

Power

Ref.: UPCL/P-I/ENV/EC/MoEFCC/232/11/22

Date: 27/11/2022

To,

Additional Principal Chief Conservator of Forest Ministry of Environment, Forest and Climate Change Regional Office (Southern Zone)

Kendriya Sadan, Koramangala, Bangalore – 560 034

Sub: Submission of Six Monthly EC compliance report & CRZ Compliance report for 2x600 MW Thermal Power Plant of Udupi Power Corporation Limited (UPCL)

Ref: Environmental Clearance No: J-13011/23/1996-IA.II (T) Dated: 01.09.2011. CRZ Clearance No: 11-14/2010-IA-III dated: 18.05.2010

Dear Sir,

With reference to above subject, please find enclosed herewith the Six-monthly compliance report for the period of April'2022 to September'2022 against the conditions of Consolidated Environmental Clearance for 2x600 MW Udupi Thermal Power Plant and CRZ Clearance granted to UPCL for Sea Water Pipe-Line intake system, through e-mail.

Thanking you, Yours sincerely,

for Udupi Power Corporation Limited

(Santosh Kumar Singh) Authorized Signatory

Encl: As above

CC

The Member Secretary,
Central Pollution Control Board,
Parivesh Bhavan, East Arjun Nagar,
Kendriya Paryavaran Bhawan, New Delhi – 110 032

Zonal Office, Central Pollution Control Board,

1st and 2nd Floor, Nisarga Bhavan, A-Block, Thimmaiah Main Road, 7th Cross, Shivanagar, Bengaluru – 560 010 The Member Secretary Karnataka State Pollution Control Board "Parisara Bhavan", #49, 4th & 5th Floor, Church Street, Bangalore – 560 001

Regional Office, Karnataka State Pollution Control Board. Plot no-36-C, Shivalli Industrial Area, Manipal, Udupi – 576 104

Udupi Power Corporation Ltd Adani Corporate House Shantigram, S G Highway Ahmedabad 382 421 Gujarat, India CIN: U31909KA1996PLC019918 Tel +91 79 2555 4444 Fax +91 79 2555 7177 info@adani.com www.adanipower.com

SIX MONTHLY COMPLIANCE REPORT (APRIL - 2022 to SEPTEMBER - 2022)

Of

Environmental Clearance for 2x600 MW Thermal Power Plant and CRZ Clearance of Sea Water Pipeline of Udupi Power Corporation Limited

Submitted to

Regional Office Ministry of Environment, Forest & Climate Change (MoEF&CC),

Zonal Office Central Pollution Control Board,
Karnataka State Pollution Control Board

Submitted By

Udupi Power Corporation Limited
Yelluru Village, Pilar Post, Padubidri,
Udupi District, Karnataka

CONTENTS

SI. No	Particulars	
1	Introduction of Udupi Power Corporation Limited (UPCL)	
2	Compliance status of Environment Clearance (EC)	
3	Compliance status of CRZ clearance	
	List of Annexures	
4	Metrological data	Annexure-I
5	Stack Monitoring data	Annexure-II
6	CHP Wind Shield	Annexure-III
7	Fly Ash Utilization Report	Annexure-IV
8	Water Monitoring Test Wells around Ash Pond	Annexure-V
9	Ambient Air Quality Monitoring report	Annexure-VI
10	Guard Pond Effluent water Analysis	Annexure-VII
11	Surface & Ground Water Quality Monitoring	Annexure-VIII
12	Rain water harvesting Pond	Annexure-IX
13	Clearance Letter from the Department of Fisheries, Karnataka Annexure-X	
14	Green Belt Development	Annexure-XI
15	Communication with KIADB regarding R&R	Annexure-XII
16	CSR Activities	Annexure-XIII
17	Comparison with Baseline data	Annexure-XIV
18	Environment Statement for the year 2021-22	Annexure-XV
19	Caution boards Photos in pipe line corridor	Annexure-XVI
20	Sea Water Monitoring reports	Annexure-XVII
21	Water Monitoring from Test Wells in Sea Water Pipe Line Corridor	Annexure-XVIII

UDUPI POWER CORPORATION LIMITED (UPCL):

Udupi Power Corporation Limited is a 2X600 MW imported coal based power project in the Udupi District of Karnataka. Situated in the western coastal region of India, the plant is situated in the village of Yellur, between Mangalore and Udupi.

UPCL is the first independent power project (IPP) using 100% imported coal as fuel in the country. The Udupi Power Project supplies 90% of the power it generates to the State of Karnataka.

