3	325.83	314.4	341.74	35.99	33.67	39.28			
174	21-Sep-22	532.5	810.5	774.7	853.7	324.22	314.9	339.42	35.6	33.55	38.76			
175	22-Sep-22	527.21	800.9	741.3	855.8	320.49	301.3	338.46	34.88	31.11	38.64			
176	23-Sep-22	521.94	802.9	731	836.9	321.53	297.8	332.82	35.11	30.1	37.43			
177	24-Sep-22	538.39 805.8 767.4 847.6 322.09 308.7 336.44 35.25 32.47 38.18												
178	25-Sep-22	443.69 764.3 700.8 862.3 308.79 287.3 340.62 32.43 28.18 39.09												
179	26-Sep-22	574.6	826.5	787.4	857.6	328.94	315.4	339.48	36.64	33.83	38.83			
180	27-Sep-22	598.03	834.3	783.5	872.3	331.38	313.5	345.21	37.14	33.48	39.98			
181	28-Sep-22	578.79	821.8	774.6	855.8	327.14	310.6	338.69	36.27	32.86	38.48			
	· · · · · ·													
182	29-Sep-22	597.87	830	783.6	873.1	329.81	313.3	345.37	36.82	33.44	40.02			
		597.87 577.01	830 822.2	783.6 778.7	873.1 867.2	329.81 327.32	313.3 312.2	345.37 343.15	36.82 36.31	33.44 33.35	40.02 39.23			

Unit# 4 CEMS

58

28-May-22

580.93

817

742

854.5

351.27

323.5

367

38.9

36.8

41

0	# 4 CEMS	CEMS DA	YWISE V	ALUES FO	OR THE P		OM APR '	2022 -SEF	PT' 2022			
S.		UNIT# 4	U	NIT# 4 S(Эх	U	NIT# 4 N(Эх	UNIT# 4 DUST			
NO.	DATE	LOAD(MW)	LOAD(MW) (mg/nm3)				(mg/nm3)	1		(mg/nm3)		
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX	
1	1-Apr-22	601.26	829.17	781.78	863.24	355.08	340.87	369.41	38.66	36.31	41.39	
2	2-Apr-22	616.07	829.94	743.2	866.62	355.44	324.59	370.31	38.7	33.31	41.92	
3	3-Apr-22	569.55	816.27	732.56	869.5	351.09	320.61	372.18	37.93	32.64	41.74	
4	4-Apr-22	581.68	825.37	763.4	860.71	354.24	331.46	368.91	38.5	34.22	41.34	
5	5-Apr-22	591.55	830.58	769.43	868.04	356.69	338.36	371.75	38.95	35.74	41.86	
6	6-Apr-22	608.85	835.27	809.83	862.81	357.98	346.81	368.84	39.19	37	41.27	
7	7-Apr-22	628.71	837.56	796.97	865.93	358.27	343.8	371.11	39.25	36.73	41.84	
8	8-Apr-22	600.63	830.98	753.11	867.12	356.58	331.89	371.44	37.29	30.95	40.34	
9	9-Apr-22	559.1	843.34	779.86	875.41	333.85	312.25	345.76	37.23	34.83	40.01	
10	10-Apr-22	624.21	833.1	809.7	857.6	356.49	345.9	343.70	37.97	34.83	40.01	
11	11-Apr-22	640.16	841.2	814.6	872.8	359.34	347.8	373.24	39.41	37.16	42.12	
12	12-Apr-22	647.62	851	823.7	868.8	363.86	350.8	371.69	40.3	37.72	41.83	
13	13-Apr-22	648.96	846.8	828.6	871	361.64	352.2	372.67	39.88	37.95	42.02	
14	14-Apr-22	604.77	844.37	779.94	885.76	358.73	337.4	380.5	39.21	34.56	42.62	
15	15-Apr-22	594.24	844.38	795.81	873.12	358.93	342.77	369.25	39.33	35.76	42.16	
16	16-Apr-22	605.52	846.26	791.94	875.51	359.58	340.67	370.19	39.43	35.15	41.79	
10	17-Apr-22	362.99	755.1	730.6	778.1	332.3	322.4	341.38	33.97	30.8	36.22	
18	18-Apr-22	421.15	775.2	726.6	838.6	337.9	321.1	358.59	35.02	31.25	39.52	
19	19-Apr-22	370.61	739.4	721.3	759.7	325.88	316.8	336.07	33.35	31.52	35.38	
20	20-Apr-22	365.37	744.2	719	763.6	303.29	300.5	311.15	31.25	30.5	32.98	
21	21-Apr-22	366.13	736	717.7	760.7	300.03	301.4	309.8	30.59	30.8	32.5	
22	22-Apr-22	445.57	768.1	725.6	842.3	334.96	318.8	362.81	34.97	31.9	39.98	
23	23-Apr-22	628.59	838.5	768.5	865.4	358.65	333.9	370.97	39.32	34.71	41.72	
24	24-Apr-22	595.05	825	762.5	861.6	354.5	332.9	368.71	38.63	34.58	41.26	
25	25-Apr-22	599.41	823.9	774.6	853.1	353.56	336	364.79	38.36	35.44	40.48	
26	26-Apr-22	618.68	836.2	749.4	865.8	358.03	326.7	371.02	39.18	33.36	41.73	
27	27-Apr-22	620.58	832.9 835.4	779.5 775.6	863.5	356.64	336.3	369.81	38.97	35.08	41.73	
28 29	28-Apr-22 29-Apr-22	618.63 621.35	833.5	814.8	862.2 855.9	357.76 356.85	334.9 347.7	369.24 366.85	39.16 39	34.82 37.14	41.37 40.95	
30	30-Apr-22	627.21	836.3	801.2	861.9	357.7	344.4	369.15	39.08	36.6	41.36	
31	1-May-22	480.39	786.4	736.7	851.7	342.28	323.4	365.73	36.34	32.37	40.73	
32	2-May-22	574.14	819.8	747.5	853.1	352.17	326.2	365.58	38.13	33.27	40.56	
33	3-May-22	630.26	842.1	815	860.2	360.57	347.6	368.93	39.72	37.11	41.33	
34	4-May-22	622.79	832.5	806.5	855	356.23	345.9	367.19	38.83	36.42	41.03	
35	5-May-22	607.68	830.6	738.6	865.2	356.18	322.4	370.69	38.85	32.54	41.72	
36	6-May-22	599.79	822.2	748.7	856.7	352.69	327.1	367.88	38.2	33.45	41.14	
37	7-May-22	617.72	835.8	796	863.1	361.64	352.18	372.67	39.25	36.38	41.46	
38	8-May-22	566.96	812.4	724.9	856.9	359.67	350.17	366.22	35.69	31.7	40.82	
39	9-May-22	593.46	822.7	758.1	856	355.97	332.52	371.28	38.33	33.71	41.15	
40	10-May-22	597.15	824.6	759.8	859.2	348.55	321.95	371.48	38.47	34.2	41.2	
41	11-May-22	597.54	822.3	764.9	858.9	330.67	318.13	343.4	38.21	34.86	41	
42	12-May-22	527.52	796.1	744	831.8	327.85	318.5	342.37	36.71	33.36	39.19	
43	13-May-22	561.58	814.2	750.3	850.9	351.05	330.3	365.64	37.98	34.45	40.96	
44	14-May-22	557.92	806.8	752.3	849.7	347.67	329.4	364.52	37.29	33.93	40.48	
45	15-May-22	559.63	813.6	742.6	845.3	350.91	326.1	364.13	37.91	33.33	40.47	
46	16-May-22	523.51	792.4	736.4	841	342.86	322.5	362.67	36.38	32.58	40.2	
47	17-May-22	466.51	781.1	717.1	851.3	340.05	315.3	366.04	33.95	31.23	40.66	
48	18-May-22	628.16	838.6	805.8	861	358.82	344.7	369.32	39.35	36.58	41.41	
49	19-May-22	620.24 526.45	835.7	811	850.9	357.87	346.5	364.38	39.2	36.91	40.76	
50 51	20-May-22	526.45 487.65	797 778.9	737.7 720.1	859.5 861.8	345.28	323 316.3	368.58 369.32	36.9 35.64	32.69 31.67	41.26 41.38	
51	21-May-22 22-May-22	487.65	767.5	720.1	861.8	338.82 335.69	315.5	363.12	35.15	31.67	41.58	
52	22-May-22 23-May-22	523.43	800.5	734	858	346.6	323.7	368.48	37.06	32.91	40.27	
54	23-May-22 24-May-22	624.82	834.9	813.8	852.9	357.23	347.4	366.55	83	36.97	40.61	
55	25-May-22	630.41	838.2	805.9	865.6	358.45	345.1	370.09	34.25	36.69	42.51	
56	26-May-22	616.97	838.2	812.4	851.3	359.35	349	366.3	38.75	35.47	43.43	
57	27-May-22	561.78	807.9	738.1	851.5	348.13	322.7	366.11	39.05	36.24	41.3	
		-								i	-	

59	29-May-22	586.23	822	754.9	860.9	353.42	329	369.43	39.41	37.16	42.12
60	30-May-22	615.6	834.5	810.7	858.2	357.66	347.8	368.11	40.3	37.10	43.83
61	31-May-22	601.84	825.8	746	854.7	354.18	326.2	366.89	39.88	37.95	42.02
62	1-Jun-22	570.95	813.9	759.1	851.7	350.17	332.5	366.11	37.76	34.54	43.82
63	2-Jun-22	593.72	820.1	795.9	858.1	351.88	341.6	367.67	38.01	35.87	41.07
64	3-Jun-22	567.68	812.8	779.4	848.5	350.04	338.4	364.9	37.71	35.61	40.59
65	4-Jun-22	628.71	837.3	813.1	864	358.03	347.5	370.5	39.19	37.12	41.63
66	5-Jun-22	586.96	824.9	755.6	855.9	354.98	328.6	366.84	38.7	33.68	40.92
67	6-Jun-22	609.65	834.2	787.2	857.7	357.75	338.4	367.37	39.18	35.44	42.01
68	7-Jun-22	601.36	827.1	794.6	858.6	355.01	344.4	367.95	38.68	36.71	41.15
69	8-Jun-22	605.42	827.1	783.7	864.2	354.77	339.7	370.03	38.6	35.8	41.52
70	9-Jun-22	552.63	807.9	749.4	854	348.77	327.1	365.89	37.55	33.44	42.75
71	10-Jun-22	546.58	807.2	778.4	842.6	348.36	336.4	361.06	37.38	35.1	39.75
72	11-Jun-22	574.35	815.1	751.8	865.1	350.57	327.6	369.99	37.79	33.68	41.67
73	12-Jun-22	507.83	789.7	719	843.8	342.66	316.3	363.35	36.42	31.44	40.54
74	13-Jun-22	575.49	815.8	756.9	857.7	350.99	329.1	368.18	37.9	33.77	41.2
75	14-Jun-22	603.14	828.6	786	863.3	355.53	342.4	369.29	38.76	36.4	41.69
76	15-Jun-22	618.09	831	796.9	854.9	355.76	343.7	366.79	38.75	36.51	40.93
77 78	16-Jun-22	623.77 572.78	835.3 814.9	807.5 736	860 857.4	357.62 350.86	348 321.6	368.22 367.69	39.1 37.87	37.18 32.4	42.17 41.09
78	17-Jun-22 18-Jun-22	572.78	814.9	767.7	857.4	354.53	333.6	367.57	38.59	34.66	41.09
80	18-Jun-22 19-Jun-22	593.58	825.5 795.6	720.1	859.5	354.55 344.92	316.5	360.23	36.83	31.47	41.05 39.73
81	20-Jun-22	496.06	795.0	719.4	860.2	340.62	315.7	369.1	35.97	31.59	41.37
82	20-Jun-22	541.47	804	733.8	856.8	347.57	323.1	367.14	37.29	32.78	40.97
83	22-Jun-22	585.06	820.2	745.7	861.3	352.63	324.7	368.51	38.25	32.95	42.21
84	23-Jun-22	502.31	787.9	733.7	862.6	342.24	321.6	369.94	36.37	32.91	41.53
85	24-Jun-22	516.84	794	725.1	865.7	344.34	319.2	370.92	36.71	31.93	41.7
86	25-Jun-22	517.77	789.8	721.7	855	342.14	317.3	367.27	36.26	31.63	40.58
87	26-Jun-22	525.25	793.6	723	851.3	343.54	318.3	365.35	36.46	31.84	41.39
88	27-Jun-22	496.87	783.9	735.6	842.1	340.55	322.1	362.32	35.96	32.37	39.68
89	28-Jun-22	528.81	792.3	713.6	849.9	342.52	314.2	364.96	36.36	31.05	40.6
90	29-Jun-22	561.87	811	746.5	853.7	349.66	325.1	366.85	37.65	33.03	40.96
91	30-Jun-22	526.09	793.8	722.4	850	343.53	317.2	365.44	36.51	31.59	42.69
92	1-Jul-22	518.59	797.26	730.25	861.02	345.23	321.63	368.29	36.88	32.5	41.19
93	2-Jul-22	524.81	797.78	739.99	854.26	345.8	325.11	366.82	36.95	33.13	40.95
94	3-Jul-22	498.21	785.06	731.26	852.01	341.08	322.23	365.83	36.07	32.63	40.4
95	4-Jul-22	507.85	797.77	720.32	855.1	345.87	316.49	367.06	36.96	31.46	40.98
96	5-Jul-22	531.19	802.01	728.07	861.26	347.12	320.56	369.4	37.23	32.28	41.42
97	6-Jul-22	528.05	797.69	738.59	850.95	345.41	322.93	364.96	36.9	32.65	40.56
98 99	7-Jul-22 8-Jul-22	503.32 539.62	787.11 802.51	721.95 720.43	864.8 856.98	341.68 347.03	316.93 316.58	370.48 367.47	36.18 37.22	31.54 31.48	41.62 41.05
100	9-Jul-22	421.62	758.06	720.43	800.81	332.99	317.28	346.57	34.69	31.40	37.12
100	10-Jul-22	391.86	745.3	718.09	781.48	327.69	315.59	343.19	33.64	31.29	36.67
101	11-Jul-22	414.63	754.22	721.32	854.81	330.4	316.65	366.09	34.19	31.8	40.76
102	12-Jul-22	426.54	759.31	723.8	849.77	332.24	318.37	364.13	34.54	31.84	40.39
104	13-Jul-22	409.78	751.21	718.76	828.16	329.31	316.16	356.74	33.96	31.4	39.38
105	14-Jul-22	440.3	768.47	719.75	839.79	335.77	316.38	361.35	35.14	31.45	39.91
106	15-Jul-22	458.98	773.37	720.83	851.02	337.24	316.68	365.96	35.45	31.5	40.8
107	16-Jul-22	513.03	794.12	721.78	863.45	344.46	317.47	369.91	36.72	31.67	41.51
108	17-Jul-22	525.22	792.47	721.2	846.85	343.02	317.15	361.73	36.42	32.02	39.94
109	18-Jul-22	538.12	803.86	748.58	854.86	347.19	326.44	367.16	37.21	33.27	41.01
110	19-Jul-22	547.21	803.68	724.64	861.96	347.06	317.97	369.57	37.19	31.73	41.45
111	20-Jul-22	531.2	797.29	733.09	848.68	344.91	322.91	363.09	36.77	32.35	40.16
112	21-Jul-22	544.95	805.23	745.91	869.98	348.01	327.91	372.15	37.41	33.7	41.92
113	22-Jul-22	555.04	805.33	729.2	857.24	347.52	320.84	368.04	37.18	32.26	40.77
114	23-Jul-22	491.58	779.89	726.62	830.64	339.04	319.64	358.13	35.7	32.09	39.31
115	24-Jul-22	447.42	766.66	719.23	842.19	334.8	316.32	362.34	34.97	31.44	40.1
116	25-Jul-22	515.92	797.59	719.89	852.44	345.82	316.76	365.36	36.99	31.53	40.5
117	26-Jul-22	578.58	814.17	755.12	851.57	350.17	327.97	365.93	37.67	33.55	40.8
118	27-Jul-22	598.82	830.18	722.66	864.76	356.69	317.47	370.54	38.98	31.65	41.63
119	28-Jul-22	584.15	820.06	751.03	866.15	352.71	328.5	370.52	38.23	33.75	41.6
120 121	29-Jul-22 30-Jul-22	554.02 536.81	811.03 801.65	739.24 720.55	855.2 848.72	350.35 346.57	326.05 316.58	367.61 365.42	37.85 37.08	33.38 31.62	41.17 40.71
121	30-Jul-22 31-Jul-22	479.52	777.02	720.55	848.72	346.57	316.58	365.42 359.95	37.08	31.62	39.19
122	1-Aug-22	479.52	773.2	716.33	855.7	336.76	315.05	367.26	35.22	31.19	41.02
2	1 1109 22	207	1.2.2	, <u> </u>	.,	220.70	11	201.20	JJ.CJ	51.50	71.02