State Karnataka District Udupi Village Yelluru (in Padubidri Industrial Area) Geographical Coordinates 13°9′00″ N 74°47′00″ E 13°10′30″ N 74°48′40″ E

LOCATION OF THE PROJECT

Both units of 600 MW at UPCL has sub critical coal fired steam generator each connected to a reheat type condensing steam turbine and generator with water cooled condenser and all other required auxiliaries. Each steam generator of 600MW is rated to generate about 2028 tons/hour of superheated steam at a pressure of about 175 kg/cm² and superheat temperature of 540°C. The steam generators are equipped with facilities for HFO/LDO firing for startup and flame stabilization at low loads. Each steam turbine is 3000 rpm rated speed, tandem compound, single re-heat, condensing type machine with extractions for regenerative feed water heating. The turbine is designed for main stream pressure of 170 kg/cm² (a) and inlet temperature of 537°C.

Being coastal area with perennial availability of seawater, usage of seawater is envisaged for condenser cooling and fresh water requirement. Re-circulating type of circulating water (CW) system with natural draft cooling towers is installed. Due to availability of Fresh water in this area is seasonal and limited; desalination of seawater is installed for meeting the freshwater requirement for the plant. About 10000 m³/hr of makeup sea water is required for both the Unit-1 & Unit-2.

The plant has all latest Pollution Control Equipment like, High Efficiency ESP's, Flue gas desulphurization plant, Low NOx burners and 275 m height chimney.

UPCL has obtained Environmental Clearances from Ministry of Environment & Forest (MoEF&CC), Consent to Establish and Consent for Operation (CFO) from Karnataka State Pollution Control Board (KSPCB). UPCL has also obtained all necessary statutory/mandatory clearances.

Ambient Air quality Monitoring Stations were established in 4 locations inside the plant area for continuous monitoring of Ambient Air Quality. One meteorological station has also been installed for monitoring of meteorological data. UPCL is monitoring the environmental parameters in and around the plant area through NABL accredited Laboratory.

Environmental clearance was accorded to the project for 2x500 MW fully imported coal based units on 20 March 1997. This EC was amended on 25 Jan 1999 and 09 Sept 2009 permitting enhancement of capacity to 2x507.5 MW and subsequently to 2x600 MW. These amendments in EC were consolidated on 01 Sept 2011 by MoEF&CC.

Detailed compliance status of Consolidated Environment Clearance from MoEF&CC for 2X600 MW Coal based Subcritical Thermal Power plant and CRZ clearance from State Coastal Zone Management Authority for Sea Water Pipeline is being furnished herewith.

S.NO	Conditions	Compliance
Α	Specific Conditions	
(1)	All the conditions stipulated by the Karnataka State Pollution Control Board issued from time to time should be strictly implemented including the installation of Flue Gas Desulphurization (FGD) Plant. The status of implementation of FGD shall be submitted to the Regional Office of the Ministry at Bangalore.	Complied. All the conditions stipulated by KSPCB are implemented. FGD units are commissioned and are in operation from the inception of Unit-1 & Unit-2 boilers. Unit-I :11 th November 2010 Unit-II:19 th August 2012
(11)	Sulphur and ash contents in the coal to be used in the project shall not exceed 0.8% and 12% (average) respectively at any given time. In case of variation of coal quality at any point of time, fresh reference shall be made to the Ministry	Complied for both Sulphur and Ash contents. Average Sulphur and Ash content in coal used for the period of April 2022 to September 2022 is as below: 1. Sulphur Content: 0.63 % 2. Ash Content: 9.07 %
(III)	A single bi-flue stack of 275 m height shall be provided with continuous online monitoring equipment's of SO _x , NO _x and Particulate Matter (PM _{2.5} & PM ₁₀). Exit velocity of flue gases shall not be less than 22 m/sec. Mercury emissions from stack shall also be monitored on periodic basis.	A Single bi-flue stack of 275 m height is provided with continuous online monitoring for SO ₂ , NO _x , Particulate matter and Mercury. Exit velocity of the flue gases from the stack for the period of April 2022 to September 2022 was 22.30 to 24.90 m/s .
(IV)	An instrumented meteorological tower shall be set up for collecting on-site meteorological data.	Complied with. An instrumented meteorological tower is established for online meteorological data. Meteorological data for the period of April 2022 to September 2022 is enclosed as **Annexure-I** for reference.
(V)	High Efficiency Electrostatic Precipitators (ESPs) shall be installed to ensure that particulate emission from the proposed plant does not exceed	Complied with. High Efficiency Electrostatic Precipitators and low NOx Burners are installed.