124	2-Aug-22	563.79	813.8	762.3	856.4	350.84	332.8	366.38	37.95	34.9	40.8
124	2-Aug-22 3-Aug-22	627.47	835.7	816.9	856.6	357.56	348.6	367.61	39.09	37.31	40.8
125	4-Aug-22	598.34	824.5	747	864.1	353.88	326.6	370.31	38.37	33.37	41.1
120	4-Aug-22 5-Aug-22	551.49	803	739.2	850.3	346.55	325.2	364.24	37.06	33.16	40.31
127	6-Aug-22	463.6	773.7	719.2	854.6	337.66	316.1	367.17	35.47	31.4	40.51
120	-		779.4	719.2	832.5	339.02	315.6	358.25	35.72	31.3	39.4
129	7-Aug-22	487.28 509.67	792.5	749.2	864	343.87	327.7	370.12		33.58	41.54
130	8-Aug-22 9-Aug-22	438.3	792.5	749.2	837.4	333.36	316.9	357.33	36.62 34.7	31.57	39.01
132	9-Aug-22 10-Aug-22	438.5	762.1	719.7	834.4	333.17	315.6	357.33	34.65	31.37	39.01
132	10-Aug-22 11-Aug-22	435.61	762.5			332.45	318.8	353.97	34.65	31.65	
134	12-Aug-22	455.01	760.2	725.6 720.1	822.6 849.9	335.27	316.6	363.11	34.98	31.48	38.48 40.25
135	-		709.5	720.1	846.5		317.3	362.13	35.26	31.48	39.97
136	13-Aug-22 14-Aug-22	481.07 469.36	775.5	727.2	845.7	336.66 338.1	320	363.21	35.6	32.18	40.24
137	14-Aug-22 15-Aug-22	434.66	758.1	716.5	840.2	331.57	315.2	359.59	34.32	31.22	39.49
138	15-Aug-22 16-Aug-22	484.32	783.2	720.8	845.8	340.17	316.6	362.93	35.92	31.49	40.53
139	17-Aug-22	523.97	798.7	737.4	857.2	345.83	322.8	368.01	36.96	32.6	40.55
140	17-Aug-22 18-Aug-22	553.61	807.5	747.6	858.5	348.5	325.3	367.82	37.46	33.06	41.17
140	19-Aug-22			731.4					37.51	32.37	41.43
141	20-Aug-22	557.58 531.6	808.6 800.4	731.4	864.4 856.7	348.83 346.5	320.6 322.3	370.46 368.11	37.09	32.57	41.45
142	20-Aug-22 21-Aug-22	461.2	772.8	734.6	833.7	337.17	323.8	358.89	35.42	32.72	40.79 39.44
143	21-Aug-22 22-Aug-22	401.2	772.8	727.2	847.4	339.95	320.7	364.21	35.92	32.86	40.45
144	22-Aug-22 23-Aug-22	546.07	804.6	747.2	860	347.52	326	369.07	37.31	33.46	41.37
145	23-Aug-22 24-Aug-22	603.42	830.8	760.4	866.4	356.76	331.7	370.61	38.98	34.32	41.57
147	25-Aug-22	626.34	838.2	811.1	861.9	358.83	346.5	369.78	39.34	36.93	41.5
148	26-Aug-22	647.99	842.8	827.3	867.3	359.67	352.1	371.15	39.44	37.94	41.73
149	27-Aug-22	642.18	844.3	794.2	867.6	360.79	341	371.49	39.72	35.93	41.7
150	28-Aug-22	628.84	838.3	795.2	867.5	358.75	343.4	371.51	39.35	36.47	41.81
151	29-Aug-22	635.74	838.2	821.5	858.6	358.21	349.9	368.25	39.24	37.53	41.2
152	30-Aug-22	615.03	833.5	810.9	851.2	357.12	348.5	365.21	39.06	37.35	41
153	31-Aug-22	622.12	834.4	818.5	856.6	357.11	349.6	367.71	39.02	37.48	41.32
154	1-Sep-22	508.78	792.6	746	859.9	340.26	320.2	361.66	36.52	33.04	41.33
155	2-Sep-22	600.24	823.3	767.7	862	346.41	331.1	361.77	38.3	35.22	41.61
156	3-Sep-22	609.52	829.3	793.7	861.7	348.71	335	361.9	38.72	36.01	41.15
157	4-Sep-22	540.23	800.7	757.8	834.1	339.76	324.5	352.5	36.99	33.9	39.5
158	5-Sep-22	529.89	796.8	758.5	826.2	338.69	325	349.08	36.73	34.36	38.71
159	6-Sep-22	580.12	817.1	761	843.2	344.56	325.4	355.97	37.9	33.87	40.19
160	7-Sep-22	596.69	829.6	777.3	867.6	349.76	331.6	363.76	38.95	35.31	41.75
161	8-Sep-22	604.51	827.2	765.5	859.1	347.9	326.9	361.07	38.63	34.38	41.27
162	9-Sep-22	560.36	807.3	731.2	857.4	341.64	317.5	360.43	37.39	32.49	41.2
163	10-Sep-22	556.66	806.5	749.1	847.6	341.36	320.9	357.61	37.26	33.18	40.52
164	11-Sep-22	536.27	801.2	723.2	852	340.35	313.6	358.35	37.09	31.73	40.67
165	12-Sep-22	526.16	797.1	740.5	853.1	339.32	318.6	358.73	36.89	32.71	40.75
166	13-Sep-22	507.86	795.2	733.5	854.7	339.75	317.8	359.35	36.95	32.56	40.87
167	14-Sep-22	482.98	779.7	731.1	839.7	333.76	316.4	354.47	35.75	32.75	39.89
168	15-Sep-22	488.75	783.9	729.1	857.6	335.66	315.4	360.81	36.12	32.07	41.16
169	16-Sep-22	452.19	775.7	725.3	854.3	333.74	313.7	359.98	35.82	31.73	40.6
170	17-Sep-22	453.56	774.7	738.1	852.3	332.89	319.8	358.31	35.53	32.68	40.66
171	18-Sep-22	476.18	780.6	721.8	852.9	333.83	312.7	356.83	35.8	31.53	40.37
172	19-Sep-22	479.09	785.7	738.6	848.6	336.84	320.3	357.28	36.39	33.05	40.46
173	20-Sep-22	441.54	767.3	723.8	843.8	330	314	356.57	35.03	31.79	40.31
174	21-Sep-22	456.14	770.9	724.7	832.4	330.85	314.5	352.88	35.18	31.47	39.58
175	22-Sep-22	445.13	767	732.5	819.6	329.74	318.4	344.21	34.93	32.67	37.84
176	23-Sep-22	442.92	767.3	732	814.4	329.92	317.6	346.6	35.01	32.79	38.32
177	24-Sep-22	468.19	781.2	740	839	334.93	319.9	354.08	36	32.98	40.07
178	25-Sep-22	485.21	788	729.6	852.6	336.84	314.9	359.5	36.41	31.99	40.9
179	26-Sep-22	470.29	778	739.1	845.9	333.36	319.4	356.35	35.64	32.87	40.27
180	27-Sep-22	488.74	785.4	740.6	851.2	335.5	319.4	358.23	36.1	32.88	40.65
181	28-Sep-22	495.78	788.6	755.4	858.3	336.8	323.9	360.62	36.33	33.77	41.12
182	29-Sep-22	469.21	777.5 776.7	732.7 747	842.9 827	333.59 333.43	316.1 320.5	355.34 349.59	35.74 35.7	32.22 33.29	39.79 38.92
183	30-Sep-22	462.37									

Unit# 5 CEMS

57

27-May-22

569.21

827.89 759.62

S.	UNIT# 5 UNIT# 5 SOx						2ERIOD FROM APR '2022 -SEPT' 2022 UNIT# 5 NOx UNIT# 5 DUST					
NO.	DATE	LOAD(MW)	-	(mg/nm3)		_	(mg/nm3)		•	(mg/nm3)		
		AVG	AVG	MIN	MAX	AVG	MIN	MAX	AVG	MIN	MAX	
1	1-Apr-22	611.54	848.8	783	882.6	360.37	338.4	372.42	39.63	34.76	42.41	
2	2-Apr-22	612.49	846.1	800.2	884.6	359.15	343.2	373.26	39,33	35.68	42.63	
3	3-Apr-22	629.53	854.1	806.6	884.5	361.74	346.4	372.98	39.88	36.55	42.52	
4	4-Apr-22	657.66	863.8	840	888.4	364.6	355	374.49	40.43	38.01	42.89	
5	5-Apr-22	639.02	855.1	814.9	881.1	361.85	348.7	372.14	39.83	36.98	42.39	
6	6-Apr-22	637.6	854.3	827.5	885.4	361.58	351.4	373.37	39.77	37.3	42.63	
7	7-Apr-22	610.66	848.9	816.6	879.7	360.51	348.3	371.7	39.67	36.71	42.3	
8	8-Apr-22	623.77	855	823.8	884.7	362.4	351	373.09	40.06	37.36	42.56	
9	9-Apr-22	598.89	837.8	796.8	877.6	356.53	342.9	370.82	38.73	35.74	42.08	
10	10-Apr-22	627.52	849.7	827	876.8	360.14	351.3	371	39.51	37.28	42.19	
11	11-Apr-22	623.46	856.1	832.7	878.5	362.81	353.2	371.54	40.14	37.63	42.31	
12	12-Apr-22	628.23	855.3	826.5	879.2	362.3	351	371.61	39.99	37.21	42.29	
13	13-Apr-22	620.67	855.1	826.3	873.7	362.57	351.9	370.05	40.16	37.59	42	
14	14-Apr-22	635.83	853.3	831.5	880.8	361.19	352.5	372.16	39.7	37.66	42.42	
15	15-Apr-22	600.47	841.1	765.7	881.5	357.81	333.5	372.4	39.08	33.87	42.47	
16	16-Apr-22	614.7	847.4	785.5	881.3	359.77	340.9	372.12	39.45	35.64	42.37	
17	17-Apr-22	579.35	836.2	786.9	876.8	356.41	341.1	370.66	38.8	35.62	42.05	
18	18-Apr-22	375.78	751.6	723.1	786	330.99	320	339.98	33.68	31.02	35.83	
19	19-Apr-22	355.49	751.2	724.5	772.6	331.01	320.5	339.51	33.77	31.14	35.86	
20	20-Apr-22	365.23	754	728.8	774.9	331.7	321.7	339.93	33.86	31.43	35.88	
21	21-Apr-22	362.99	755.1	730.6	778.1	332.3	322.4	341.38	33.97	31.52	36.22	
22	22-Apr-22	421.15	775.2	726.6	838.6	337.9	321.1	358.59	35.02	31.25	39.52	
23	23-Apr-22	584.86	840.2	768.5	875.6	357.89	333.8	370.57	39.15	33.81	42.09	
24	24-Apr-22	560.58	827.2	768.1	869.9	353.67	333.4	368.57	38.27	33.69	41.63	
25	25-Apr-22	596.35	837.6	790.3	876.8	356.48	341.3	370.7	38.75	35.51	42.07	
26	26-Apr-22	596.87	841.9	783.4	875.6	357.99	341.9	370.27	39.1	36.04	42.33	
27	27-Apr-22	626.58	853.7	793.6	879.1	361.76	344.4	371.01	39.89	36.54	42.06	
28	28-Apr-22	617.75	843.6	809.8	878.2	358.14	346.1	370.87	39.04 39.49	36.24	42.05	
29 30	29-Apr-22 30-Apr-22	607.34 606.51	847.2 842.9	818 812.2	875.8 873.9	359.87 358.23	348.4 347.5	370.62 369.86	39.49	36.68 36.62	42.1 41.91	
31	1-May-22	491.13	805.82	752.13	880.26	347.72	330	371.96	37.14	33.16	43.37	
32	2-May-22	572.11	833.84	780.12	883.73	355.48	337.84	385.78	38.59	34.73	44.49	
33	3-May-22	623.11	851.77	815.04	882.99	361.14	348.89	372.37	36.73	37.06	43.45	
34	4-May-22	633	859.65	832.53	880.26	363.84	352.98	371.92	40.42	37.64	43.35	
35	5-May-22	612.23	841.66	744.3	877.17	357.56	326.38	370.76	38.91	32.29	43.07	
36	6-May-22	584.91	833.17	740.95	867.76	355.28	325.56	366.89	38.56	32.16	42.52	
37	7-May-22	602.1	841.96	794.82	869.47	358.03	341.67	368.45	39.1	35.38	44.61	
38	8-May-22	570.19	833.85	751.2	880.56	356.07	328.94	371.88	38.78	32.9	43.32	
39	9-May-22	594.49	842.08	807.76	872.48	358.44	347.56	369.09	39.22	36.62	42.73	
40	10-May-22	596.74	840.11	789.07	884.38	357.48	342.17	373.15	39.01	35.92	43.6	
41	11-May-22	592.52	833.86	766.56	880.46	355.26	334.74	371.6	38.43	34.3	43.21	
42	12-May-22	552.67	817.2	755.22	867.08	350.19	330.02	367.77	37.46	33.37	42.49	
43	13-May-22	573.71	829.22	770.18	873.15	354.09	334.2	369.81	38.34	33.87	42.94	
44	14-May-22	582.85	831.44	772.25	869.47	354.61	338.54	367.83	36.36	35.48	42.52	
45	15-May-22	581.04	833.42	764.41	874.26	355.49	332.98	369.77	38.57	33.73	42.85	
46	16-May-22	630.04	852.51	819.42	881.65	361.1	351.01	371.77	39.68	37.21	43.21	
47	17-May-22	633.22	854.98	836.1	880.47	361.98	354.6	372	39.9	38.07	43.37	
48	18-May-22	622.08	845.65	825.39	871.65	358.65	350.88	368.47	39.13	37.23	42.53	
49	19-May-22	617.48	847.87	827.49	866.48	359.77	351.48	367.41	39.43	37.53	42.4	
50	20-May-22	532.84	818.75	745.5	882.38	351.56	327.3	372.53	35.89	32.54	43.47	
51	21-May-22	483.59	788.49	734.86	858.15	341.58	324.13	365.13	35.7	31.56	43.47	
52	22-May-22	454.28	782.59	735.69	863.26	340.02	324.62	374.76	35.45	32.11	41.51	
53	23-May-22	527.41	810.4	742.24	870.21	348.26	327.23	369.01	37.06	32.76	42.79	
54	24-May-22	610.31	849.88	824.15	874.17	360.82	350.92	369.96	39.73	37.21	42.93	
54 55			849.88	816.51					38.92	36.76	42.93	
	25-May-22	604.04			859.96	357.44	348.51	364.35				
56	26-May-22	627.22 560.21	851.16	828.26	872.31	360.77	351.63	369.63	39.65	37.36	42.91	
n/	· · / N/00/ 00		1 01/00		0// 30		1 221 61		10.13			

874.38 353.78

331.61 370.02

38.23

33.47

42.95

58	28-May-22	608.64	849.16	753.38	883.54	360.63	329.26	372.84	39.69	32.9	43.55
59	29-May-22	594.52	846.25	777.07	885.48	360.09	339.24	373.54	39.69	35.47	43.69
60	30-May-22	616.91	850.6	818.42	876.34	360.9	350.6	370.84	39.7	37.18	43.16
61	1-Jun-22	604.04	846.4	759.4	884.9	359.7	331.4	373.23	39.53	33.39	43.6
62	2-Jun-22	615.56	841.6	810.4	876.6	357.43	346.2	370.27	38.84	36.25	41.91
63	3-Jun-22	581.47	831.9	771.2	879.9	354.91	334.9	371.96	38.43	34.07	42.39
64	4-Jun-22	631.89	854.8	825.9	885.7	362.07	350.8	373.5	39.94	37.17	43.66
65 66	5-Jun-22 6-Jun-22	599.86 606.34	844.4 843.3	798 819.6	885.9 871.9	359.19 358.36	344.5 349.2	373.44 369.5	39.41 39.16	36.2 36.9	42.62 41.89
67	7-Jun-22	581.28	835.1	802.1	868.4	356.12	344.7	367.7	38.73	36.15	42.38
68	8-Jun-22	592.07	840.1	802.1	867.9	357.69	343.8	368.2	39.05	35.78	41.61
69	9-Jun-22	546.71	819.9	756.1	874.9	351.47	330.1	369.8	37.77	33.06	42.83
70	10-Jun-22	584.72	836.9	781.2	882.8	356.48	337.6	372.28	38.77	34.56	42.35
71	11-Jun-22	561.38	824.7	777.6	874.5	352.64	337.7	369.97	37.96	34.64	43.92
72	12-Jun-22	529.58	810.6	733.4	888.4	348.53	323.4	374.33	37.15	31.52	42.83
73 74	13-Jun-22 14-Jun-22	571.94 605.24	833.7 842.5	787.7 789.3	874.5 883	355.99 358	341.7 340.4	370.12 372.81	38.78 39.05	35.8 35.2	41.98 42.55
74	14-Jun-22 15-Jun-22	616.22	843.9	802.8	874	358.3	344.9	369.62	39.05	35.93	41.81
76	16-Jun-22	618.44	850.8	815.5	882	360.88	348.2	372.35	39.68	36.94	42.42
77	17-Jun-22	581.69	835.4	746.7	878.1	356.34	327.3	370.78	38.77	32.73	42.03
78	18-Jun-22	577.82	829.9	774	880	354.16	335.3	371.55	38.32	34.09	42.22
79	19-Jun-22	521.07	811.4	729.3	881.2	348.93	322	371.85	37.29	31.43	42.27
80	20-Jun-22	487.38	802.1	744.3	864.9	346.49	326.8	366.98	36.83	32.45	43.35
81	21-Jun-22	530.07	813.6	729.7	873.6	349.64	322	369.97	37.47	31.46	41.97
82 83	22-Jun-22 23-Jun-22	590.57 510.05	829.2 809.7	772.7 751.9	867.7 875.5	353.42 348.95	335.7 329.6	366.75 370.28	37.99 37.4	34.29 32.93	42.04 41.82
84	23-Jun-22 24-Jun-22	514.49	810.5	734	875.5	348.95	323.8	369.95	37.42	31.86	41.82
85	25-Jun-22	534.14	811.4	751	879	348.61	329.8	371.39	37.17	33.24	42.22
86	26-Jun-22	526.87	811.9	736.2	869.5	349.14	324.5	367.59	37.33	32.02	41.27
87	27-Jun-22	481.46	788.7	733.9	853.6	341.63	323.3	361.63	35.69	31.69	39.84
88	28-Jun-22	540.56	819.7	746.7	873.6	351.66	328.4	369.88	37.87	32.96	41.93
89	29-Jun-22	563.53	830	761.8	860.7	354.85	332.3	366.18	38.53	33.63	43.23
90	30-Jun-22	526.02	817.6	733.1	874	351.42	323.2	369.51	37.93	31.68	41.76
91 92	1-Jul-22 2-Jul-22	507.31 517.98	805.51 811.01	734.94 754.72	872.54 870.92	346.99 349.08	324.2 332.19	369.7 368.46	36.88 37.41	31.98 33.99	41.93 41.53
93	3-Jul-22	508.9	803.84	732.53	866.8	346.6	322.95	367.16	36.81	31.61	41.25
94	4-Jul-22	517.41	808	736.99	870.21	347.69	324.38	368.79	36.96	31.93	41.7
95	5-Jul-22	515.94	805.81	745.21	874.17	346.98	326.63	370.22	36.84	32.34	42.04
96	6-Jul-22	524.21	803.56	751.6	852.55	345.87	330.18	363.45	36.52	33.38	40.63
97	7-Jul-22	510.39	804.84	736.25	856.33	346.87	325.12	363.08	36.87	32.75	40.25
98	8-Jul-22	532.12	813.43	741.01	860.24	349.5	326.77	364.15	37.41	32.65	40.45
99	9-Jul-22	416.33	764.67				324.27	353.22	34.39	31.92	38.38
100 101	10-Jul-22 11-Jul-22	391.41 411.76	761.68 767.88	731.49 730.59	806.41 849.86	334.02 335.52	322.93 322.38	348.1 360.48	34.33 34.56	31.68 31.52	37.5 39.6
101	12-Jul-22	433.79	775.46	731.9	867.04	337.79	322.92	368.1	34.99	31.66	41.62
102	13-Jul-22	414.29	769.37	729.77	849.36	336.12	322.21	360.59	34.72	31.53	39.68
104	14-Jul-22	444.47	781.68	721.75	864.95	339.75	319.6	367.34	35.46	30.94	41.44
105	15-Jul-22	447.32	786.58	731.25	871.91	341.81	322.74	368.71	35.96	31.62	41.57
106	16-Jul-22	491.37	794.18	727.14	868.32	343.27	321.21	367.79	36.05	31.26	40.92
107	17-Jul-22	503.89	803.82	733.22	861.08	346.86	323	366.25	36.88	31.61	40.78
108 109	18-Jul-22 19-Jul-22	531.24 542.32	814.91 821.76	753.63 746.38	879.21	349.77	329.43	371.63	37.42 38.08	32.95 33.14	42.3
109	20-Jul-22	542.52 528.73	821.76	746.38	882.57 875.26	352.46 350.5	328.81 323.2	372.54 370.26	38.08	33.14	42.46 41.99
111	20-Jul-22	544.95	812.88	735.62	885.92	348.78	324.61	373.68	37.12	32.03	42.72
112	22-Jul-22	548.27	818.54	730.12	876.98	350.96	322.2	370.18	37.64	31.47	41.92
113	23-Jul-22	493.54	800.17	752.11	866.31	345.73	331.23	366.34	36.7	33.65	40.96
114	24-Jul-22	444.39	784.32	729.7	860.42	341.1	322.29	364.32	35.76	31.53	40.5
115	25-Jul-22	502.66	806.94	742.91	864.86	347.88	327.36	366.84	37.17	32.77	41.33
116	26-Jul-22	564.74	824.5	766.08	868.4	352.57	333.67	368.35	37.95	34.03	41.57
117 118	27-Jul-22 28-Jul-22	587.44 560.08	837.53 826.56	754.94 756.09	872.43 866.33	356.87 353.61	330.02 331.81	369.48 367.5	38.89 38.28	33.11 33.76	41.85 41.42
118	28-Jul-22 29-Jul-22	565.38	826.38	756.09	876.6	353.81	330.4	307.5	38.19	33.33	41.42
120	30-Jul-22	557.79	827.54	745.07	872.63	354.12	328.34	368.97	38.38	33.03	41.63
121	31-Jul-22	483.32	777.02	716.33	843.21	338.24	315.05	359.95	35.52	31.19	39.19
122	1-Aug-22	471.03	792.2	731	863	343.04	322.7	365.26	36.13	31.61	41.07