	1 =	
	50 mg / NM³. Low NO _x Burners shall be installed.	Particulate emissions from the plant are well within the limits. Monitoring values for the period of April 2022
		to September 2022 is enclosed as <i>Annexure-II</i> for reference.
(VI)	Adequate dust extraction system such as cyclones / bag filters and water spray system	Complied with. Water Sprinklers are provided in coal yard, coal unloading and coal conveyor systems.
	in dusty areas such as in coal handling and ash handling points, transfer areas and other	Dust Extraction system has been provided at Junction towers.
	vulnerable dusty areas shall be provided.	Dry Fog dust suppression system is provided in track hopper and bunkers.
		Wind Shield has been provided, photograph enclosed in <i>Annexure-III</i> for reference.
(VII)	Transportation of coal from	Complied with.
	Mangalore Port to the project site shall be undertaken by rail with adequate provisions to prevent fugitive emissions	Coal is transported from Mangalore port to plant site is only through rail by BORBN wagons. Wagons are covered with tarpaulin sheets to avoid fugitive emission during transportation.
(VIII)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided. Unutilized fly ash shall be disposed off in the ash pond in the form of slurry. Mercury and other heavy metals (As, Hg, Cr, Pb etc.) will be monitored in the bottom ash as also in the effluents emanating from the existing ash pond. No ash shall be disposed off in low lying area. To prevent ground water contamination, the ash pond area should be lined with impervious layer.	Complied with. Fly ash is collected in dry form and stored in ash silos. All the generated fly ash is issued to the end users like Cement, RMC, Brick manufactures etc. Fly Ash Utilization details enclosed as Annexure-IV. Ash pond is lined with LDPE film as impervious layer to avoid ground water contamination. Mercury and other heavy metals are monitored in the bottom ash through NABL accredited laboratory. No effluent is emanated from ash pond. No ash is disposed in the low lying areas. Test wells are constructed around the ash pond area for water monitoring and monitoring reports for the period of April 2022 to September 2022 is enclosed as Annexure-V for reference.
(IX)	The transportation of dry fly ash to the ash disposal area	Complied with.

	through closed bulkers shall be allowed till 30.03.2012 till the Cement Grinding unit of M/s ACC Ltd. is set up. Monitoring of particulate emissions along the route of transportation shall be carried out	Cement blending unit has installed within the UPCL plant near to Ash silos and ash is transferred from silos to blending unit through closed conduit only. Monitoring is carried out in transportation route. Four numbers of online ambient air quality monitoring stations are established for ambient air quality (AAQ) monitoring. AAQ monitoring is also done in transportation route and buffer zone through MoEF&CC and NABL accredited laboratory. Air monitoring reports for the period of April 2022 to September 2022 is enclosed as Annexure-VI for reference.
(×)	Extensive monitoring of air quality in and around the power plant and extending up to Western Ghat should be carried out and records should be scientifically maintained. The monitoring Programme should cover the key stone species for any potential acid deposition effects.	Complied with. Air quality monitoring is carried through MoEF&CC and NABL accredited laboratory at 8 locations (extending up to Western Ghats) which is finalized in consultation with KSPCB and the monitoring reports are submitted to the KSPCB office monthly. The Monitoring programme covers till western Ghats and measure Sulphur dioxide and Nitrogen dioxide, as main precursors for acid rain. Key Stone Species Monitoring is carried once in six months. There is no change noticed. Air quality monitoring reports for the period of April 2022 to September 2022 is enclosed as Annexure-VI for reference.
(XI)	No leachate shall take place at any point of time from the Coal storage area and Ash Pond and adequate safety measures such as lining with impermeable membrane / liner shall be adopted. Precautionary measure shall be taken to protect the ash dyke from getting breached and in-built monitoring mechanism shall be formulated.	Complied with. LDPE film is used as impervious layer to avoid ground water contamination from Coal storage and Ash Pond area. Test wells are constructed around the ash pond area for water monitoring and monitoring reports for the period of April 2022 to September 2022 is enclosed as <i>Annexure-V</i> for reference.

(XII)	Fugitive emission of fly ash (dry or wet) shall be controlled so that no agricultural or nonagricultural land is affected. Damage to any land shall be mitigated and suitable compensation provided in consultation with the local Panchayat.	Complied with. Disposal of fly ash is handled through closed conduit within plant. No damage has happened to any land.
(XIII)	COC of at least 1.25 shall be adopted	Complied with.
(XIV)	Closed Circuit Cooling Tower shall be installed and sea water shall be used for cooling purpose. The sweet water requirement shall be met from the desalination plant.	Complied with. Closed circuit cooling tower is provided and sea water is used for cooling purpose. Desalination plant is provided for sweet water requirement.
(XV)	No effluent will be discharged into the Mulki River. The treated effluents shall be discharged through a pipeline in the Arabian Sea ensuring that the differential temperature is maintained at 5° C. The area and location of the intake and discharge point shall be finalized in consultation with the National Institute of Oceanography (NIO), Goa/Central Water and Power Research Station, Pune.	Complied with. No effluent is discharged into the Mulki River and there is no connection of UPCL with Mulki River. All the cooling tower blow down and water outlets are discharged back to the sea from Guard Pond through Coro-coated MS-Pipe line at designated place which is finalized in consultation with NIO. The differential temperature is maintained within 5° C. All the intake and outfall sea water points are finalized as per recommendations of NIO, Goa.
(XVI)	Brine management from desalination plant, its disposal mechanism and status of implementation shall be submitted to the Regional Office of the Ministry from time to time.	Complied with. Guard pond has been established to collect all the water outlets. Brine from desalination plant is sent to Guard pond and discharged to Sea. Continuous online monitoring system implemented in Guard pond, in addition to that water sample is being collected and analyzed once a week by MoEF&CC and NABL accredited laboratory.

		Guard pond effluent monitoring reports for the period of April 2022 to September 2022 is enclosed as <i>Annexure-VII</i> for your reference.
(XVII)	Possibility for setting up transit storage within plant site for temperature control of effluent before discharging to the sea shall be examined and details submitted to the Ministry within six months.	Complied with. Guard pond has been established to collect all the water outlets. Treated effluents, including blow down from the cooling towers are sent back to sea via Guard pond. Effluent temperature maintained within 5° C before discharge.
(XVIII)	Monitoring of ground and surface water quality nearby shall be regularly conducted and records maintained. The monitored data shall be submitted to the Ministry regularly. Further, monitoring points shall be located between the plant and drainage in the direction of flow of ground water and or advised by the State Pollution Control Board and records maintained. Monitoring for heavy metals in ground water shall be undertaken.	Complied with. Ground water and Surface water monitoring is carried regularly in the locations finalized in consultation with KSPCB and records are maintained. Monitoring reports are sent to KSPCB once in every month. Monitoring of heavy metals in ground water is carried out monthly. Water monitoring reports for the period of April 2022 to September 2022 is enclosed as Annexure-VIII for reference.
(XIX)	A well designed rain water harvesting system shall be put in place which shall comprise of rain water collection from the built up and open area in the plant premises. Action plan and road map for implementation shall be submitted to the Regional Office of Ministry.	Three Numbers of Rain water harvesting ponds are constructed to harvest rain water. (<i>Annexure – IX</i> - Photos Attached)
(XX)	The project proponent shall not hamper the vocation of the fishing community in the area (if any) and it shall be ensured that local fishing community shall be allowed to carry out their vocation. Clearance from the Department of Fisheries in	Complied with. Fishing activity is not hampered. Monitoring of sea water around the intake and outfall points is carried regularly through College of Fisheries, Mangalore. NOC obtained from department of Fisheries, State government of Karnataka.

	the State Govt. shall be obtained.		Clearance letter from departi Karnataka state governmen <i>Annexure-X</i> for reference.	
(XXI)	Acquisition of land should be restricted to 550 ha as per the following breakup:		Complied with. Following is the current statu	JS:
	Plant area	180 Ha	Plant area	170 Ha
	Ash Disposal Area	150 Ha	Ash Disposal Area	46 Ha
	Colony Area	45 Ha	Colony Area	-
	In take pipe route	25 Ha	In take pipe route	15 Ha
	Other requirements	50 Ha	Other requirements	8 Ha
	Rehabilitation, Green belts, Ash utilizations etc.	100 Ha	Rehabilitation, Green belts, Ash utilizations etc.,	82 Ha
(XXII)	Green belt of adequate width and density with suitably selected native species should be developed all around the plant area and the ash disposal site. Density of trees shall not be less than 2000 per ha and survival rate not less than 80%. It shall be ensured that at least 1/3 rd of the total area is utilized for creation of green belt. Adequate financial provision should be made for this purpose.		Complied with. Green belt of about 370905 acres have been planted. Survival rate of the plantation than 80% by taking appropriate of the plantation apply. Snapshots of Plantation and Annexure-XI for reference. Adequate financial proviplantation under Environment separately. The amount spactivities under Environment April 2022 to September 202	n is ensured more priate after care manure etc. are enclosed as ision for the t budget is made pent for various for the period of
			Description	Amount (Rs.)
			Afforestation	56,73,022.68
			Environment Monitoring	25,55,315.00
			General Environment Management	56,42,731.31
			Total	1,38,71,068.99
(XXIII)	Local employable you Project Affected Family trained in skills relevan project for	/ shall be	Complied with. As per the recommendation project affected families	ns from KIADB, are taken on

	employment in the project itself. The action taken report and details thereof to this effect shall be submitted to the Regional Office of the Ministry and the State Govt. Dept. concerned from time to time.	employment and provided required trainings and skill developments. The copy of the letter submitted to KIADB is enclosed as <i>Annexure-XII</i> for your reference.
(XXIV)	The project affected people should be rehabilitated and resettled in consultation with the State Govt. of Karnataka. A Rehabilitation Committee should be constituted with representatives from the state of Govt. of Karnataka, affected people, local recognized NGOs, technical institutions, experts etc.	Complied with. Rehabilitation and Resettlement is already provided to the project affected people as per R&R policy of Government of Karnataka.
(XXV)	Status of implementation of R&R including its financial component spent and action pending shall be submitted to the regional Office of the Ministry from time to time.	Complied with.
(XXVI)	Financial requirements for implementations of the environmental mitigative measures should be earmarked and shall not be diverted for the other purposes. Adequate provision should be ensured for enhancement of funds required, if any, in future.	Complied with Financial requirement for Environmental mitigative measures was earmarked at the time of project as per EIA report and measures have been implemented. Operating expenses are earmarked in operation budget on yearly basis. In case of any future requirement funds will be provided as when required.
(XXVII)	The project proponent shall also adequately contribute in the development of the neighboring villages. Special package with implementation schedule for free potable drinking water supply in the nearby villages and schools shall be undertaken in a time bound manner.	Complied with. Potable drinking water supply through RO plant is done. The company is also providing assistance in Medical, Education and Infrastructural facilities etc., to the neighboring villages. Scholarships, green nurturing and school grants are also providing to nearby villages.