123 2-Aug-22 603.49 893.87 895.42 390.22 333.5 366.52 37.44 41.62 125 4-Aug-22 603.49 845.8 816.8 872.9 386.65 348.1 369.43 392.2 351.51 41.64 126 5-Aug-22 458.56 789.4 789.9 867.9 368.05 382.2 368.39 360.64 31.51 41.62 127 6-Aug-22 449.56 789.4 739.9 853.3 342.41 325.9 366.39 36.04 31.14 40.83 129 8-Aug-22 490.05 7918.7 755.8 844.302.4 402.4 362.3 355.51 31.15 41.4 121 1-Aug-22 444.05 788.7 781.8 735.5 844.3 402.4 322.1 366.83 355.51 31.14 41.99 131 10-Aug-22 444.73 782.8 770.7 873.2 386.8 24.59 360.21 355.2 31.64 41.99 135 12-Aug-22 444.73 790.7 730.6 885.3	107				744	0.07.4	750.00		76650			
125 4-Aug.22 597-42 89.9 775.9 867.9 586.05 338.2 568.27 39.22 55.3 41.64 126 5-Aug.22 555 769.4 779 863.3 342.71 22.9 366.3 96.06 32.28 40.06 127 6-Aug.22 479.07 7911 726 857.9 364.24 361.22 363.6 351.2 40.08 128 7-Aug.22 440.07 782.8 725.6 867.9 340.24 324.2 366.3 355.9 31.64 41.0 130 7-Aug.22 441.07 782.8 727.6 868.7 340.28 322.1 366.85 355.9 31.44 41.49 132 17-Aug.22 447.41 790.7 730.873 342.49 322.1 366.85 355.9 31.44 41.49 134 17-Aug.22 464.37 796.7 730.873 346.43 322.4 450.87 357.9 31.44 41.49 134 17-Aug.22 464.14 802.1 777.7 730.873 386.41 350.23 </td <td>123</td> <td>2-Aug-22</td> <td>553.87</td> <td>817.4</td> <td>766.4</td> <td>863.4</td> <td>350.22</td> <td>333.3</td> <td>366.52</td> <td>37.48</td> <td>33.74</td> <td>41.62</td>	123	2-Aug-22	553.87	817.4	766.4	863.4	350.22	333.3	366.52	37.48	33.74	41.62
126 5-Aug.22 435.5 181.62 7.41.6 854.6 350.4 326.7 363.37 37.62 32.95 40.62 128 7-Aug.22 479.07 791.1 720.6 897.9 342.68 322.2 361.63 31.01 40.89 128 8-Aug.22 509.65 799.6 705.8 874.8 342.44 322.44 361.62 35.51 31.41 40.83 130 9-Aug.22 440.95 781.8 735.6 844.8 340.24 322.1 366.91 35.51 31.64 40.05 114.00.22 443.36 777.7 741.7 842.9 338.82 266.9 360.21 35.65 31.44 41.93 133 13-Aug.22 475.41 790.7 730 873.2 342.69 322.1 360.91 35.65 31.44 41.93 135 13-Aug.22 433.16 777.1 770 873 33.64 32.24 360.93 35.65 31.44 41.93 136 13-Aug.22 50.83 811.4 750.5 871.4 344.4		-										
127 6-Aug-22 458.56 789.4 739 863.3 342.71 322.8 360.63 36.06 31.41 40.83 128 7-Aug-22 579.8 791.1 722.6 857.9 342.68 322.2 364.4 36.04 31.41 40.83 129 8-Aug-22 509.85 799.6 750.8 847.8 340.24 326.24 360.74 35.59 31.64 40.06 131 10-Aug-22 444.73 782.8 773.5 844 302.8 322.1 366.93 35.25 32.64 34.6 35.75 31.45 41.4 131 10-Aug-22 444.75 786.7 730.6 863.2 341.4 322.4 360.16 35.77 31.68 39.96 35.79 31.44 41.99 31.64 41.79 31.64 31.93 36.66 35.27 31.64 41.71 31.86 35.74 33.51 41.67 33.64 35.75 33.51 41.62 36.91 32.57 43.58 41.07 33.64 41.71 31.86 31.41 11.71 36.86		5										
128 7-Aug-22 5/9.9 799.6 750.8 874.9 342.8 322 361.5 36.36 31.41 40.83 130 9-Aug-22 5/99.6 750.8 874.8 342.4 324.2 361.5 35.51 31.41 40.05 131 10-Aug-22 444.9 782.8 772.6 868.7 740.28 322.1 56.95 35.51 31.42 41.79 133 12-Aug-22 447.08 774 72.9 871.4 340.69 32.1 36.91.8 35.65 31.42 41.79 134 13-Aug-22 475.41 790.7 70.6 873.2 342.9 322.1 36.95 31.42 41.79 135 14-Aug-22 445.57 786.7 730.6 845.3 344.1 322.4 350.18 35.25 31.54 41.89 135 14-Aug-22 483.18 777.1 71.30 873 336.68 32.24 350.57 31.54 41.89 137 16-Aug-22 493.13 376.16 351.7 741.48 34.249 366.3		-										
129 8-Aug-22 509.85 799.6 750.8 847.8 344.4 322.4 361.52 363.62 35.92 31.92 40.05 131 10-Aug-22 4447.73 782.8 725.6 868.7 340.28 322.1 366.95 35.55 32.64 414 132 11-Aug-22 4447.08 784 728.9 871.4 340.69 32.12 369.96 35.25 32.64 417.9 134 13-Aug-22 447.08 784 773.0 873.2 342.4 360.91 35.75 31.44 41.99 135 14-Aug-22 453.15 771.7 730 873 336.68 32.24 350.93 35.77 31.64 41.79 136 15-Aug-22 433.93 815.7 736.7 854.4 350.4 356.93 37.54 35.54 41.62 140 0-Aug-22 543.93 815.7 736.7 869.1 342.9 366.34 35.91 32.24 41.53												
130 9-Aug-22 440.95 781.8 735 844 340.24 322.1 365.53 35.51 31.96 40.06 131 10-Aug-22 433.68 777.3 741.7 942.9 338.82 326.9 360.21 35.55 31.44 41.93 133 12-Aug-22 475.41 790.7 730 873.2 342.99 326.14 356.65 31.44 41.99 136 13-Aug-22 445.33 786.7 730.6 845.3 341.4 322.4 360.16 35.25 31.144 41.89 137 16-Aug-22 4433.16 677.7 730 873 346.61 322.6 366.83 32.23 41.18 137 16-Aug-22 443.14 806.2 741.3 846.7 349.41 320.4 366.33 37.41 32.24 41.69 138 17.44.02.22 549.37 818.1 756.5 871.7 349.47 330.4 35.92 37.41 32.44 41.69 141 20-Aug-22 579.13 814.05 347.9 34.29 36.												
131 10-Aug-22 444.73 782.8 729.6 868.7 340.28 322.1 568.3 35.57 31.45 41.4 132 11-Aug-22 447.08 784 728.9 871.4 340.69 321.9 359.18 355.65 31.42 41.79 134 13-Aug-22 447.08 784.7 730.6 873.2 342.4 360.18 35.77 31.68 39.65 135 18-Aug-22 433.16 777.1 730.87 338.68 322.4 360.18 35.77 31.68 39.65 136 18-Aug-22 433.16 777.1 730.87 332.68 322.4 366.83 32.23 41.71 139 18-Aug-22 549.37 818.1 765.6 864.1 350.6 332.2 37.53 38.58 41.07 140 19-Aug-22 549.37 818.1 765.6 864.1 341.83 32.49 366.34 35.91 32.27 40.66 142 24-Aug-22 606.53 842.2 785.8 834.1 370.06 38.69 36.1												
132 11-Aug.22 433.68 777.3 741.7 842.9 338.82 326.9 360.1 55.25 32.64 39.6 133 12-Aug.22 475.41 790.7 730 873.2 342.59 322.1 369.96 35.98 31.44 41.99 135 14-Aug.22 464.53 770.6 730.6 873 338.68 322.4 360.97 35.25 31.54 41.89 135 15-Aug.22 483.14 802.1 741.3 866.5 346.41 326.4 369.67 35.25 31.54 41.89 137 16-Aug.22 543.93 815.1 750.5 871.1 349.47 330.4 366.23 37.5 35.51 41.12 139 18-Aug.22 549.33 815.7 738.7 869.1 330.4 352.4 366.28 37.54 341.07 140 19-Aug.22 519.13 806.6 743.6 854.4 342.3 329 362.4 359.9 32.27 40.66 142 21-Aug.22 519.13 806.6 743.6 854.4 </td <td></td>												
133 12-Aug-22 447.08 784 728.9 871.4 340.69 321.9 369.18 35.65 31.42 417.9 134 13-Aug-22 464.53 786.7 730.6 845.3 341.4 322.4 360.61 35.77 31.68 39.96 136 15-Aug-22 433.16 777.1 730 873 338.68 322.4 369.67 35.25 31.54 41.89 137 16-Aug-22 508.83 811.4 750.5 871.7 349.47 350.4 368.32 37.54 33.58 41.07 139 18-Aug-22 543.93 815.7 785.7 869.1 349.9 322.4 368.30 37.44 31.82 41.152 141 20-Aug-22 476.1 796 784.4 81.92 32.29 366.34 35.92 32.16 41.74 142 22-Aug-22 476.1 879.6 344.32 323.9 360.07 36.42 31.66 13.40 41.65												
134.ug-22 475.41 790.7 730.6 873.2 342.99 322.1 360.96 55.98 31.44 41.99 135 16-Aug-22 433.16 770.6 863.5 33.14 322.4 360.18 35.77 31.68 39.96 136 15-Aug-22 433.16 802.1 741.3 868.5 336.41 326.6 368.22 36.55 32.34 41.71 138 17-Aug-22 508.83 811.4 750.5 871.7 349.47 330.4 366.32 37.41 32.24 41.19 139 18-Aug-22 594.93 815.7 736.7 861.4 349.9 325.4 366.33 37.41 32.24 41.59 141 20-Aug-22 475.11 796.4 861.4 341.83 322.49 365.03 36.0 36.1 42 31.49 367.07 36.68 30.00 38.69 36.1 42 32.49 366.28 36.1 42.5 32.9 460.4 37.66 36.0 36.1 42 32.44 41.50 38.69 36.1 42.5												
135 14-Aug-22 464.53 786.7 730.6 84.5.3 331.4 322.4 360.18 35.77 31.68 39.96 136 15-Aug-22 483.14 802.1 741.3 868.5 346.41 326.6 368.22 36.65 32.24 41.71 138 17-Aug-22 508.83 811.4 750.5 871.7 349.47 330.4 359.2 37.5 33.51 41.07 149 19-Aug-22 543.93 815.7 738.7 866.1 334.9 326.3 86.33 3.741 322.47 40.66 142 20-Aug-22 454.92 787 736.4 861.4 341.83 324.9 366.34 36.91 32.57 41.66 142 21-Aug-22 542.57 821.2 778.2 859.2 322.19 33.78 364.05 38.02 34.6 40.57 144 23-Aug-22 561.8 83.44 790.2 877.7 355.89 34.13 370.66 38.06 36.1 42.4 24-Aug-22 518.8 84.4 795.7 875.7												
136 15-Aug-22 433.16 777.1 730 873 338.66 322.4 369.67 35.25 31.54 41.89 137 16-Aug-22 508.83 811.4 750.5 871.7 349.47 330.4 369.32 37.5 33.51 41.82 139 18-Aug-22 549.37 818.1 765.6 864.1 350.6 332.8 366.28 37.54 33.58 41.02 140 19-Aug-22 549.37 818.1 785.6 864.1 341.83 324.9 356.83 36.91 32.24 41.59 141 20-Aug-22 549.27 782.4 867.1 344.83 322.9 369.07 36.62 31.89 41.25 142 21-Aug-22 542.57 821.2 778.2 857.98 341.3 357.68 39.06 35.7 41.42 144 25-Aug-22 561.8 834.4 70.06 38.69 36.41 41.82 144 26-Aug-22 571.8 873.5 356.03 357.3 369.97 38.71 34.77 41.67 <		-										
137 16-Aug-22 483.14 802.1 741.3 866.8 346.41 326.6 368.22 36.85 \$23.4 41.17 138 17-Aug-22 549.37 818.1 755.6 864.1 350.6 332.8 366.28 37.5 33.51 41.02 140 19-Aug-22 543.93 815.7 738.7 869.1 349.9 325.4 368.33 37.41 32.24 41.59 142 19-Aug-22 454.92 787 736.4 861.4 341.83 324.9 356.3 85.29 32.16 41.25 142 22-Aug-22 454.92 787 736.4 861.4 341.83 324.9 356.43 38.02 34.64 40.57 142 22-Aug-22 581.8 834.4 790.2 875.7 357.98 341.3 367.06 38.00 34.64 40.57 144 23-Aug-22 581.8 835.6 357.1 34.97 71.66 357.98 341.3 367.06 38.00 34.4 41.27 147 26-Aug-22 575.8 757.8 <td></td> <td>-</td> <td></td>		-										
138 17.Aug.22 508.83 811.4 750.5 871.7 349.47 330.4 359.32 37.5 33.51 41.82 139 18.Aug.22 543.93 815.7 738.7 669.1 349.9 325.4 368.23 37.41 32.24 41.59 141 20.Aug.22 543.93 815.7 736.4 861.4 341.83 324.9 366.34 35.92 32.16 41.25 142 21.Aug.22 476.11 796 734.4 871.5 344.32 323.9 369.07 36.42 31.89 41.75 144 23.Aug.22 542.7 827.2 782.8 892.9 352.91 378.63 36.02 34.64 40.67 144 23.Aug.22 561.8 834.4 790.2 873.7 355.89 341.3 370.66 38.69 36.1 42.2 144 25.Aug.22 560.53 842.3 785.8 673.5 357.95 350.55 370.62 39.39 36.14 41.82 145.2 24.ug.22 562.47 834.4 818.5 85		-										
139 18-Aug-22 543.93 818.1 765.6 864.1 350.6 332.8 366.28 37.54 33.88 41.07 140 19-Aug-22 543.93 815.7 738.7 869.1 349.9 325.4 366.33 37.41 32.24 41.59 141 20-Aug-22 454.92 787 736.4 861.4 341.83 324.9 366.34 35.92 32.16 41.25 142 22-Aug-22 542.57 821.2 778.2 859.2 352.19 337.8 366.07 38.02 34.68 40.67 145 24-Aug-22 561.8 834.4 790.2 877.7 357.98 341.3 367.68 39.06 35.57 41.44 147 26-Aug-22 Unit in shutdown condition 144 26-Aug-22 Unit in shutdown condition 150 34.73 34.73 36.95 38.71 34.74 41.67 153 0.5-Q2 609.8 842.6 823.6 875.7 357.95 350.5 370.62 39 37.16 41.87 153 15-Aug-22		=										
140 19-Aug-22 543.93 815.7 738.7 669.1 349.9 325.4 366.38 37.41 32.24 41.95 141 20-Aug-22 519.13 806.6 743.6 854.8 347.25 327.3 365.88 36.91 32.57 40.66 142 21-Aug-22 476.11 796 734.4 871.5 344.32 323.9 369.07 36.42 31.89 41.74 142 23-Aug-22 542.57 821.2 778.5 892.12 378.8 364.05 38.60 36.1 42 144 23-Aug-22 606.53 842.3 785.3 867.2 357.98 341.3 367.06 38.69 36.1 42 144 23-Aug-22 50.63 37.75 357.95 350.5 37.71 34.07 41.67 147 26-Aug-22 50.91 802.5 753.3 861.4 346.6 329.2 36.71 34.74 41.67 151 30-Aug-22 50.01<		-										
141 20-Aug-22 519.13 806.6 743.6 854.8 347.25 327 363.8 36.91 32.57 40.65 142 21-Aug-22 454.92 787 736.4 861.4 341.83 324.9 366.34 35.92 32.16 41.25 142 22-Aug-22 542.57 821.2 778.2 859.2 352.19 337.8 364.05 38.02 34.88 40.57 145 24-Aug-22 548.8 834.4 790.2 873.7 555.89 343.4 370.06 38.69 35.57 41.44 147 26-Aug-22 606.53 842.3 785.3 867.2 357.98 341.3 367.68 39.06 35.57 41.44 147 26-Aug-22 0.011 in shutdown condition		-										
142 21-Aug.22 476,11 796 736,4 861,4 341,83 324,9 366,33 35,92 32,16 41,25 143 22-Aug.22 442,57 821,2 778,2 859,2 352,19 337,8 366,05 38,02 36,89 41,74 144 23-Aug.22 581,8 834,4 790,2 873,7 355,89 343,4 370,60 38,69 36,1 42 146 25-Aug.22 560,53 842,3 785,3 867,2 357,98 341,3 367,66 39,06 35,57 41,44 147 26-Aug.22 Unit in shutdown condition Unit in shutdown condition 146,7 146,71 14,67 150 29-Aug.22 373,15 835 775,8 873,5 356,03 350,5 370,62 39 37,16 41,87 153 1-Aug.22 602,8 842,6 875,7 357,95 350,5 370,22 37,48 41,39 154 2-Sep.22 500,91 802,5 753,3 861,4 346,6 329,75 36,17 41,69												
143 22-Aug-22 476.11 796 734.4 871.5 344.32 323.9 560.07 36.42 31.89 41.74 144 23-Aug-22 542.57 821.2 778.2 859.2 352.19 337.8 364.05 38.02 34.68 40.57 145 24-Aug-22 606.53 842.3 785.3 867.2 357.98 341.3 367.68 39.06 35.57 41.44 147 26-Aug-22 606.53 842.3 785.3 867.2 357.98 341.3 367.68 39.06 35.57 41.44 147 26-Aug-22 0 Unit in shutdown condition 1011 151 30.40.22 373.15 835 775.8 875.5 350.5 370.62 39 37.16 41.87 153 1-Sep-22 500.07 833.1 764.2 869 355.82 332.4 369.95 38.6 33.49 41.95 154 2-Sep-22 599.42 844.7 793.9 869.7 360.53 343.8 370.62 39.75 36.17 41.69 43.89												
144 23-Aug-22 542.57 821.2 778.2 852.9 352.19 337.8 364.02 34.68 40.57 145 24-Aug-22 581.8 834.4 790.2 873.7 355.89 343.4 370.06 38.69 36.1 42 146 25-Aug-22 566.53 842.3 785.3 867.2 357.98 341.3 367.66 39.06 35.57 41.44 147 26-Aug-22 Unit in shutdown condition Unit in shutdown condition 148 77.40.92 37.16 48.75 153 0.740.922 609.8 842.6 823.6 875.7 357.95 350.55 37.02 37.48 41.67 154 2.5ep-22 590.07 831.7 764.2 869 355.82 332.4 369.95 38.61 41.99 155 3.5ep-22 590.07 831.7 762.3 864.7 393.2 354.8 370.22 37.48 41.93 156 4.5ep-22 590.07 863.1 </td <td></td> <td>-</td> <td></td>		-										
145 24-Aug-22 581.8 834.4 790.2 873.7 355.89 343.4 370.06 38.69 36.1 42 146 25-Aug-22 606.53 842.3 785.3 867.2 357.98 341.3 367.68 39.06 35.57 41.44 147 26-Aug-22 Unit in shutdown condition 1148 27-Aug-22 373.15 835 775.8 875.7 357.95 350.5 370.62 39.06 34.77 41.67 150 29-Aug-22 609.8 842.6 823.6 875.7 357.95 350.5 370.62 39.02 37.16 41.37 151 15.ep-22 500.91 802.5 753.3 861.4 346.6 329.2 367.7 32.86 41.39 154 -Sep-22 590.07 833.1 764.2 869 355.82 332.4 369.95 38.6 33.49 41.95 155 -Sep-22 590.07 833.1 766.8 355.6 349.57 356.9 364.42 37.23 34.3 40.61 157 -Sep-22		-										
146 25-Aug-22 606.53 842.3 785.3 867.2 357.98 341.3 367.68 39.06 35.57 41.44 147 26-Aug-22 Unit in shutdown condition Unit in shutdown condition 149 28-Aug-22 Unit in shutdown condition 34.77 41.67 150 29-Aug-22 609.8 842.6 825.6 875.7 357.95 550.5 370.62 39 37.16 41.87 151 30-Aug-22 609.8 842.6 825.6 875.7 357.95 550.5 370.62 39 37.16 41.87 152 31-Aug-22 622.47 834.4 818.5 856.6 357.11 349.6 367.73 38.6 33.49 41.95 154 2-Sep-22 590.07 831.7 76.6 855.6 349.57 36.6 36.73 37.32 36.17 41.69 155 3-Sep-22 557.69 825.5 762.3 858.1 354.3 332.7 355.14 38.42		-										
147 26-Aug-22 Unit in shutdown condition 148 27-Aug-22 Unit in shutdown condition 150 29-Aug-22 Unit in shutdown condition 150 29-Aug-22 609.8 842.6 823.6 875.7 357.95 350.5 370.62 39 37.16 41.87 151 30-Aug-22 602.47 834.4 818.5 856.6 357.11 349.6 367.71 39.02 37.48 41.32 153 1-Sep-22 590.07 833.1 764.2 869 355.82 332.4 360.95 38.6 33.49 41.95 155 -Sep-22 590.07 833.1 764.2 869 355.82 332.4 369.95 38.6 33.49 41.95 155 -Sep-22 599.42 844.7 793.9 865.5 349.57 356.42 37.32 34.3 40.61 157 -Sep-22 561.63 820.4 774 868.5 352.04 338.4 36.16 42.26		J										
148 27.Aug-22 Unit in shutdown condition 149 28.Aug-22 373.15 835 775.8 873.5 360.95 38.71 34.77 41.67 150 29.Aug-22 609.8 842.6 823.6 875.7 357.95 350.5 370.62 39 37.16 41.87 151 30.Aug-22 609.8 842.6 823.6 37.11 349.6 367.71 39.02 37.48 41.32 153 1-Sep-22 590.07 833.1 764.2 869 355.82 332.4 369.95 38.6 33.49 41.95 155 3-Sep-22 590.07 833.1 764.2 869 355.82 332.4 369.95 38.6 33.49 41.95 156 4-Sep-22 557.69 825.5 762.3 858.1 354.3 332.7 365.14 38.42 33.69 40.75 158 6-Sep-22 561.68 835.2 772 863.2 356.93 37.83 37.83		-	606.53	842.3	785.3					39.06	35.57	41.44
149 28-Aug-22 Unit in shutdown condition 150 29-Aug-22 373.15 835 775.8 873.5 356.03 337.3 369.95 38.71 34.77 41.67 151 30-Aug-22 609.8 842.6 823.6 875.7 357.95 350.5 370.62 39 37.16 41.87 152 31-Aug-22 622.47 834.4 818.5 856.6 357.11 349.6 367.71 39.02 37.48 41.32 153 -Sep-22 590.07 833.1 764.2 869.7 355.82 332.4 369.95 38.6 33.49 41.95 155 -Sep-22 597.69 825.5 762.3 858.1 343.3 370.26 39.75 36.17 42.26 158 6-Sep-22 557.69 825.5 762.3 858.1 344.2 37.181 38.93 36.16 42.26 159 7-Sep-22 560.65 820.4 774 868.5 352.04 338.4		•										
150 29-Aug-22 373.15 835 775.8 873.5 356.03 337.3 369.95 38.71 34.77 41.67 151 30-Aug-22 609.8 842.6 823.6 875.7 357.95 350.62 39 37.16 41.87 152 31-Aug-22 622.47 834.4 818.5 856.6 357.11 349.6 367.71 39.02 37.46 41.32 153 1-Sep-22 590.07 833.1 764.2 869 355.82 322.4 36.73 38.61 33.49 41.95 155 3-Sep-22 590.42 844.7 793.9 869.7 360.53 343.8 370.26 39.73 36.17 41.69 156 4-Sep-22 545.62 812.9 776.6 855.6 349.57 356.9 364.42 37.33 38.49 40.61 157 5-Sep-22 557.69 825.5 762.3 858.1 354.3 352.4 36.16 42.26 159 7-Sep-22 560.65 820.4 774 868.5 352.04 334.7		3				-						
151 30-Aug-22 609.8 842.6 823.6 875.7 357.95 350.5 370.62 39 37.16 41.87 152 31-Aug-22 622.47 834.4 818.5 856.6 357.11 349.6 367.71 39.02 37.48 41.32 154 2:Sep-22 590.07 833.1 764.2 869 355.82 332.4 369.95 38.6 33.49 41.95 155 3:Sep-22 599.42 844.7 793.9 869.7 360.53 343.8 370.26 39.75 36.17 41.69 156 4:Sep-22 545.62 812.9 776.6 855.6 349.57 336.4 34.2 37.32 36.16 42.26 157 5:Sep-22 557.69 825.5 762.3 858.1 354.3 342.2 37.83 35.2 41.61 160 8:Sep-22 598.58 835.2 77.2 863.2 356.29 334.7 36.43 37.98 34.13 40.82 161 9:Sep-22 594.57 819.8 772.8 854.2				1								
152 31-Aug.22 622.47 834.4 818.5 856.6 357.11 349.6 367.71 39.02 37.48 41.32 153 1-Sep-22 500.91 802.5 753.3 861.4 346.6 329.2 367.38 36.77 32.86 41.39 154 2-Sep-22 590.07 833.1 764.2 869 355.82 332.4 369.95 38.6 33.49 41.95 155 3-Sep-22 599.42 844.7 793.9 869.7 306.93 344.2 37.32 34.3 40.61 157 5-Sep-22 557.69 825.5 762.3 858.1 354.3 332.7 365.14 38.42 33.69 40.75 158 6-Sep-22 611.43 839.2 772 863.2 356.29 334.7 367.46 38.68 33.95 41.34 161 9-Sep-22 542.43 817.4 762.3 858.9 351.72 334.8 366.94 37.91 34.74 41.47 162 10-Sep-22 519.99 805.9 775.8 866.3												
153 1-Sep-22 500.91 802.5 753.3 861.4 346.6 329.2 367.38 36.77 32.86 41.39 154 2-Sep-22 590.07 833.1 764.2 869 355.82 332.4 369.95 38.6 33.49 41.95 155 3-Sep-22 590.42 844.7 793.9 869.7 360.53 343.8 370.26 39.75 36.17 41.69 156 4-Sep-22 545.62 812.9 776.6 855.6 349.57 356.14 38.42 33.69 40.75 158 6-Sep-22 611.43 839.2 793.9 876.5 357.48 344.2 371.81 38.93 36.16 42.26 159 7-Sep-22 560.65 820.4 772 863.2 356.29 334.7 367.46 38.68 33.95 41.61 160 8-Sep-22 598.58 835.2 772 863.2 356.25 335.3 364.3 37.98 34.13 40.82 161 9-Sep-22 549.57 819.8 772.8 856.1												
154 2-Sep-22 590.07 833.1 764.2 869 355.82 332.4 369.95 38.6 33.49 41.95 155 3-Sep-22 599.42 844.7 793.9 869.7 360.53 343.8 370.26 39.75 36.17 41.69 156 4-Sep-22 545.62 812.9 776.6 855.6 349.57 336.9 364.42 37.32 34.3 40.61 157 5-Sep-22 557.69 825.5 762.3 858.1 354.3 332.7 365.14 38.42 33.69 40.75 158 6-Sep-22 611.43 839.2 793.9 876.5 357.48 344.2 371.81 38.93 36.16 42.26 159 7-Sep-22 560.65 820.4 774 868.2 356.29 334.7 367.46 38.68 33.95 41.34 161 9-Sep-22 542.43 817.4 762.3 858.9 351.72 334.8 365.94 37.91 34.74 41.47 162 10-Sep-22 549.57 819.8 772.8												
155 3-Sep-22 599.42 844.7 793.9 869.7 360.53 343.8 370.26 39.75 36.17 41.69 156 4-Sep-22 545.62 812.9 776.6 855.6 349.57 336.9 364.42 37.32 34.3 40.61 157 5-Sep-22 557.69 825.5 762.3 858.1 354.3 322.7 366.14 38.42 33.69 40.75 158 6-Sep-22 611.43 839.2 793.9 876.5 357.48 344.2 371.81 38.93 36.16 42.26 159 7-Sep-22 560.65 820.4 774 868.5 352.04 338.5 568.73 37.83 35.2 41.61 160 8-Sep-22 598.58 835.2 772 863.2 356.29 334.7 367.46 38.68 33.95 41.34 161 9-Sep-22 549.57 819.8 772.8 854.6 352.27 336.3 36.43 37.79 34.74 41.78 163 11-Sep-22 522.74 811.9 763.2												
156 4-Sep-22 545.62 812.9 776.6 855.6 349.57 336.9 364.42 37.32 34.3 40.61 157 5-Sep-22 557.69 825.5 762.3 858.1 352.7 356.14 38.42 33.69 40.75 158 6-Sep-22 611.43 839.2 793.9 876.5 357.48 344.2 371.81 38.93 36.16 42.26 159 7-Sep-22 560.65 820.4 772 863.2 356.29 334.7 367.46 38.68 33.95 41.34 160 8-Sep-22 542.43 817.4 762.3 858.9 351.72 334.8 366.59.4 37.91 34.74 41.47 162 10-Sep-22 549.57 819.8 772.8 866.3 320.7 356.90 350.43 333.4 367.36 37.7 33.89 41.31 164 12-Sep-22 522.74 811.9 763.2 865.4 345.51 327.5 37.19 31.35 42.48 166 14-Sep-22 488.4 791.6 748.6												
157 5-Sep-22 557.69 825.5 762.3 858.1 354.3 332.7 365.14 38.42 33.69 40.75 158 6-Sep-22 611.43 839.2 793.9 876.5 357.48 344.2 371.81 38.93 36.16 42.26 159 7-Sep-22 560.65 820.4 774 868.5 352.04 338.5 368.73 37.83 35.2 41.61 160 8-Sep-22 598.58 835.2 772 863.2 356.29 334.7 367.46 38.68 33.95 41.34 161 9-Sep-22 542.43 817.4 762.3 858.9 351.72 334.8 365.94 37.91 34.74 41.47 162 10-Sep-22 549.57 819.8 772.8 854.6 352.25 335.3 364.3 37.98 34.13 40.82 163 11-Sep-22 511.95 805.7 728.8 877.2 348.26 321.7 372.5 37.19 31.35 42.48 166 14-Sep-22 495.74 797.5 742.6 <td></td> <td>-</td> <td></td>		-										
158 6-Sep-22 611.43 839.2 793.9 876.5 357.48 344.2 371.81 38.93 36.16 42.26 159 7-Sep-22 560.65 820.4 774 868.5 352.04 338.5 368.73 37.83 35.2 41.61 160 8-Sep-22 598.58 835.2 772 863.2 356.29 334.7 367.46 38.68 33.95 41.34 161 9-Sep-22 542.43 817.4 762.3 858.9 351.72 334.8 365.94 37.91 34.74 41.47 162 10-Sep-22 542.43 817.4 762.3 858.9 351.72 334.8 365.94 37.98 34.13 40.82 163 11-Sep-22 519.99 805.9 735.3 866.3 347.73 323.7 369.09 36.96 31.76 41.78 164 12-Sep-22 522.74 811.9 763.2 865.1 352.75 371.9 31.35 42.48 165 14-Sep-22 495.74 797.5 742.6 854.53 343.5												
1597.Sep-22560.65820.4774868.5352.04338.5368.7337.8335.241.611608.Sep-22598.58835.2772863.2356.29334.7367.4638.6833.9541.341619.Sep-22542.43817.4762.3858.9351.72334.8365.9437.9134.7441.4716210.Sep-22549.57819.8772.8854.6352.25335.3364.337.9834.1340.8216311.Sep-22522.74811.9763.2863.1350.43333.4367.3637.733.8941.3116412.Sep-22522.74811.9763.2865.4345.51327.8367.1136.6132.8641.1116513.Sep-22519.99805.7728.8877.2348.26321.7372.537.1931.3542.4816614-Sep-22495.74797.5742.6865.4345.51327.8367.1136.6132.8641.1116715-Sep-22488.47791.6748.9864.5343.53330.9367.4536.1833.6741.2816816-Sep-22458.7781.8746.1846.8340.2329.8359.2735.4532.7539.216917-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.2739.7317018-Sep-22495.53<												
1608-Sep-22598.58835.2772863.2356.29334.7367.4638.6833.9541.341619-Sep-22542.43817.4762.3858.9351.72334.8365.9437.9134.7441.4716210-Sep-22549.57819.8772.8854.6352.25335.3364.337.9834.1340.8216311-Sep-22519.99805.9735.3866.3347.73323.7369.0936.9631.7641.7816412-Sep-22522.74811.9763.2863.1350.43333.4367.3637.733.8941.3115513-Sep-22511.95805.7728.8877.2348.26321.7372.537.1931.3542.4816614-Sep-22495.74797.5742.6865.4345.51327.8367.4536.1833.6741.2816816-Sep-22488.84791.6748.9864.5343.53330.9367.4536.1833.6741.2816816-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22482.78796.1735.3859342.08330.4359.3935.9833.1339.6317220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.8632.2739.7317321-Sep-22463.61<												
1619-Sep-22542.43817.4762.3858.9351.72334.8365.9437.9134.7441.4716210-Sep-22549.57819.8772.8854.6352.25335.3364.337.9834.1340.8216311-Sep-22519.99805.9755.3866.3347.73323.7369.0936.9631.7641.7816412-Sep-22522.74811.9763.2863.1350.43333.4367.3637.733.8941.3116513-Sep-22511.95805.7728.8877.2348.26321.7372.537.1931.3542.4816614-Sep-22495.74797.5742.6865.4345.51327.8367.4536.1833.6741.2816816-Sep-22488.84791.6748.9864.5343.53330.9367.4536.1833.6741.2816816-Sep-22458.7781.8746.1846.8340.2329.8359.2735.4532.7539.216917-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22482.78796.1755.5839.8342.98330.4359.3935.9833.1339.6317220-Sep-22455.51784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61												
16210-Sep-22549.57819.8772.8854.6352.25335.3364.337.9834.1340.8216311-Sep-22519.99805.9735.3866.3347.73323.7369.0936.9631.7641.7816412-Sep-22522.74811.9763.2863.1350.43333.4367.3637.733.8941.3116513-Sep-22511.95805.7728.8877.2348.26321.7372.537.1931.3542.4816614-Sep-22495.74797.5742.6865.4345.51327.8367.1136.6132.8641.1116715-Sep-22488.84791.6748.9864.5343.53330.9367.4536.1833.6741.2816816-Sep-22458.7781.8745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22482.78796.1735.3859345.08324.3366.336.5131.9641.3117119-Sep-22491.98791.5755.5839.8342.98330.4359.3935.9833.1339.6317220-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217523-Sep-22463.51 <td></td>												
16311-Sep-22519.99805.9735.3866.3347.73323.7369.0936.9631.7641.7816412-Sep-22522.74811.9763.2863.1350.43333.4367.3637.733.8941.3116513-Sep-22511.95805.7728.8877.2348.26321.7372.537.1931.3542.4816614-Sep-22495.74797.5742.6865.4345.51327.8367.1136.6132.8641.1116715-Sep-22488.84791.6748.9864.5343.53330.9367.4536.1833.6741.2816816-Sep-22458.7781.8746.1846.8340.2329.8359.2735.4532.7539.216917-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22491.98791.5755.5839.8342.98330.4359.3935.9833.1339.6317220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22463.61 </td <td></td>												
16412-Sep-22522.74811.9763.2863.1350.43333.4367.3637.733.8941.3116513-Sep-22511.95805.7728.8877.2348.26321.7372.537.1931.3542.4816614-Sep-22495.74797.5742.6865.4345.51327.8367.1136.6132.8641.1116715-Sep-22488.84791.6748.9864.5343.53330.9367.4536.1833.6741.2816816-Sep-22458.7781.8746.1846.8340.2329.8359.2735.4532.7539.216917-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22491.98791.5755.5839.8342.98330.4359.3935.9833.1339.6317119-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217220-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217523-Sep-22463.51<												
16513-Sep-22511.95805.7728.8877.2348.26321.7372.537.1931.3542.4816614-Sep-22495.74797.5742.6865.4345.51327.8367.1136.6132.8641.1116715-Sep-22488.84791.6748.9864.5343.53330.9367.4536.1833.6741.2816816-Sep-22458.7781.8746.1846.8340.2329.8359.2735.4532.7539.216917-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22482.78796.1735.3859345.08324.3366.336.5131.9641.3117119-Sep-22491.98791.5755.5839.8342.98330.4359.3935.9833.1339.6317220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22463.51 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
16614-Sep-22495.74797.5742.6865.4345.51327.8367.1136.6132.8641.1116715-Sep-22488.84791.6748.9864.5343.53330.9367.4536.1833.6741.2816816-Sep-22458.7781.8746.1846.8340.2329.8359.2735.4532.7539.216917-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22482.78796.1735.3859345.08324.3366.336.5131.9641.3117119-Sep-22491.98791.5755.5839.8342.98330.4359.3935.9833.1339.6317220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22463.81787.2742.1858.7341.94326.9366.7935.8632.5841.3117523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22461.77 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-										
16715-Sep-22488.84791.6748.9864.5343.53330.9367.4536.1833.6741.2816816-Sep-22458.7781.8746.1846.8340.2329.8359.2735.4532.7539.216917-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22482.78796.1735.3859345.08324.3366.336.5131.9641.3117119-Sep-22491.98791.5755.5839.8342.98330.4359.9935.9833.1339.6317220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22463.81787.2742.1858.7341.94326.9366.7935.8632.5841.3117523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7 </td <td></td>												
16816-Sep-22458.7781.8746.1846.8340.2329.8359.2735.4532.7539.216917-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22482.78796.1735.3859345.08324.3366.336.5131.9641.3117119-Sep-22491.98791.5755.5839.8342.98330.4359.3935.9833.1339.6317220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22463.81787.2742.1858.7341.94326.9366.7935.8632.5841.3117523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817725-Sep-22480.83794.7 </td <td></td>												
16917-Sep-22466.73784.3745.1871.7341.16326.7370.2435.6832.3841.9317018-Sep-22482.78796.1735.3859345.08324.3366.336.5131.9641.3117119-Sep-22491.98791.5755.5839.8342.98330.4359.3935.9833.1339.6317220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22463.81787.2742.1858.7341.94326.9366.7935.8632.5841.3117523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8 </td <td></td>												
17018-Sep-22482.78796.1735.3859345.08324.3366.336.5131.9641.3117119-Sep-22491.98791.5755.5839.8342.98330.4359.3935.9833.1339.6317220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22468.81787.2742.1858.7341.94326.9366.7935.8632.5841.3117523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2												
17119-Sep-22491.98791.5755.5839.8342.98330.4359.3935.9833.1339.6317220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22468.81787.2742.1858.7341.94326.9366.7935.8632.5841.3117523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2759.7859.2345.81331.6366.7536.6433.4340.86												
17220-Sep-22455.53784.4742.5843.6341.51326.1359.9635.832.2739.7317321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22468.81787.2742.1858.7341.94326.9366.7935.8632.5841.3117523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2759.7859.2345.81331.6366.7536.6433.4340.86												
17321-Sep-22463.61789.4734.3842.5343.22323.9361.1936.231.8940.217422-Sep-22468.81787.2742.1858.7341.94326.9366.7935.8632.5841.3117523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2759.7859.2345.81331.6366.7536.6433.4340.86		1										
17422-Sep-22468.81787.2742.1858.7341.94326.9366.7935.8632.5841.3117523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2759.7859.2345.81331.6366.7536.6433.4340.86												
17523-Sep-22463.51790757.7830.9343.3331.5355.0136.1633.4738.4217624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2759.7859.2345.81331.6366.7536.6433.4340.86												
17624-Sep-22461.77793.8751859345.12330.9365.9136.6733.2640.9817725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2759.7859.2345.81331.6366.7536.6433.4340.86												
17725-Sep-22477.4799755855.5346.55331365.9836.933.4341.1717826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2759.7859.2345.81331.6366.7536.6433.4340.86												
17826-Sep-22480.83794.7744.8869.2344.67327.1369.0836.4532.5141.6817927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2759.7859.2345.81331.6366.7536.6433.4340.86												
17927-Sep-22503801.6756.8860.9346.51330.1365.1836.7833.0340.6418028-Sep-22509.27805.8764.1872348.12332.7370.5537.1533.642.0218129-Sep-22501.36799.2759.7859.2345.81331.6366.7536.6433.4340.86												
180 28-Sep-22 509.27 805.8 764.1 872 348.12 332.7 370.55 37.15 33.6 42.02 181 29-Sep-22 501.36 799.2 759.7 859.2 345.81 331.6 366.75 36.64 33.43 40.86												
181 29-Sep-22 501.36 799.2 759.7 859.2 345.81 331.6 366.75 36.64 33.43 40.86												
182 30-Sep-22 472.3 791.3 758.5 840.4 343.63 330.9 357.08 36.2 33.23 38.75												
	182	30-Sep-22	472.3	/91.3	/58.5	840.4	543.63	530.9	557.08	36.2	53.23	<i>3</i> 8.75