_		
(XXVIII)	The project proponent shall formulate sustainable livelihood scheme for landless and marginalized section of society (such as landless farmers) in the area who are directly or indirectly affected due to power project.	Complied with. The Company has engaged local people for various activities like Green belt Development, Area development and other service works like catering etc.,
(XXIX)	At least three nearest village shall be examined for possible adoption and basic amenities like development of roads; drinking water supply, primary health centre, primary school etc shall be developed in coordination with the district administration	Complied with. UPCL along with the District Administration has identified various schools in the neighboring villages for adoption and for providing basic amenities like toilet facilities, drinking water, green nurturing, etc.
(XXX)	An amount of Rs. 5.0 Crores shall be earmarked as one time capital cost for CSR programme. Subsequently a recurring expenditure of Rs. 1.0 Crores per annum till the life the plant shall be earmarked as recurring expenditure for CSR activities. Details of the activities to be undertaken shall be submitted within one month along with road map for implementation.	Complied with. Rs.5 crore was earmarked onetime cost for CSR during the project phase stage of 2x600 MW plant. Over Rs.1 crore is earmarked and used for all CSR activities every year.
(XXXI)	CSR scheme shall be identified based on need based assessment in and around the villages within 5.0 km of the site and in constant consultation with the village Panchayat and the District Administration. As part of CSR prior identification of local employable youth and eventual employment in the project as required after imparting relevant training shall be also undertaken as necessary.	Complied with. CSR schemes are identified based on need assessment and constant consultation with village Panchayat and the District Administration. CSR team is engaged for assessment and consultation with local villages for CSR activities on a continuous basis. For local youth, scholarships and various other schemes including trainings are provided so as to get them proper education and getting eventual employment opportunities.

		Snapshots of CSR activities are enclosed as <i>Annexure-XIII</i> for reference.
(XXXII)	It shall be ensured that in-built monitoring mechanism for the schemes identified is in place and annual social audit shall be got done from the nearest government institute of repute in the region. The project proponent shall also submit the status of implementation of the scheme from time to time.	Complied with. Socio Economic study was carried at the project time as a part of EIA study. Impact assessment of CSR interventions is periodically done internally.
(XXXIII)	A Monitoring Committee should be constituted for reviewing the compliance to various safeguard measures by involving recognized local NGOs. Pollution Control Board, Institutions, Experts etc.	Monitoring Committee is framed comprises of NGO, College Experts and Institution Experts to review Safeguard measures implemented by UPCL.
В	General Conditions:	
(1)	A Corporate Environmenta Policy shall be formulated and after due approval of the Board of Directors of the Company shal	
	be submitted to the Ministry with six months. The policy shall specifically address issues of adherence to environmental policy so formulated and environmental clearance conditions stipulated for the power project and also others including matters related to violations of stipulated conditions (if any) to the Board.	

(111)	A sewage treatment plant shall be provided (as applicable) and the treated sewage shall be used for raising greenbelt / plantation.	Complied. Modular STP has been installed treating sewage water and discharging for green belt development.
(IV)	A well designed rainwater harvesting shall be constructed. Central Groundwater Authority / Board shall be consulted for finalization of appropriate rainwater harvesting technology within a period of three months from the date of issue of clearance and details shall be furnished to the Regional Office of the Ministry.	Three numbers of Rain water harvesting ponds are constructed to harvest rain water. (Annexure /X - Photos Attached)
(V)	Adequate safety measures shall be provided in the plant area to check/minimize spontaneous fires in coal yard, especially during summer season. Copy of these measures with full details along with location plant layout shall be submitted to the Ministry as well as to the Regional Office of the Ministry.	Complied with. Adequate safety measures like fire hydrant, fire extinguishers, smoke detectors, hose reel, hose house, water monitor, D.V system, Fire water pump house, fire tenders are available to prevent from spontaneous fires.
(VI)	Storage facilities for auxiliary liquid fuel such as LDO and HFO/LSHS shall be made in the plant area in consultation with Department of Explosives, Nagpur. Sulphur content in the liquid fuel will not exceed 0.5%. Disaster Management Plan shall be prepared to meet any eventuality in case of an accident taking place due to storage of oil.	Storage facilities in the plant for auxiliary liquid fuel are provided and the facilities are approved by Department of Explosives, Nagpur. Liquid fuel is procured from Oil Companies (GOI Undertakings) and Sulphur content condition is complied with. Environment and disaster preparedness plan is in place and approved by Inspector of Factories and Boilers.
(VII)	Regular monitoring of ground water level shall be carried out by establishing a network of existing wells and constructing new piezometers. Monitoring around the ash pond area shall be carried out particularly for heavy	Complied with. Regular monitoring is being carried in existing wells and test wells constructed around ash pond area and reports are submitted monthly to KSPCB office and the same is submitted to RO-MoEF&CC once in six months.

	metals (Hg, Cr, As, Pb) and records maintained and submitted to the Regional Office of this Ministry. The data so obtained should be compared with the baseline data so as to ensure that the ground water quality is not adversely affected due to the project.	Monitoring reports are enclosed as Annexure-V and Annexure-VIII for reference. The compared baseline data for the period of Septemebr-2022 for water quality and ambient air quality is enclosed as Annexure-XIV
(VIII)	Monitoring surface water quantity and quality shall also be regularly conducted and records maintained. The monitored data shall be submitted to the Ministry regularly. Further, monitoring points shall be located between the plant and drainage in the direction of flow of ground water and records maintained. Monitoring for heavy metals in ground water shall be undertaken.	Complied with, Surface water monitoring is carried regularly in the monitoring points finalized in consultation with KSPCB. Monitoring reports are submitted regularly to RO-KSPCB and same is submitted to RO-MoEF&CC once in six months. Monitoring reports for the period of April 2022 to September 2022 is enclosed as <i>Annexure-VIII</i> for reference. However, surface water Quantity measurement is not applicable.
(IX)	First Aid and sanitation arrangements shall be made for the drivers and other contract workers during construction phase	Complied with. All the arrangements are made during the construction phase.
(X)	Noise levels emanating from turbines shall be so controlled such that the noise in the work zone shall be limited to 75 dBA. For people working in the high noise area, requisite personal protective equipment like earplugs / ear muffs etc. shall be provided. Workers engaged in noisy areas such as turbine area, air compressors etc shall be periodically examined to maintain audiometric record and for treatment for any hearing loss including shifting to non-noisy / noise less areas.	Complied with. Enclosures are provided for turbines to control the noise. The persons working in the high noise area are provided with ear plugs/ear muffs. All the employees working in the area are examined periodically for audiometric and records are maintained.

(XI)	Regular monitoring of ground level concentration of SO ₂ , NO _x , PM _{2.5} & PM ₁₀ and Hg shall be carried out in the impact zone and records maintained. If at any stage these levels are found to exceed the prescribed limits, necessary control measures shall be provided immediately. The location of the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of this Ministry. The data shall also be put on the website of the company.	Complied with. Regular monitoring is carried as per NAAQ standards in all the locations finalized by KSPCB. Ambient Air Quality Monitoring stations are established in the plant for continuous monitoring of pollution levels. Monitoring reports are regularly submitted to KSPCB and RO-MoEF&CC and copy of the report along with the data is being kept on company website in six monthly compliance reports http://www.adanipower.com/downloads
(XII)	Provision shall be made for the housing of construction labor (as applicable) within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project	Complied with. All the arrangements are made during the construction phase
(XIII)	The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned within seven days from the date of this clearance letter	Complied with.
(XIV)	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parisad / Municipal Corporation, urban local Body and the Local NGO, if any, from whom suggestions / representations, if	Complied with. Clearance letter is displayed in company website as part of the Six monthly compliance report of EC conditions. http://www.adanipower.com/downloads

	any, received while processing the proposal. The clearance letter shall also be put on the website of the Company by the project proponent.	
(XV)	An Environmental Cell shall be created at the project site itself and shall be headed by an officer of appropriate seniority and qualification. It shall be ensured that the head of the Cell shall directly report to the Head of the Organization. The status report on the functioning of the Cell shall be submitted to the regional office of the Ministry periodically. The Cell shall comprise of an expert in Marine Biology, Fishery and Mangroves preservation.	Complied with. A well-qualified Environment cell is established. Head of the Environment department is directly reporting to station head. Director & Research Karnataka Veterinary, Animal & Fisheries Sciences University Bidar, is a member of Environmental Monitoring committee is providing necessary technical assistance in Marine Biology, Fishery and Mangroves preservation issues.
(XVI)	The proponent shall upload the status of compliance of the stipulated environmental clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MOEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM (PM2.5 & PM10), SO2, NOx (ambient levels as well as stack emissions) shall be displayed at a convenient location near the main gate of the company in the public domain.	Complied with. Status of compliance of the stipulated environmental clearance conditions including results of monitored data is kept website and shall update on Six monthly bases. http://www.adanipower.com/downloads Monitoring parameters are displayed near main gate. Online Continuous emission monitoring (CEMS) data is supplied to CPCB and displayed in the public domain through the below said website. URL: http://cpcbrtdms.nic.in/ Regularly monitoring data is submitted to Regional Office of MoEF&CC, Regional Office of KSPCB and Zonal Office of CPCB.
(XVII)	The environment statement for each financial year ending 31st March in Form – V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as	Complied with. Copy of Environmental statement for the Financial Year 2021-22 is submitted to RO-MoEF&CC and RO-KSPCB. Copy is enclosed as <i>Annexure-XV</i> for reference.

	prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental clearance conditions and shall also be sent to the respective Regional Offices of the Ministry by e-mail.	The copy of Environmental statement is kept in six monthly EC compliance report to MoEF&CC. Six monthly report is displayed through company website. http://www.adanipower.com/downloads
(XVIII)	The project proponent shall submit six monthly reports on the status of the implementation of the stipulated environmental safeguards to the Ministry of Environment and Forests, its Regional Office, Central Pollution Control Board and State Pollution Control Board. The project proponent shall upload the status of compliance of the environment of the environment of the environmental clearance conditions on their website and update the same periodically and simultaneously send the same by e-mail to the Regional Office, Ministry of Environment and Forests	Complied with. Six monthly compliance reports are regularly submitted to Regional Office of MoEF&CC, Regional Office of KSPCB and Zonal Office of CPCB. The same is displayed in the company website. http://www.adanipower.com/downloads
(XIX)	Regional Office of the Ministry of Environment & Forests will monitor the implementation of the stipulated conditions. A complete set of documents including Environmental Impact Assessment Report and Environment Management Plan along with the additional information submitted from time to time shall be forwarded to the Regional Office for their use during monitoring. Project proponent will up-load the compliance status in their	Point is noted. Complied with. Complete set of document including EIA/EMP report was submitted to MoEF&CC and KSPCB for project approval. Status of compliance of the stipulated environmental clearance conditions including results of monitored data is kept

	website and up-date the same from time to time at least six monthly basis. Criteria pollutants levels including NOx (from stack & ambient air) shall be displayed at the main gate of the power plant.	month http://	ebsite and shall be ally basis. /www.adanipower.con nnmental Monitoring yed near the main gat	n/downloads parameters are
(XX)	Separate funds shall be allocated for implantation of environmental protection measures along with item-wise break-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should be reported	Complied with. Funds for Environmental protection measures were earmarked at the time of project as per EIA report and measures have been implemented. Yearly environmental budget is part of the yearly operating cost of the project. The total Environment Expenditure for the period of April 2022 to September 2022 included the following:		at the time of d measures have et is part of the project.
	to the Ministry.	S.No	Detail Description	Amount (Rs)
		1	Afforestation	56,73,022.68
		2	Environment Monitoring	25,55,315.00
		3	General Environment Management	56,42,731.31
			Total	1,38,71,068.99
(XXI)	The project authorities shall inform the Regional Office as well as the Ministry regarding the date of financial closure and final approval of the project by the concerned authorities and the dates of start of land development work and commissioning of plant	Comp	lied with.	
(XXII)	Full cooperation shall be extended to the Scientists/ Officers from the Ministry/ Regional Office of the Ministry at Bangalore/ CPCB/ SPCB who would be monitoring the	Condi	tion is Noted for comp	oliance.

	compliance of environmental status	
(5)	The Ministry of Environment and Forests reserves the right to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the Ministry. The Ministry may also impose additional environmental conditions or modify the existing ones, if necessary.	Condition is Noted.
(6)	Concealing factual data or submission of false / fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environment (Protection) Act, 1986	Condition is Noted.
(7)	In case of any deviation or alteration in the project a fresh reference should be made to the Ministry to assess the adequacy of the condition(s) imposed and to add additional environmental protection measures required	Condition is Noted.
(8)	The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 2008 and its amendments, the Public Liability Insurance Act, 1991 and its amendments.	Condition is Noted & complied.

S.NO	Conditions	Compliance
5	Specific Conditions	
ı	Construction phase:	
(1)	All the conditions stipulated by the Karnataka State Coastal Zone Management Authority vide letter No. FEE 25 CRZ 2009, dated 16.02.2010 and the commitments/details submitted to KSCZMA shall be strictly complied with.	Condition is noted & complied.
(11)	Regular monitoring shall be carried out before discharging into sea.	All the used water is directed to Guard pond and regular monitoring is done and reports are submitted on monthly basis to KSPCB also.
(111)	A joint meeting of both the monitoring groups every year shall be carried out and send the report to MoEF&CC.	Complied with. Regular joint meeting of UPCL monitoring team and third party MoEF&CC and NABL approved lab is conducted and monitoring reports are submitted to MoEF&CC on six monthly basis.
(IV)	It should be ensured that there shall not be any disturbance to fishing activity.	Condition is noted & complied.
(V)	All safety precautionary measures viz. stability of the pipe line, signal for fishing boats etc. shall be installed.	Sea water Pipe line is in fenced area and Emergency contact number is displayed in critical areas like Road Crossing, Village areas. 3 No's of Safety buoys are provided in the underwater pipeline area for safety of fishing boats.
(VI)	There shall be display boards at critical locations along the pipe line giving emergency instructions. Emergency information board shall contain emergency instructions in additions to contact details	Sea water Pipe line is in fenced area and caution boards provided with Emergency contact number is displayed in critical areas like Road Crossing, Village areas. Photos of display boards are enclosed as <i>Annexure-XVI</i>
(VII)	The project shall be implemented in such a manner that there is no damage to the mangroves/other sensitive coastal ecosystems	The pipeline area does not include any mangroves/other sensitive coastal eco systems.
(VIII)	A continuous and comprehensive post-project marine quality monitoring programme shall be taken up. This shall include monitoring of water quality, sediment quality and biological characteristics and the report shall	Monitoring is carried for sea water quality at intake and outfall points by Fisheries college, Mangalore. Reports are regularly submitted. Monitoring Reports for the period of April 2022 to September 2022 is enclosed as Annexure-XVII for reference.