Monthly Abstract of Ash Generation and Utilization (For the Period from 1st April 2022 to 30th September 2022)

Name of Power Utility / Company: <u>Adani Power Maharashtra Limited</u>

Installed Capacity (Total): 3300 MW

	ASH GENERATION AND UTILIZATION (in LMT)						MC	MODE OF ASH UTILIZATION AND UTILIZATION IN EACH MODE (in LMT)								MT)
Sl. No.	Month	Coal consumed	Ash content of coal	Ash Generation	Ash Utilization	% age Utilization	In making of Fly Ash based/ Bricks/ Blocks/ Tiles etc.	In manufacture of Portland Pozzolana Cement	In construction of Highways & Roads including Flyovers	Part replacement of cement in concrete	In Hydro Power Sector in RCC Dam Construction	In Ash dyke raising	In reclamation of low- lying Area	In Mine filling	In Agriculture/ Waste land Development	Others (Mount Formation in HCSD + Fine Ash Export + Cenosphere)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
1	Apr'22	13.15268	31.60	4.15625	3.01508	72.54	0.15871	0.64713	0.18594	-	-	-	1.99727	0.01713	-	0.00890
2	May'22	12.80094	32.20	4.12190	3.10293	75.28	0.15502	0.74544	0.18119	-	-	-	1.99437	0.01782	-	0.00910
3	Jun'22	12.87066	31.10	4.00278	2.83233	70.76	0.12882	0.86118	0.15872	-	-	-	1.66198	0.01141	-	0.01023
4	Jul'22	10.33320	32.20	3.32729	1.80009	54.10	0.05702	1.30969	0.00000	-	-	-	0.42132	0.00580	-	0.00626
5	Aug'22	10.82880	31.30	3.38941	1.99311	58.80	0.04689	1.75233	0.00045	-	-	-	0.16410	0.02096	-	0.00837
6	Sept'22	12.65913	31.70	4.01295	1.91998	47.84	0.11805	1.52202	0.00040	-	-	-	0.24955	0.02030	-	0.00967
J	TOTAL	72.64542	31.68%	23.01058	14.66352	63.73%	0.66450	6.83778	0.52670	-	-	-	6.48860	0.09342	-	0.05254

Note: (i) Ash means all type of Ash including Fly Ash, Bottom Ash, Pond Ash and Hopper Ash etc.

(ii) Quantity of ash may be provided in Lakh Metric Tonnes (LMT) upto Five Decimal Places.

(iii) Ash utilisation in Column (6) shall be equal to summation of modes of ash utilisation in each mode i.e. summation of column (8) to column (17)

EFFORT TO ACHEICE 100 % ASH UTILIZATION

A. Ash Collection, Storage, Loading & Transportation Facilities:

- Dry Ash collected from ESP through pneumatically conveying system & stored in Silos (6 x 1700MT).
- Railway line with rapid loading system (Telescopic chutes) provided under Silos for fast loading to Bulkers, Rail wagons & tippers with conditioners to add moisture in each silo. Bulk quantity of ash dispatched through Rail wagons to various cement manufacturers. With the above measures, pollution free loading & transporting activities are being taken place.
- Ultra-Fine ash dispatched through Jumbo Bags by containers as pilot project. loading also done successfully, through BOST Wagon. (2 Jumbo Bag Racks has been dispatched for cement manufacturing).
- Dedicated LOCO Diesel Engine procured for fast ash rake loading.
- Bottom Ash Collection Pit provided for utilisation purposes.
- HCSD System along with Silos provided.

B. Ash Utilisation Avenue/user base

a) Cement Manufacturing –

Long term agreement made with various cement manufactures in Maharashtra, CG, Andhra Pradesh, Karnataka, MP, UP, Rajasthan & Gujrat etc.

b) Fly Ash Brick/Paver blocks Manufacturing -

- Fly ash is being used by ash bricks manufacturers (more than 180nos.) located in district of Gondia, Bhandara of Maharashtra and Balaghat & Seoni district of Madhya Pradesh for making of Fly Ash based products like Bricks /Paver blocks etc.
- Bottom Ash is being provided to Red Brick manufactures to "Use of Bottom Ash in place of sand".

c) Road/Flyover/Embarkment Construction Projects: -

- Pond ash & bottom ash are being used in road & embankment Flyover/Embarkment Construction projects. Presently, we have made agreement and supplying ash to various Road Project like Barbik Road Project, Atcon Road Project, JMC Road Project Limited and HG Infra.
- Ash also being used in ready mix concrete.

d) Land reclamations (Low lying area & Void mines):

• We have received request letters from nearby land owners to provide ash for land reclamation/ low lying area filling. Suitable protection measures like Ash filing pattern, Surface Run-off control, compaction & soil covering followed by plantation is being done as per the MoEF&CC and CPCB guidelines.

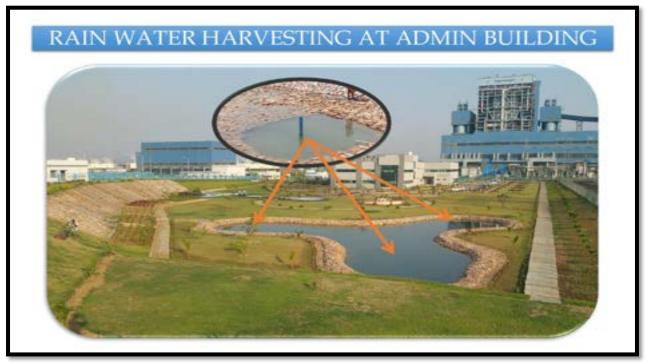
e) Studies & Development of Others Avenue

- Bottom ash provided to local progressive formers as per guidance & in supervision of Scientist from AMPRI–Bhopal (CSIR– GOI).
- Feasibility study carried out by CIMFR Dhanbad for Bottom Ash Stowing in Underground Mines of MOIL in place of sand. More than 1.0 lac tone Bottom ash provided to MOIL as pilot project.
- CSIR NEERI, Nagpur engaged for carry out hydrogeological & fly ash leachability study around the ash dyke area and Land Reclamation site.

C. Awareness / Publicity:

- Awareness session conducted to Self-help groups under LRP program coming from Balaghat (MP) on fly ash & ash-based product manufacturing like brick & paver blocks etc.
- Awareness and demonstration to nearby Farmer for use of Ash in Agriculture with engagement of AMPRI–Bhopal (CSIR– GOI).
- Regular awareness training & awareness programs organized for ash Transporters, Users & vendors who are engage in Fly ash handling, storage, loading & using in Land reclamation, brick manufacturing etc.
- We also conducted meeting with Transporters, User & other vendors to resolve any issues raised and discussion on maximisation of Ash utilisation.

D. Way Forward for maximize Ash Utilization


- We have engaged **Tropical Forest Research Institute (TFRI) Jabalpur** for "Implementable Forestry Research for **Ash Utilization Promotion and Development of Research Park**" at APML.
- We are in discussion with VNIT Nagpur to explore feasibility to extract M-Sand from Ash.
- Discussion with CSIR AMPRI Bhopal for Fly ash-based Geo polymer Concrete Road for bulk utilization of ash.
- We are in process to setting-up Clinker grinding units through Orient Cement adjacent to the plant site for bulk ash utilisation in long term.
- We have approach to WCL Nagpur for backfilling of Mine Voids of Umrer (OC) Coal mines of WCL through using of Bottom/Pond ash along with OB dump.

Annexure-VI

Sr. No.	Month	Rainfall (mm)	Rainwater Harvesting (m3)
1	April – 22	2	0.73
2	May – 22	8.4	3.07
3	June – 22	240.6	87.92
4	July – 22	1116	407.79
5	August – 22	990.4	361.89
6	September – 22	198.7	72.60
	Total	2556.1	934

Groundwater Recharge through Rainwater Harvesting -at APML, Tiroda

Rainwater Harvesting Structure within plant premises

Annexure - VII

GREEN BELT & PLANTATION DETAILS

- Total Area Covered: 258 HA
- Tree Planted: 518878 Nos.
- Shrubs Planted: 59884 Sq. Meter
- Green Carpet: 3, 22,194 Sq. Meter

Plant & Shrubs Species used for Green Belt Development

Shrubs	Tree Species					
Bogunvellia	Psidium guavajava (Amarud)					
Rose	Punica granatum (Anar)					
Furcaria	Manilkara zapota (Chikoo)					
Cassia biflora	Phyllanthus emblica (Aonla)					
Lagerstromia indica	Tamarindus indica (Imali)					
Shrubs	Mangifera indica (Mango)					
Flower Beds.	Lemon					
Lawn	Carissa carandas					
Exora Tall	Bottle Brush					
Golden Ficus	Casuarina					
Ficus panda	Samania saman					
Group plants	Ficus religeosa					
Nerium Bell	Casia siamia					
(Yellow Ghanti Kanher)						
Hibiscus	Bauhinia purpuria					
Musanda	Ficus bengalensis					
Nolino	Delonix regia					
Furcaria	Azadiracta Indica					
Junifer	Spathodia					
Ficus Golden	Peltaphorum					
Ficus blackiana	Delonix regia					
Headge	Acacia auriculiformis					
	Jackranda					
	Peltaphorum					
	Neolamarckia cadamba					
	Palms (Coconut, Fistal palm, Royal Palm, etc)					
	Ficus Golden					
	Rain Tree					
	Mimusops elengii					
	Cassia fistula					
	Tectona grandis (Teak)					
	Wad (Bargad)					
	Peepal					
	Neem					
	Bamboo					
	Satparni					
	Gulmohar					
	Australian babul					
	Conocapus					
	Eucalyptus					
	· ·					

Annexure- VIII

BIODIVERSITY CONSERVATION

AT APML TIRODA

Indian Crested Hawk Eagle

Sarus Crane

Oriental Darter

Asian Green Bee-eater

Black Drongo

Barred Buttonquail

Indian Grey Hornbill

Purple Sun Bird

Leptotes Plinius

Butterfly – Grey Pansy (Junonia atlies)

The Komodo Dragon

Cobra Snake (Naja naja)

Annexure-IX

Power

Ref: APML/ENV/MPCB/MS/34/22

To,

Sub Reginal Officer,

Maharashtra Pollution Control Board, Tatya Tope Ward, Near City Petrol Pump Bhandara.

Sub.: Intimation for Ash Dyke Reclamation with Green Belt Development.

Dear Sir/ Madam

With reference to above subject, we would like to submit that as on 31st March 2022, total legacy ash 78.72 lac metric tone was available in the Ash dykes (04 Nos.). Ash dyke 02 has been completely filled with ash approx. 34.50 lac metric tone by end of December' 2021. After complete filling, the ash dyke covered with soil, compacted with watering and saplings of local species have been planted. Drip irrigation arrangement has been made for watering the plantation area. Few photographs of ash dyke reclamation activities are being attached herewith as Annexure -1.

As per Fly Ash Notification dated 31.12.2021, Section A, "Responsibility of Thermal Power Plants to dispose fly ash & Bottom ash, SN 5 "Legacy ash utilisation shall not be required where ash pond or dyke has stabilised and the reclamation has taken place with greenbelt or plantation and the concerned State Pollution Control Board shall certify in this regard. Stabilisation and reclamation of an ash pond or dyke including certification by the Central Pollution Control Board (CPCB) or State Pollution Control Board (SPCB) or Pollution Control Committee (PCC) shall be carried out within a year from the date of publication of this notification". The ash remaining in all other ash ponds or dykes shall be utilized in progressive manner as per timeline."

As on O1st April 2022, around 44.22 lac metric ton legacy ash is available in existing O3 ash dykes which are operational. Legacy ash is being utilized in progressive manner as per timeline of Fly ash Notification 2021. In the last FY 2021-22, we have utilized legacy ash more than 10 lac metric ton in roads/highways construction, ash bricks/Pavers manufacturing and land reclamation.

It is, therefore, requested to verify/ certify that Ash dyke -2 reclaimed with Green belt development.

Thanking You (Kanti Biswas)

(Kanti Biswas) Station Head

CC to: Member Secretary, MPCB, Mumbai. : Regional Officer, MPCB, Nagpur

Adani Power Maharashtra Ltd Plot A-1, Tirora Growth Centre MIDC Area, Tirora Gondia 441 911 Maharashtra, India CIN: U40101GJ2007PLC050506 Tel +91 7198 25 3961 Fax +91 7198 25 3971 info@adani.com www.adanipower.com Date: 07/04/2022

Ash Dyke - 2 Reclamation Activities

1. Ash Dyke Completely filled and soil shifting started

2. <u>Shifting & spreading of Soil at ash dyke.</u>

3. Covering of Ash with soil

4. Soil Covering & levelling

5. Soil levelling & compaction:

6. Pit Digging for Sapling Plantation

7. Laying & Installation of Drip Irrigation System

8. Plantation at Ash dyke:

Ash Dyke - 2 Reclamation with Green Belt

Current Status

Drip Irrigation system-buster pump, Filtration units

NABET Accredited & MoEF (Govt. of India) approved CIN No. : U28900MH1995PTC093129

H. O. : B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066. • Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

Page 1 of 2

ANNEXURE - X

ENV/SWT/2022-23/036

Date: 2.07.2022

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra - 441 911. India

Sample Particulars : Fly Ash Sample

Sample Registration Date	: 14.06.2022	Analysis Starting Date :	18.06.2022
Quantity received	: 2 kg	Analysis Completion Date :	18.06.2022 2.07.2022 EAEPL Representative
Sample Type:	: Solid Waste	Sampled by :	EAEPL Representative

Toxicity Characteristic Leaching Procedure (TCLP)

TEST RESULTS							
Sr. No.	Test Parameters	Measurement Unit	Results				
1	Alumina (as Al ₂ O ₃)	% by mass	25.1				
2	Iron Oxide (as Fe_2O_3)	% by mass	5.68				
3	Silica (as SiO ₂)	% by mass	55.2				
4	Reactive Silica	% by mass	0.016				
5	Magnesium Oxide (as MgO)	% by mass	1.68				
6	Sulphur Trioxide (as SO ₃)	% by mass	0.051				
7	Alkalies (as Na ₂ O)	% by mass	3.08				
8	Chloride (as Cl)	% by mass	0.023				
9	Loss on ignition (as LOI)	% by mass	0.037				
10	Cadmium	mg/kg	0.16				
11	Chromium	mg/kg	3.8				
12	Arsenic	mg/kg	0.862				
13	Mercury	mg/kg	0.052				
14	Selenium	mg/kg	Nil				
15	Cyanide	mg/kg	Nil				
16	Cobalt	mg/kg	14.1				
17	Copper	mg/kg	15.5				
18	Lead	mg/kg	2.34				
19	Molybdenum	mg/kg	Nil				
20	Nickel	mg/kg	13.2				
21	Tin	mg/kg	Nil				

TEST DESLU TS

For Enviro Analysts & Engineers Pvt. Ltd.

90

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 65, Old Verma Layout, Ambazari, Nagpur - 440 010. Tel.: 0712 - 2241 835. Telefax : 0712 - 2241 836

Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Drivanal Mangal Hall, Pune - 411 030. Tel. : 020-2432 4444

Lab :

Row House No. 2, Shalom Garden, Opp. Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thane - 401 107. Tel.: 022-2811 6442

NABET Accredited & MoEF (Govt. of India) approved CIN No. : U28900MH1995PTC093129

H. O. : B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066. • Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

Page 2 of 2

ENV/SWT/2022-23/036

Date: 2.07.2022

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora,

Dist.: Gondia, Maharashtra - 441 911. India

Sample Particulars : Fly Ash Sample

Sample Registration Date	: 14.06.2022	Analysis Starting Date :	18.06.2022
Quantity received	: 2 kg	Analysis Completion Date :	18.06.2022 2.07.2022 EAEPL Representative
Sample Type:	: Solid Waste	Sampled by :	EAEPL Representative

Toxicity Characteristic Leaching Procedure (TCLP)

Sr. No.	Test Parameters	Measurement Unit	Results
22	Barium	mg/kg	66.7
23	Calcium	mg/kg	124317
24	Iron	mg/kg	39703.2
25	Zinc	mg/kg	61.8
26	Aluminium	mg/kg	132779
27	Manganese	mg/kg	8.7
28	Antimony	mg/kg	Nil
29	Beryllium	mg/kg	Nil

Note: 1. Results relate to tested sample only.

2. Test report should not be reproduced partially.

REMARKS: Based upon request of party, sample was tested for above mentioned parameters only.

For Enviro Analysts & Engineers Pvt. Ltd.

0 Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 65, Old Verma Layout, Ambazari, Nagpur - 440 010. Tel. : 0712 - 2241 835, Telefax : 0712 - 2241 836

Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Drivanal Mangal Hall, Pune - 411 030. Tel.: 020-2432 4444

Lab :

Row House No. 2, Shalom Garden, Opp. Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thane - 401 107. Tel.: 022-2811 6442

NABET Accredited & MoEF (Govt. of India) approved CIN No. : U28900MH1995PTC093129

H. O. : B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066.
• Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

_				
Г	Page	1	of 2	

ENV/SWT/2022-23/036 /1

Date: 2.07.2022

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra – 441 911. India

Sample Particulars : Pond Ash Sample

Sample Registration Date	:	14.06.2022	Analysis Starting Date	:	18.06.2022
Quantity received	:	2 kg	Analysis Completion Date	:	18.06.2022 2.07.2022 EAEPL Representative
Sample Type:	:	Solid Waste	Sampled by	:	EAEPL Representative

Toxicity Characteristic Leaching Procedure (TCLP)

	TEST RESULTS						
Sr. No.	Test Parameters	Measurement Unit	Results				
1	Alumina (as Al ₂ O ₃)	% by mass	23.11				
2	Iron Oxide (as Fe ₂ O ₃)	% by mass	5.02				
3	Silica (as SiO ₂)	% by mass	56.81				
4	Reactive Silica	% by mass	0.017				
5	Magnesium Oxide (as MgO)	% by mass	1.08				
6	Sulphur Trioxide (as SO ₃)	% by mass	0.055				
7	Alkalies (as Na ₂ O)	% by mass	3.03				
8	Chloride (as Cl)	% by mass	0.049				
9	Loss on ignition (as LOI)	% by mass	0.048				
10	Cadmium	mg/kg	0.135				
11	Chromium	mg/kg	3.2				
12	Arsenic	mg/kg	0.85				
13	Mercury	mg/kg	0.033				
14	Selenium	mg/kg	Nil				
15	Cyanide	mg/kg	Nil				
16	Cobalt	mg/kg	13.3				
17	Copper	mg/kg	16.1				
18	Lead	mg/kg	4.2				
19	Molybdenum	mg/kg	Nil				
20	Nickel	mg/kg	15.3				
21	Tin	mg/kg	Nil				

For Enviro Analysts & Engineers Pvt. Ltd.

5 0

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 65, Old Verma Layout, Ambazari, Nagpur - 440 010. Tel. : 0712 - 2241 835, Telefax : 0712 - 2241 836

Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Dnyanal Mangal Hait, Pune - 411 030. Tel. : 020-2432 4444

Lab : Row House No. 2, Shalom Garden, Opp. Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thane - 401 107. Tel. : 022-2811 6442

NABET Accredited & MoEF (Govt. of India) approved CIN No. : U28900MH1995PTC093129

N No. : U28900MM1995PTC093129

H. O.: B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066.
• Tel.: +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

Page 2 of 2

ENV/SWT/2022-23/036 /1

Date: 2.07.2022

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra – 441 911. India

Sample Particulars : Pond Ash Sample

Sample Registration Date	:	14.06.2022	Analysis Starting Date	:	18.06.2022
Quantity received	:	2 kg	Analysis Completion Date	:	2.07.2022
Sample Type:	:	Solid Waste	Sampled by	:	EAEPL Representative

Toxicity Characteristic Leaching Procedure (TCLP) TEST RESULTS

Sr. No.	Test Parameters	Measurement Unit	Results
22	Barium	mg/kg	92.6
23	Calcium	mg/kg	124080
24	Iron	mg/kg	35089
25	Zinc	mg/kg	60.8
26	Aluminium	mg/kg	122251.9
27	Manganese	mg/kg	7.18
28	Antimony	mg/kg	Nil
29	Beryllium	mg/kg	Nil

Note: 1. Results relate to tested sample only.

2. Test report should not be reproduced partially.

REMARKS: Based upon request of party sample was tested for above mentioned parameters only.

For Enviro Analysts & Engineers Pvt. Ltd.

 \leq 20

Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 65, Old Verma Layout, Ambazari, Nagpur - 440 010. Tel. : 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Dnyanal Mangal Hall, Pune - 411 030. Tel. : 020-2432 4444 Lab : Row House No. 2, Shalom Garden, Opp. Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thane - 401 107. Tel. : 022-2811 6442

NABET Accredited & MoEF (Govt. of India) approved CIN No. : U28900MH1995PTC093129

H. O. : B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066.
• Tel. : +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail : info@eaepl.com • Website : www.eaepl.com

Page 1 of 2

ENV/SWT/2022-23/036/2

Date: 2.07.2022

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra – 441 911. India

Sample Particulars : Bottom Ash Sample

Sample Registration Date	: 14.06.2022	Analysis Starting Date :	18.06.2022
Quantity received	: 2 kg	Analysis Completion Date :	2.07.2022
Sample Type:	: Solid Waste	Sampled by :	EAEPL Representative

Toxicity Characteristic Leaching Procedure (TCLP) TEST RESULTS

Sr. No.	Test Parameters	Measurement Unit	Results
1	Alumina (as Al ₂ O ₃)	% by mass	20.96
2	Iron Oxide (as Fe ₂ O ₃)	% by mass	5.70
3	Silica (as SiO ₂)	% by mass	49.27
4	Reactive Silica	% by mass	0.010
5	Magnesium Oxide (as MgO)	% by mass	1.62
6	Sulphur Trioxide (as SO ₃)	% by mass	0.053
7	Alkalies (as Na ₂ O)	% by mass	2.71
8	Chloride (as Cl)	% by mass	0.066
9	Loss on ignition (as LOI)	% by mass	0.011
10	Cadmium	mg/kg	0.134
11	Chromium	mg/kg	3.71
12	Arsenic	mg/kg	0.25
13	Mercury	mg/kg	0.021
14	Selenium	mg/kg	Nil
15	Cyanide	mg/kg	Nil
16	Cobalt	mg/kg	11.32
17	Copper	mg/kg	18.4
18	Lead	mg/kg	4.46
19	Molybdenum	mg/kg	Nil
20	Nickel	mg/kg	16.9
21	Tin	mg/kg	Nil

For Enviro Analysts & Engineers Pvt. Ltd.

< 0 Authorized Signatory

Nagpur Branch : Shiv Kunj, Bunglow No. 65, Old Verma Layout, Ambazari, Nagpur - 440 010. Tel. : 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Dnyanal Mangal Hait, Pune - 411 030. Tel. : 020-2432 4444 Lab :

Row House No. 2, Shalom Garden, Opp. Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thane - 401 107. Tel. : 022-2811 6442

NABET Accredited & MoEF (Govt. of India) approved CIN No. : U28900MH1995PTC093129

H. O.: B-1003, Enviro House, 10th Floor, Western Edge II, Western Express Highway, Borivali (E), Mumbai - 400 066.
• Tel.: +91 22 2854 1647 / 48 / 49 / 67 / 68 • E-mail: info@eaepl.com • Website: www.eaepl.com

Page 2 of 2

ENV/SWT/2022-23/036/2

Date: 2.07.2022

ISSUED TO:

M/s ADANI POWER MAHARASHTRA LIMITED

Plot no. - A1, Tirora Growth Center, MIDC, Tirora, Dist.: Gondia, Maharashtra – 441 911. India

Sample Particulars : Bottom Ash Sample

Sample Registration Date	:	14.06.2022	Analysis Starting Date	:	18.06.2022
Quantity received	:	2 kg	Analysis Completion Dat	e :	2.07.2022
Sample Type:	:	Solid Waste	Sampled by	:	EAEPL Representative

Toxicity Characteristic Leaching Procedure (TCLP) TEST RESULTS

Sr. No.	Test Parameters	Measurement Unit	Results
22	Barium	mg/kg	79.2
23	Calcium	mg/kg	127663
24	Iron	mg/kg	39843
25	Zinc	mg/kg	68.4
26	Aluminium	mg/kg	110878.4
27	Manganese	mg/kg	9.1
28	Antimony	mg/kg	Nil
29	Beryllium	mg/kg	Nil

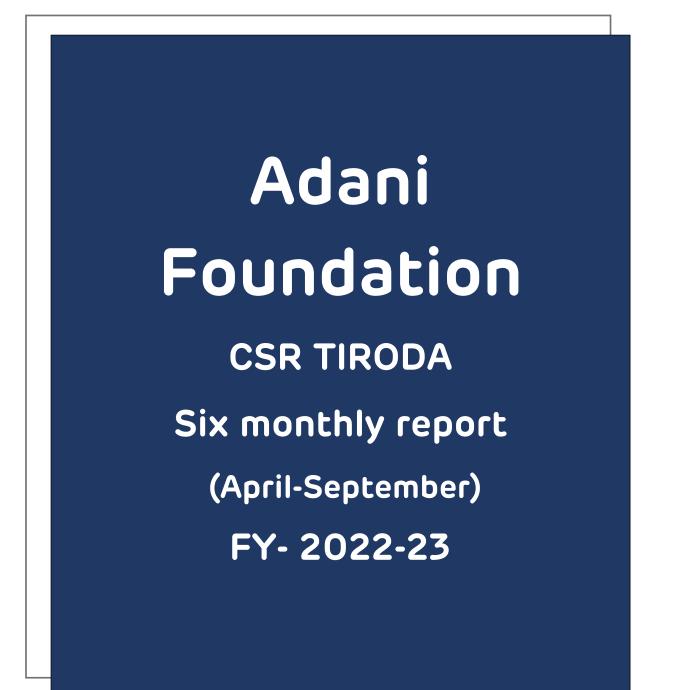
Note: 1. Results relate to tested sample only.

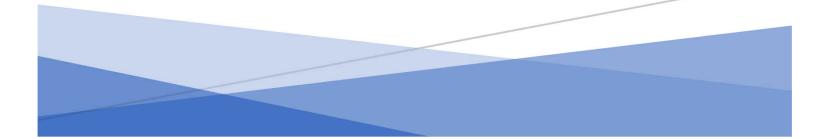
2. Test report should not be reproduced partially.

REMARKS: Based upon request of party sample was tested for above mentioned parameters only.

For Enviro Analysts & Engineers Pvt. Ltd.

00 Authorized Signatory


Nagpur Branch : Shiv Kunj, Bunglow No. 65, Old Verma Layout, Ambazari, Nagpur - 440 010. Tel. : 0712 - 2241 835, Telefax : 0712 - 2241 836 Pune Branch: Flat No. 11, Tarankit Co. Op. Hsg. Soc. Ltd., City S. No. 209, B/1, Sadashiv Peth, L. B. S. Road, Nr. Dhyanal Mangal Hait, Pune - 411 030. Tel. : 020-2432 4444


Lab : Row House No. 2, Shalom Garden, Opp. Kanakia College, 100 Feet Kanakia Road, Mira Road (East), Thane - 401 107. Tel. : 022-2811 6442

Annexure-XI

Education Programmes

Pre- Training of Youths for Army and Police services

Adani Foundation is organizing 3 months training course in association with police department. To transform young candidates into academically proficient, physically fit, mentally strong individuals bursting with energy and confidence and ready to face any challenge in life.

The first batch of 100 students is completed in month of July 2022. Pre-Police training classes of 2nd batch is regularly ongoing, students are regularly doing physical practice on ground under the supervision of Police department in morning hours, on regular basis.

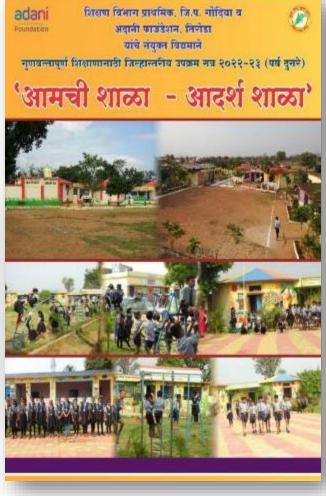
* 1 Male candidate selected in M.S.F.
* There are 2 candidates (1M, 1F) clear the Physical, Medical and written test of Staff selection commission GD. and waiting for the final result.

✤ 3 students clear the physical test of

Army GD, qualify for the written and medical test.

Total 22 students selected in Army, MSF, SSC, Railway and Police department. From 2018-19 to till the date.

Aamchi Shala Adarsh Shala

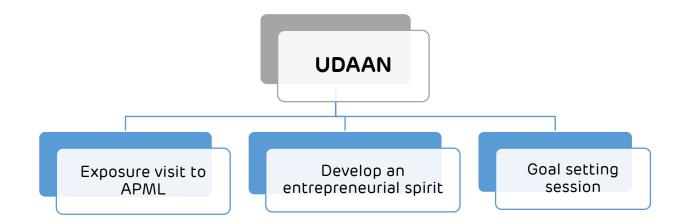

The program is Initiative of Adani Foundation & Education department of Gondia. To enhance the quality education of government Zilla Parishad Schools by improving school environment (Advancing infrastructure and quality education).

This programme is purely motivation and active community participation driven

providing a modern day solution to revive the Govt.Primary & secondary schools who are losing their strength to private schools.

Competition is started in 423 Upper primary (1st to 7th or 8th) schools of Gondia district. For review and to understand the progress of the program, Adani foundation organized the work shop with 116 stakeholders of Education department Gondia district. Even though Cluster level and Block level meeting were conducted by respected stallholders at their Blocks and clusters.

Udaan Program


Under this project, exposure tours are organized wherein school students are giving chance to visit the APML Tirora, to get an insight into the large-scale business operations and thus get inspired to dream big in life.

The exercise stimulates the

young minds to dream big and help them become entrepreneurs, innovators and achievers of tomorrow, and thus play an active role in the process of nation building.

This year total 1929 Participants visited Adani Power Maharashtra Ltd from
 37 schools and institutions.

Support for Archery coaching academy for tribal students

Archery coaching academy is started to nurture born talent of tribal students with the support of Tribal development department at Majitpur tribal school.

In Last two year this program was closed due to Covid. This is the 2nd

year of archery coaching academy. Total 38 tribal students are selected for archery coaching academy through fitness test. Every day these students are attending daily morning and evening 2hours classes

Navodaya Coaching Centre (NCC

To nurture talent from rural area and support talented students from deprived families to get into Navodaya School. AF has opened special coaching classes for these students in Government school. With the support of education department NCCs running in total 3 centers i.e. ZP Upper primary school Birshi, ZP Upper primary school Chikhali and ZP Upper primary school Gumadhawada.

This year total 45 aspirants' students from 3 Navodaya Coaching centers given

the Entrance exam of Navodaya school which was held on 30th April 2022.

Community Health Programme

Mobile health care Unit(MHCU) and Health Check Up camps

2 MHCUs are operational which are providing quality healthcare service at the doorstep of 50 nearby villages of APML in Tirora block at free of cost.

General Medical Health Camp- Organized 46 General Medical Health camps in 46 villages. Total 4033 patients (Male - 1690, Female- 2343) were benefited from these camps.

Regular OPD- MHCU visits in 50 villages & consulted total 35,050 patients (Male- 15346, Female- 19,704)

Health Awareness- Organized 19 Awareness session with 534 women and adolescent girls in 23 villages.

ECG Checkups- Completed total 64 patients ECG checkups.

Sustainable Livelihood Development

Milk collection and chilling center

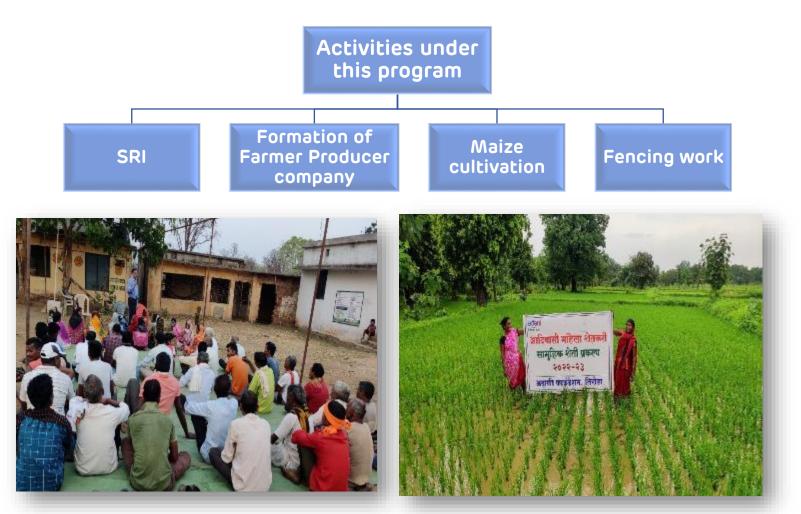
Adani Foundation has supported local farmers, to form Tiroda Farmers Producer Company (TFPCL) for dairy development. Also facilitated them to established Anuradha dairy, operating three Milk Collection cum Bulk Milk Chilling Centres at Jamuniya / Berdipar, Chikhali & Kawalewada and initially 22 milk collection centres in other villages started by women SHG members of MAVIM (Mahila Arthik Vikas Mahamandal). AMUL dairy is collecting milk from Anuradha dairy on daily basis. More than 1000 dairy farmers are assosicited with Anuradha dairy, they are getting additional rate approximately Rs. 2.5 to 3 / liter. Average daily milk collection is 8000 liters. Monthly turnover is more than Rs. 90.00 Lakhs.

From month of April to September - 2022 Total Milk collected is 812237 liters & Turnover of Anuradha dairy is Rs.3,74,34,453/-

Animal Husbandry and Related Initiative (Dhanalakshami Program)

Adani foundation has started Livestock Development Center programme in 26 villages of Tirora block with the support of Baif institution of sustainable livelihood development. То support farmers for dairy business and develop dairy farming as an additional source of livelihood by improving productivity of local cows and

buffaloes. Two livestock development centers (LDC) are running at Khairbodi and Kawalewada respectively covering 26 villages.


Sr. No.	Activity	Cumulative Progress FY 22-23
1	AI	761
2	AI (Sorted Sex semen)	367
3	PD	496
4	PD (Sorted Sex semen)	473
5	Fodder seeds	0
6	Camps	0
7	Normal Calving	203
8	SSS Calving	193

 Income generation Initiative for tribal women farmers "MFS" (Money from Silage, SRI & Organic farming, and Vermicomposting).

In this projects we are specifically focusing on the Ghoti village of Tirora block. The total population is 260 (Male-132, Female-128). Farming and forest product collection are their main source of income. Women are also involved in all these works. They specifically cultivate paddy a single crop of kharif, even the productivity of soil is below average, therefore they generally struggle to make their ends meets.

Seeing the present condition AF trying to bridge the gaps of existing situation with the help of this Income generation Initiative project for tribal women farmers. In this project we are specifically willing to train rural women farmers. Accordingly, the entire program is frame for Two Years in financial year 2022-23 to 2023-24 in which we will implement livelihood activities which will help them for generate income sources at the village.

50 Farmers are involved in this initiative. They cultivated their farm by SRI technique. Even though they produced their own organic fertilizer and pesticide to increase the rice yield with target of 25 quintal/acre.

Under the SRI the training of Organic compost and pesticide is completed

- Total 46 people participate in training (Male- 19 and Female- 27)
- In the training we focus on how to make organic pesticides- Jivamrut, Dashparni Ark, Bramhastra, Agniashtra, and Vermicomposting.

 10 people made Jivamrut and, Agniashtra. 5 people made Dashparni Ark and even these farmers suppling this Organic compost and pesticide to other farmers. After the SRI Transplantation and Organic compost, pesticide Training farmers used this pesticide in their farmers when the crop was in flowering stage to control weeds, insect infections and diseases.

<u>Thresher</u> <u>machine from tribal development department.</u> Under the <u>Nucleus Budget scheme.</u>

Meeting conducted with Sharda self-help group, Ghoti, about Convergence of Tribal development dept for Thresher machine and scheme details. After that the documentations and application process was done, The Confirmation letter also received from tribal development department for Thresher machine As per the scheme 15% amount has contributed to tribal development department and waiting for the further amount.

Maize cultivation and Silage making training

Under this project Adani foundation arrange a 2 days Exposer visit and training program for the 50 farmers from Ghoti village. The training is about Cultivation of fodder Maize and Silage preparation at Agricultural development Trust, KVK, Sharda nagar Baramati. The duration of this training was 20th of September to 21st of September 2022.

During this Exposer training Farmers got information about

- 1. How to do Maize cultivation.
- 2. How to make silage of this Maize.
- 3. How to make silage from other crops.
- 4. Benefit of Silage.
- 5. How this silage is beneficial for farmer.
- 6. Planning of how and when to make silage, where to storage and how to use.
- 7. Types of Silage packaging.
- 8. Silage quality identification.
- 9. Technical methods of Silage making.

Agarbatti making

Skilling women to provide financial and nutritional security to HHs. 20 Agarbatti Machines are installed in 5 villages (Garada, Ramatola, Tikaramtola, Mendipur, and Gumadhawada), total 60 SHG women are successfully ruining this business. Agarbatti Making programme is ongoing.

Perfumed Agarbatti Packets sale is ongoing regularly, from the month of April 2022 to September 2022

- Total Agarbatti Production: 34150 Kgs
- Total Income Earned: Rs. 1952270/-

Lac Bangles making

The advance training of Lac Bangle making is completed at Khairbodi village, through "Duhlandevi Sanshathan' of Bhalaghat.in this training women are participated From 3 villages.

While training Women learn:

- How to make base with the help of the Dona mite Powder and liquid for bangle making.
- How to Prepare Ghabha base.
- How to decorate Bangle with stone.
- How to make new design of bangle and Pin with stones.
- All women learn new type of stone Bangles, different variant of Saree pins and Hair Pins.
- Raw Material distributed to all women.

Now they are making different designs sets of bangles and Saree pins at their own.

All Women are perfectly making different products with packaging and branding. These products are showcase and sell in good price at Gram Bharti SHG fair Ahmedabad, for this Fair they specifically make Lac bangles, Cold Lac bangles, Brooch Pin/ Saree Pins, Hairs Pin, and Ring.

Mushroom Cultivation Program

Mushroom cultivation is on expansion, with the collaboration of Mahila Aarthik Vikas Mahamandal (MAVIM), Adani Foundation is giving Mushroom Cultivation training to women at Tiroda block. In this Adani Foundation facilitated detail training on theoretical concept and practical demonstration of Oyster Mushroom Cultivation.

This year Mushroom bed cultivation started in the month of September, in this month Practical demonstration is completed in 2 villages. Mushroom Spawn making, Spawn distribution and bed cultivation is started, up to now 230kg spawns are ready for distribution and cultivation. Even 225 beds are cultivated by SHG members in Tirora block.

Distribution Of Sapling for Tree plantation

Total 940 Plants of different species are distributed to schools, Grampanchayat and other groups for tree plantation.

Community Infrastructure development

- Water Conservation Work

We have started deepening and development of ZP pond at Ghoti village, under water conservation activities. Till October 2022 we completed 3900 cubic meter of work.

Drinking Water facility (RCC water storage tank with pipeline work) at Ramatola village.

Seeing the problem of drinking water being faced by residents of Ramatola village and difficulties faced by women for mobilizing water for their family, Adani Foundation plans to consider pipe - line and RCC water storage tank for the residents of Ramatola village. To Provide safe and adequate drinking water to the community and, to reduce drudgery of women in rural area for managing drinking and domestic water requirement of the family.

The work has been started by Bhoomi Pujan of water pipe - line and storage tank construction work for drinking water facility.

Special Events

World Environment Day Celebration-

To spread awareness about ecosystem and resetting relations with nature Adani Foundation World has celebrated Environment Day on 5th June 2022 with the theme "ONLY ONE EARTH". To restored ecosystem AF planted about 300 trees at Govt. School, Sarandi and nearby villages of AF with community participation. Also we had conducted Slogan and Drawing competition for students in villages of Chikhali, Berdipar, Gumadhawada, Khairbodi and Kachewani. Total 185 number of students are participated in competition.

Yoga Day

Adani Foundation celebrated International Yoga Day on 21st June 2022 on the theme "Yoga for Humidity"

at ITI ground, Khairbodi village with Pre-Police training students, AF

employees and associate team members. Yoga trainer cum employee volunteer Mr. Raju Gorthekar has conducted the Yoga session,

total 70 students were present and taken an oath of practicing Yoga regularly.

Gram Bharati SHG Fair

On occasion of Mahanavami, SHG/LIVELIHOOD Product stall from Tirora site showcased at HO Ahmedabad on 26 to 28 September 2022.

In this mega event our beneficiaries showcase Lac bangles, Cold Lac bangles, Brooch Pin/ Saree Pins, Hairs Pin, Agarbatti (Incense Sticks)-Rose,mogra and pineapple Fragrance made by 'Santoshi Swayam Sahayata Mahila Bachat Gat Khairbodi, Pragati Swayam Sahayata Mahila Bachat Gat Chikhali village and New Swayam Sahayata Mahila Bachat Gat Ramatola' village under the IG initiative.

One of the member of Santoshi Self-help group Khairbodi represented all products at HO during the fair. All these products were sold at Ahmedabad for Rs.40000/-

Media Coverage

हयता बारावीच्या विद्यार्थ्यांसठी विद्धा प्रकल्पाल भेट देण्याची संदी अदानी परवेदेशनसा माध्यमातून दिली लाते. विद्यार्थ्यांचे मनोबल उड्डामा प्रकल्पीतर्गत क्षेत्र भेटीचे ताइतिम्पासाठी याची मदर्र होत आहे. आयोजन करण्यात आले होते. अदानी काउंडेरानने सुरू केलेला उपसाद, पी. एस. रहान्याले, एस. आर. एक ज़जीन्यपूर्ण , कार्यक्रम म्हणजे दिपति, उमेंद्र रहांगहाले, के जो, आगले उद्दाल प्रकल्प होय. याजीमंत यांच्या मार्गदर्शनखाली हा उपलग राज्यातेल विविध रीक्षणिक राबविण्यात सला.

भावामं जी. एव. रहांग्डाले, बन्होह,

वेजोनती सिहोरा येथील विद्यार्थ्यांची अदानी पॉवर प्रकल्पाला क्षेत्रभेट रेगोली बुसबंबलर.

arehet / finder a from offer arranger o alter enthetex faits take spon ods live de antre sus figude aune titles faquits fate face and old day elare pass upon ell albina logo finder aut are an effect effet invester it, so gê e: Tepelê ser û de ardîre seren and eld.

ober aus semfta den ften debei neber ber sont er, men and installed and other and all do of the organization ante eren unner in ante myt bles film, aner en, elette bete mel, alard ad in ait or dere term around alar, new moved even advantes tobs des avecs were hat - auf avef, faiter war aure, sar Mei ant. Heredas you save acteur annexes fireasiante acted that, as freed acteur weathe dete it the weble of feaster arter to debe ufficient aube & les and passes among diver non age dué aft da wenfte by 4 kidt delt dit. 44 been art, wief fepriefe nowellow figurdie auch alle wite date at qui qui est allei, qui est biel, qui est auch abarrat head are underbr arrans, is is need and other dit.

1.1.1.1.1.8

News about the SRI program in Ghoti village

The news published in the Deshonnati and Nav Rashtra publication

घोटी येथे सामूहिक शेती प्रकल्पाला सरुवात

fitter - meanda niter respectively in आहेरणा गोटी केथे राष्ट्रविद्ध information interferent way freechotware waven and and and parenteries con titol inder true note, abymun स्वाचल का पोलीबाल and, teo that mitter staffing along such, all migefte effen son mit anet. grain warn feldin

arrentell was reveal werf, ungamen is gen MILLION STUDIES 24 वर्षेष भावीपाल लागवड production output area salar, was painted spore. form server, referen services firmen untriges efficiel. unifies arised from page but and from faite, with writight with राष्ट्रवनने राग्यन बेहर भोती den erma web bb गोंदिया ज्ञारात निधाली नामदेव महाराजांची पालरपी

पदानीये पात्र लाग्यावील दाववाल ACCERT STATE STR. THEFT नी प्राहतिने जेंद्रेण भाग सामगढ unneed the ed dies yn inwedd dae विजन अन्तर्भ प्रत्यीमन्त्र सिर्मान को को पड़तीने मेरिन पत रत्मवर करण्याचे प्रक्रियण freerwills in feat ward

बाहिक्वी संपूर्ण मार्गटार्थन करण्यात आहे. चाहितीपत्रक forthe start Andres Mereciania) threads been ask, also केला आहे

घोटी येथे सामूहिक शेती प्रकल्पाला सुरुवात अदानी फाउंडेशनचा पढाकार

A nifitur, uger, finentionaft धांच्या मार्यदर्शनाव्याली with the - 10 inc-it หลาสีวิชาวจอส พูธรรมสาวิ विचेता तालुक्तातील जन्द्रप्रामत दर्मध्वरी अंतमेत पेणाऱ्या पोठी येथे सामुदिक रोती प्रकरण राषवित्रयात येत अल्ली, साहर प्रकल्पांतर्गत घोटी सेघील antic mana male mangave Microsofte - तालामा चा NET व्हेलीअंतरण करणे, पशुण 100 प्रकर रोतीला प्रायुत्तिक कुंपण करणे, सी पदालेने संदिध पात जोती करणे. मुरधास प्रकारण निर्मिती करण्यास्वाती भका त्यापता करणे, पशुपालन स दुग्धे व्यवसायाल प्रेलसान हेगे तरीज भाषीपाल गणण्डा इत्यारी उपस्य

गीरिया, प्रश्वतिमयः मतामंडळ affered freeze succe bed.

कुली विकास लिएका, आणि सनविभाष यांच्या संयुक्तवनी समन्त्रम बीतक चेक्रन करण्यात आणी, तलाव खोगरीधरण म भी पद्धतीने भाष रणजवडीला सुरुवात करण्यात आली आहे. राज्यपथय जी पद्धनीने रॉन्ट्रिय this movies acreand with वेशील सर्व महिला पुरुष होतक-सांधी बेटक केवल अग्रमी फाउंडेफान तिरोधा लर्फे की पद्धतीने मीट्रिय भात लागवत सरण्याचे प्रशिक्षण देण्यात and

या प्रविद्यालगालको कील प्रक्रिया, नगरी तवात करणी, रोकणी पूर्ण जमीम राषार भारणे, मामित रोपण्य प्राह्मणे रोजणी भारणे, पाण्याचे नियोजन, तन निर्वजन, जी पद्धनीचे सकुण फायवे लोग्य घरण्या की सेंद्रिय किटनियंजके राभविषे वागार सहेत. या प्रवरण्याची सुरुवात जिल्हा लोग परच्या भी सेंद्रिय किटनिस्टेक प्रवरण्याची सुरुवात जिल्हा लोग परच्या भी सेंद्रिय किटनिस्टेक प्रवर्शसन्द, महिल्ल जातिक विकारन य रहते तथार करणे प्रतिवर्धी संपूर्ण मार्गदर्शन करण्यात अग्रेले. माहितीपञ्चक शेतकच्यांना रोण्यात आले.

News about 'Aamchi Shala Aadarsh Shala' Program

आमची शाळा आदर्श शाळा उपक्रम प्रेरणादायी : डॉ.महेंद्र गजभिये

reffter a finer feren effert in mis kink mis form ique freené ware ambre रोड सरम्प्राप् आदाव कामपालत तरीभ गुमाला fournant knowed and rodet und bal den dit

this kirst pice fore fide site a out states from the second states and terits spress reader and read four after site and a loss site and writers are passiled allet lot. palaratest aller earn ten hoto ana fires fire 2022241 0120221 2261 governt with see not alteres forestout at sits ait others, face oppose, ausgem fiche wief annet anne and our out and and and out from a त्रयन संदर्भत जहारी पात पाट युव्ययनसंदर्भतः उपविधान frite të antfär arbride it vefede tak e arbedet spaint fargefor ad relayer/kearly प्रविधनविद्यते अभित सहाय, पत सम्प्रस्थ, वित्रत अधिकाते व ausfrausbawaya lagenta, Auaya orden eth, aubawa विश्व समन्तव से प्रावहणा वितेष, संयालन क अल्पन प्रयतिन अयले ter set. Deshonnati

Thank Yau

SAKSHAM- ADANI SKILL DEVELOPMENT CENTRE

An initiative of Adani Foundation, a CSR wing of ADANI Group of Companies, A section 8, Non-for-Profit company, "Adani Skill Development Centre" is registered on **16th May 2016** to focus on Skill Development activities to contribute in Nation Building to bridge the Skill Gap demand & supply Adani Skill Development Centre, Tiroda is the first SAKSHAM Skill Centre set up on 14th Dec 2016 and also the first one to obtain work order to train 335 candidates from the Tribal department (GoM) along with Resume services, Nagpur. The first batch of ASDC Tiroda commenced on 21.04.2017 for imparting Welding and Electrician trade training to I.T.I. passed Tribal youth of Gondia and Bhandara district.

Vision

To make everyone Skilled, Employable & Entrepreneur to benefit them in gaining or advancing their career aspiration to uplift the social life of Citizens of India with mapping the demands of Industries of getting Trained Manpower

Mission

To create a transformative educational experience for candidates by focusing on bridging the industry skill gap and by creating a collaborative environment open to the free exchange of ideas, where research, creativity, innovation, and entrepreneurship can flourish with a sustainable livelihood.

Objective

- Sustainable development in and around the geographical locations of Adani Power Maharashtra Ltd, Tiroda.
- Sridging the wide gap between demand & supply of human resource.
- Spreading awareness regarding availability, needs and vision for career development and education.
- Facilitating, spreading awareness, creating new opportunity to upgrade skills by organizing various skill training in the region.

- Improving overall status of rural youth and women in the society by enhancing their entrepreneurship skills.
- Encouraging & helping local youth to become self-dependent and live a dignified life.
- Building a feeling of harmony in the society by creating a rapport of goodwill, mutual trust and respect

Objective

- We have trained 1050 students in domain trade and 943 students were placed for good jobs. Including training on nursing (General Duty Assistance) for old, aged people and severe patients given to 123 girls, in which 88 girls have been placed for jobs. Approx. 600 students belong to SC/ST background.
- In addition to the above, 2063 candidates in non-domain trade were trained till 31-03-2022.
 Therefore, total 3006 candidates were trained.
- Our trained candidates passed ratio is 100%.
- The domain trade trained candidate's placement ratio is above 90%.
- We have signed MOUs from 15 companies for 900 candidates and signed our own batch of MOU.
- More than 100 stories databank are preserved.
- In the critical situation of COVID-19 we conducted an online job fair (share all companyrelated information) for all trained candidates and parents.
- We are well maintaining online and offline all records and documentation regarding Centre assets, placed candidate's dossier, file inward & outward registers etc.
- We always follow SOP and Policies norms for maintaining integrity and Centre operations smoothly.
- ✤ As per H.O. instructions and SOP, we organize every online event, like Induction program, celebration of festival, learn with fun activity, alumni meet etc. done on time.
- ✤ In our Centre 100% ratio of completing monthly certificates by all staff members.
- Regular database is maintained on ERP portals and shared drives.
- Our Centre is authorised for testing of high-pressure welding by Directorate Steam Boiler Maharashtra State.

TRAINING STATISTICS:

In the year 2021-22, trained 508 candidates at ASDC Tiroda.

	ASDC Tiroda Training Details FY 2021-22							
Sr.	Trade	Total Batch	Enrolled Candidates	Drop Out	Total Trained	Total Placement	Total Up skilled	
1	Assistant Electrician	5	88	0	88	82	6	
2	Welding Technician	2	27	0	27	25	2	
3	Fitter: Mechanical Assembly	2	38	0	38	34	4	
4	Domestic Data Entry Operator	3	45	0	45	40	5	
5	Digital Literacy	8	166	0	166	0	166	
6	Interview Skills	2	47	0	47	0	47	
7	Basic Functional English	1	16	0	16	0	16	
8	Non-Domain Employability Skills	1	9	0	9	0	9	
9	5'S	4	68	0	68	0	68	
10	GST with TALLY	1	4	0	4	0	4	
	Total	29	508	0	508	181	327	

In the year 2022-23, Enrolled 107 candidates at ASDC Tiroda.

ASDC Tiroda Training Details FY 2022-23								
Sr.	Trade	Enrolled Candidates	Drop Out Candidates	Total Trained	Total Upskilled			
1	Assistant Electrician	54	0	54	43			
2	Welding Technician	32	0	32	27			
3	Domestic Data Entry Op.	14	0	14	10			
4	Fitter: Mechanical Asse.	7	0	7	6			
	Total	107	0	107	86			

Best Practices at Centre.

- Safety Induction Program: At the commencement of batch, we provide training on fire &safety, first-Aid and waste & environment management for all the candidates.
- 5-S Implementation at the Centre: 5-S quality management implementation and maintain regularly.
- Placement Drives conducted virtually: In the critical situation of COVID-19 we conducted an online Job fair (Shares all companies related information) for all trained candidates and parents.
- Individual Candidates documents dossier: Placed Individual Candidates documents dossier file with Index of Individual Candidate Dossier.
- Live Online Training using Projector and White Board: We are taking initiative for more effective live online practical E-learning using projector, due to this actual interest of students is increasing and it is very effective. Students giving feedback on such type training is very helpful to better understand. Students can feel like an actual classroom training environment.
- Live Practical: Online live practical arranges for students and demonstrate and explain live practical and find students' performance.
- Placement ratio has above 90%.: In our Centre from Apr. 2017 to Mar. 2022, all domain trade trained candidates placement ratio has above 90%.

Glimpse

Class Room

Electrical Workshop

Computer Lab

Welding Workshop

Electrical Workshop

Welding Simulator

Media Clipping

MLWB committed to betterment of workers' lot: Nandlal Rathod

Workers who completed welder's training programme under the aegis of Maharashtra Labour Welfare Board showing their certificates while other dignitaries look on. Gorthekar, Dr Vijay Gandhewar, Hariprasad Adathade, Bimal Patel, Rahul Shejokar, Rajkumar More, skill development

LOKMAT NEWS NETWORK NAGPUR, JULY S Maharashtra Welfare Board,

from May 21 to July 4 under its skill development initiative at Adani Power Plant Tiroda. Assistant welfare com-Labour Nagpur

Lokmat Times :- 06-07-2022

19 workers took pr the training. At the outset, tradii lamp was lit by the a

taries Nandlal Rathod v addressing the tra on this occasion h that the skill dev

that the skill dev ment programme w be useful for trainees. He expressed his best -es to the workers. He further said Maharashtra La Welfare Board is mitted to protect interests of the v ers. 12 trainees given job offer lett this occasion. Nandlal Rathed 's addressing the tra' on this occasion that the skill dev ment programme w be useful for

लोकमत न्यूज नेटवर्क गोदिया : कामगार कल्पाल केंद्र. अदानी कौशल्य विकास केंद्र व अदानी या शिबिराचा समारोप करण्यात आला

वितरित करण्यात आले.

प्रशिक्षणार्थी अशा एकूण १९ प्रशिक्षणाधौंनी सहभाग घेतला होता. समारोपप्रसंगी १२ प्रशिक्षणाधीना आयुक्त नंदलाल राठोड होते. प्रमुख विधागाकडून जॉब ऑफर लेटर व पाहुणे म्हणून अदानी फाऊंडेशनथे प्रमाणपत्राचे वितरण करण्यात आले.

adani

Lokmat :- 08-07-2022

देशोन्नती वृत्तसंकलन... तिरोडा = स्थानिक अदानी विद्युत प्रकल्पात कामगार कल्याण तिरोडाच्या वलीने केंद्र प्रशिक्षणाच्याँसाठी साडेतीन महिन्याचे वेल्डर प्रशिक्षण शिथिर

तिबिराचा समारोप ४ जुलै रोजी झाला.

शिबिरात प्रशिक्षण नंदलालजी राठोड, कांचन वाणी, राजु गोरठेकर डॉ. विजव गंधेवार, हरिप्रसाद अडयडे, राह्ल चन्हाण, नेतराम ठवकर व प्रशिक्षक उपस्थित होते. या शिबिरात ऐकुण १९ कामगार कुटुबिय समासदांनी सहमाग पेतला होता. समारोप कार्यक्रम प्रसंगी १२ प्रशिक्षणार्थीना मान्यवराच्या हस्ते जॉब ऑफर ASDC wins the Gold Stevie Award 2022

Congratulations all!

Deshonnati :- 07-07-2022

१९ प्रशिक्षणार्थींनी घेतला प्रशिक्षणाचा लाभ

कामगार कल्याण केंद्र : प्रशिक्षणार्थींना प्रमाणपत्र वाटप

क्षणार्थींना प्रमाणपत्र देताना नंदलाल राठोड, डॉ. चित्रय ग

कारमार कल्याण अधिकारी कांचन वाणी, प्रशिक्षक रवींद्र चव्हाण व नेतराम ठतकर उपस्थित होते. या पीवर महाराष्ट्र लिमिटेड यांच्या शिबिरात कामगार कल्याण निधी संयुक्तवतीने वेलिडेंग तंत्रज्ञ या भरणा करणारे १९ प्रतिक्षणार्थी व अभ्यासक्रमाचे शिबिर आयोजित महाराष्ट्र इमारत व इतर बांधकाम भरणा करणारे ११ प्रशिक्षणार्थी व करण्यात आले होते. सोमवारी (दि.४) कामगार कल्याणकारी मंडळाचे ८ असून, प्रशिक्षणाचीना प्रमाणपत्र अध्यक्षस्थानी सहायक कल्वाण अदानी युप व कामगार कल्वाण

Submitted Date

26-09-2022

Maharashtra Pollution Control Board

महाराष्ट्र प्रदूषण नियंत्रण मंडळ

FORM V (See Rule 14) Environmental Audit Report for the financial Year ending the 31st March 2022

Unique Application Number MPCB-ENVIRONMENT_STATEMENT-0000047597

PART A

Address

Company Information

Company Name Adani Power Maharastra Limited Application UAN number MPCB-CONSENT-0000115283

plot A 1, Tirora Growth centre, MIDC Area, Tirora, Gondia		
Plot no PLOT NO: A-1, TIRODA GROWTH CENTRE, MIDC, TIRODA	Taluka Tiroda	Village MIDC Tirora
Capital Investment (In lakhs) 1847648.00	Scale L.S.I	City Gondiya
Pincode	Person Name Kanti Biswas	Designation Station Head
Telephone Number 8875088555	Fax Number	Email Kanti.Biswas@adani.com
Region SRO-Bhandara	Industry Category Red	Industry Type R48 Thermal Power Plants
Last Environmental statement submitted online yes	Consent Number MPCB-CONSENT-0000115283	Consent Issue Date 2021-12-22
Consent Valid Upto	Establishment Year	Date of last environment statement submitted
2022-08-31	2012	Jan 1 1900 12:00:00:000AM
Industry Category Primary (STC Code) & Secondary (STC Code)		

Product Information Product Name	Consent Quantity	Actual Quantity	UOM
Fly Ash Bricks	3000000	792000	Nos./Y
Electricity Generation	3300	2471	Mwh
By-product Information			
By Product Name	Consent Quantity	Actual Quantity	UOM
ASH	4815193	4545149	MT/A

Part-B (Water & Raw Material Consumption)

Water Consumpti Process	ion for	Consent Qu 26592.00	antity in m3/da	<i>y</i>	Actual Quantity 1767.00	in m3/day	
Cooling		163728.00			134894.00		
Domestic		1440.00			1203.00		
All others		100.00			95.00		
Total		191860.00			137959.00		
2) Effluent Gener	ation in CMD / MLD						
Particulars Trade Effluent			Consent Quant 34205	tity	Actual Quantity 24523		U OM CMD
Domestic Effluent			192		188		
Domestic Endent			192		188		LMD
2) Product Wise F process water pe	Process Water Consump r unit of product)	tion (cubic meter c	of				
Name of Products			During th financial	ie Previous Year	During the Financial ye		UOM
Bricks			7.35		7.35		CMD
Thermal Power Plar	nts		115726		137959		CMD
	Consumption (Consump	tion of raw					
material per unit Name of Raw Mat			During the Pr	evious	During the curi	rent	иом
			financial Year		Financial year		
Coal			0.64		0.66		MT/MWH
4) Fuel Consumpt	tion						
Fuel Name		Consent quar	ntity		l Quantity	UO	
LDO		95.52		3.5		CM	D
Part-C							
Pollution discharg	ged to environment/uni	t of output (Paramo	eter as specifie	d in the con	sent issued)		
Pollutants Detail	Quantity of Pollutants discharged (kL/day) Quantity	Concentration of P discharged(Mg/Lit, PH,Temp,Colour Concentration		from pre	s with reasons	Standard	Reason
ZLD Maintained	0	0		-		-	-
[B] Air (Stack)							
Pollutants Detail	Quantity of Pollutants discharged (kL/day)	Concentration of discharged(Mg/N		from pre	age of variation escribed ds with reasons		
	Quantity	Concentration		%variati	on	Standard	Reason
Particulate Matter	Quantity 2492	Concentration 40		%variati -	on	- -	- -

-

-

-

Part-D

NOx

22646

364

1.99 KL/A Fal Total During Current Financial UOM year 0.660 MT/A otal During Current Financial year UOM
1.99 KL/A Fal Total During Current Financial UOM year 0.660 MT/A
Total During Current Financial UOM year 0.660 MT/A 0.400 MT/A MT/A Otal During Current Financial year UOM
year 0.660 MT/A
year 0.660 MT/A
otal During Current Financial year UOM
-
-
-
Total During Current Financial year UOM
3635757 MT/A
aancial Total During Current Financial UOM year
0 MT/A

1) Hazardous Waste

Type of Hazardous Waste Generated	Qty of Hazardous Waste	UOM	Concentration of Hazardous Waste
5.1 Used or spent oil	106.5	KL/A	Analysis report enclosed
33.1 Empty barrels /containers /liners contaminated w hazardous chemicals /wastes	ith 478	Nos./Y	Empty Chemical Container sent to MEPL Nagpur
35.2 Spent ion exchange resin containing toxic metals	1.99	KL/A	Waste resin send to MEPL Nagpur
35.3 Chemical sludge from waste water treatment	0.660	KL/A	Chemical Sludge from ETP MEPL Nagpur
2) Solid WasteType of Solid Waste GeneratedQty of Solid WasteDomestic Bio-degradable waste25.592			Solid Waste Id horticulture waste used for composing
Other Waste 1531.30	MT/A Plastics, Me	etals, Woo	od etc.
Paper Waster & In-house Recycled 1.44	MT/A Stationary	Papers &	Packing Material

Part-G

Impact of the pollution Control measures taken on conservation of natural resources and consequently on the cost of production.

Description	Reduction in Water Consumption (M3/day)	Reduction in Fuel & Solvent Consumption (KL/day)	Reduction in Raw Material (Kg)	Reduction in Power Consumption (KWH)	Capital Investment(in Lacs)	Reduction in Maintenance(in Lacs)
Replacement of existing CT fills with new low clogging CT fills	0	0	42972492	0	1774	0
Replacement of identified IE1 LT motor with more energy efficient IE3 LT motors.	0	0	2587591	0	2	0

Part-H

	al for environmental protection abatement of pollution, prevention	on of pollution.
[A] Investment made during the period of Environmental Statement		
Detail of measures for Environmental Protection	Environmental Protection Measures	Capital Investment (Lacks)
Pollution Control Equipment O&M	ESP, Bag Filters etc.	607
Pollution Monitoring, Study and Analysis	Environment Monitoring Equipment's, Third Party Monitoring, Fly Ash Leachability Study and Hydro-geological Study	95
Corporate Social Responsibility	Under CSR Activities Deeping and renovation of Ponds, Health & Sanitization, Waste Management and Skill Development	2342
Legal and Consent Fees	Consent to Operate and JVS sampling done by MPCB and Hazardous Waste Management by MEPL	390
Training and Awarness	Environmental Workshop, Seminar and Training and Celebration of World Environment Day	5
Waste Management	Fly Ash Utilization and its Management, Single used plastic phase-out, BMW, Domestic Waste	7651
Stablisation of Ash dyke with Green Coverage	For Legacy Ash Utilization	230
Green Belt Development including Nursery	Nursary Development, Sapling Plantation and Maintenance of Existing Green Belt. Also plantation in gap filling areas carried out.	223

[B] Investment Proposed for next Year Detail of measures for Environmental Protection	Environmental Protection Measures	Capital Investment (Lacks)
Pollution Control Equipment O&M	ESP, Bag Filters, ETP upgradation etc.	687
Pollution Monitoring, Study and Analysis	Environmental Monitoring Equipment, Third party monitoring & Environmental Study, NABL Accredited Env. Labs O&M	146
Corporate Social Responsibility	Under CSR activities Deeping and renovation of Rain water structure and others	280
Legal and Consent Fees	Consent to Operate and JVS sampling done by MPCB and Hazardous Waste Management by MEPL	388
Training & Awareness	Environmental Workshop, Seminar & Training	12
Waste Management	Fly Ash Utilization and its Management, Single used plastic phase- out, BMW, Domestic Waste	687
Establishment of Ash utilisation Park	To maximse Ash utilisation	208

Any other particulars for improving the quality of the environment.

Particulars

1. Well equipped NABL Accredited Environment Lab is being maintained and operated. 2. All the Organic and In-organic waste are being reused/reprocessed. 3. Specific water consumption reduce due to maximum reused of waste water. 4. More than 40% of Land Area developed under Green Belts.

Name & Designation

Kanti Biswas, Station - Head

UAN No:

MPCB-ENVIRONMENT_STATEMENT-0000047597

Submitted On:

26-09-2022

Annexure-XIV

WORLD ENVIRONMENT DAY' 2022

(Celebration from 5th June to 11th June')

World Environment Day (WED) celebrated on 5th June across the globe to create awareness & take actions on Protection of our Environment & Natural resources. On this occasion, various awareness programs & competitions organised from 5th to 11th June' 2022.

The theme for WED 2022 # Only One Earth # focused with Living Sustainably in Harmony with Nature. It is our prime responsibility to protect our mother Earth, because this planet is only our Home. It has become imperative to talk about climate change, Pollution, and its effect on our fragile ecosystem and be able to live in a healthy environment.

Details of various programs are as under:

Displayed Hoardings, Posters & Banners at prominent locations

Environment Oath, Green Rally -Township

The world Environment Day programs started at Township Harmony Club with address by Station Head regarding importance of World Environment Day and express his views to keep clean and green Plant & Township and stay more focus on Reuse, Recycle, and Reduce and also to eliminate Single Use plastics from Township. On this occasion, people taken Oath for Environment conservation. Green Rally inaugurated by Station Head followed by Plantation drive at Township.

Plantation Drive - Township & Plant

Plantation drive conducted on 5th June at Township by family members. Ladies & Children planted saplings with commitment to nurture the plants. More than 250 employees, ladies & children participated in the plantation program.

Plantation drive at Plant by Station Head & Head- O&M on 7th June' 2022

Drawings & Slogan Competition – Nearby Village

Drawing & Slogan competition on WED theme "Only One Earth" were organized in the village of Khairbodi, Kachewani, Gumadhawda, Berdipar and Chikhali. Approx. 300 village school students were participations in the competition with high enthusiasm and winners were rewarded.

Drawings & Slogan Competition – Plant & Township

Slogan and Poster competition on theme "Only One Earth" were organized for Employees, Family Members, Contract man powers. Approx. 250 participations received, and winners were awarded on closing ceremony on 11th June.

Awareness Session for Employee

We have conducted awareness session for employee on Water Conservation Practices and to avoid use of "Single use Plastics Products" Head Chemistry, Head-Technical Training & Manager – Safety have delivered awareness sessions.

Environment Documentary Movie Streaming

We have streamed Environmental documentary movies f at Township for ladies & children that cover the current environmental issues and solutions.

Awareness Session for Contract Workmen

We have also conducted general awareness session for contract workmen on environment protection, spot quiz flashed, and winners rewarded. Worker also taken oath for environment conservation.

Spot Quiz Competition & TED Talk

Spot quiz competition & TED talk programme organised at Township for ladies & Student on 8th June' 2022, TED Talk show also organized on the theme of World Environment Day 2022. Total participants were more than 150.

Similarly Inter departmental spot Quiz Competition also conducted. Total participant were 44 with 90 audience.

Environment Model Competition

Township Ladies as well student participated in working Environmental Model competitions with great creativity.

Closing Ceremony & Prize Distribution

Closing ceremony of World Environment Day/Week program was conducted on 11th June at Auditorium. The event chaired by Station Head, Head O & M along with HODs and Sectional Heads, Employee, Township Ladies &

Students, winners of various competitions were present during the ceremony. Station Head, Head - O&M and Head – Env. have been addressed on conservation of our mother Earth and Natural environment. Glimpse of Environment week programs were also displayed. Prizes given to the winners of various competitions during Environment week.

Adani power is committed for prevention of pollution and maintaining greenery for future sustenance.