	be submitted every six month to Ministry's Regional Office at	
	Bangalore.	
(IX)	It shall be ensured that there is no	Condition is noted & complied.
	displacement of people and the	
	houses as a result of the project.	
(X)	There shall be no withdrawal of	Condition is noted & complied.
	ground water in CRZ area, for the	
	project.	
(XI)	Provision shall be made for the	All the arrangements were made during
	housing of construction labor	the construction phase.
	within the site with all necessary	
	infrastructure and facilities such	
	as fuel for cooking, mobile toilets,	
	mobile STP, safe drinking water,	
	medical health care, crèche etc.	
	The housing may be in the form of	
	temporary structures to be	
	removed after the completion of	
	the project.	
(XII)	A First Aid Room will be provided in	Complied with.
, ,	the project both during	All the arrangements are made during the
	construction and operation of the	construction phase.
	project	•
(XIII)	Soil and ground water samples will	Complied with.
	be tested to ascertain that there is	All the construction activities are
	no threat to ground water quality	completed.
(XIV)	Any hazardous waste generated	Complied with.
	during construction phase, should	No hazardous waste was generated during
	be disposed off as per applicable	construction phase.
	rules and norms with necessary	
	approvals of the KSPCB.	
(XV)	The diesel generator sets to be	Construction work involves only
	used during construction phase	excavation and pipe laying work, so DG
	should be low Sulphur diesel type	sets were not used.
	and should confirm to	
	Environment (Protection) Rules	
	prescribed for air and noise	
	emission standards.	
(XVI)	The diesel required for operating	Construction work involves only
	DG sets shall be stored in	excavation and pipe laying work, so DG
	underground tanks and if required,	sets were not used.
	clearance from Chief Controller of	
	Explosives shall be taken.	
(XVII)	Vehicles hired for bringing	Complied with condition.
	construction material to the site	
	should be in good condition and	
	· — — — — — — — — — — — — — — — — — — —	

should have a pollution check certificate and should confirm to applicable air and noise emission standards and should be operated only during non-peak hours. (XVIII) Ambient noise levels should confirm to residential standards both during day and night. Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations. (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by KSCZMA			
applicable air and noise emission standards and should be operated only during non-peak hours. (XVIII) Ambient noise levels should confirm to residential standards both during day and night. Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by			
standards and should be operated only during non-peak hours. (XVIII) Ambient noise levels should confirm to residential standards both during day and night. Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by			
only during non-peak hours. (XVIII) Ambient noise levels should confirm to residential standards both during day and night. Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by			
(XVIII) Ambient noise levels should confirm to residential standards both during day and night. Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB. (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by Condition is noted & complied. Condition is noted & complied.		1	
confirm to residential standards both during day and night. Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		, ,	
both during day and night. Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by	(XVIII)		Condition is noted & complied.
Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by Condition is noted & complied.			
ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by The green belt of the plant as suggested by Condition is noted & complied.		,	
should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		· ·	
construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		· · · · · · · · · · · · · · · · · · ·	
measures should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		should be closely monitored during	
reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		· · · · · · · · · · · · · · · · · · ·	
during construction phase, so as to confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		measures should be made to	
confirm to the stipulated standards by CPCB/KSPCB (XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		reduce ambient air and noise level	
Standards by CPCB/KSPCB		during construction phase, so as to	
(XIX) Storm water control and its re-use as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		confirm to the stipulated	
as per CGWB and BIS standards for various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		standards by CPCB/KSPCB	
various applications. (XX) Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by	(XIX)	Storm water control and its re-use	Work involved only in lying of pipeline
Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		as per CGWB and BIS standards for	underground and back filling.
and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		various applications.	
should be in place all through the construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by	(XX)	Regular supervision of the above	Condition is noted & complied.
construction phase, so as to avoid disturbance to the surroundings (II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		and other measures for monitoring	·
(II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		should be in place all through the	
(II) OPERATION PHASE (I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		construction phase, so as to avoid	
(I) Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		disturbance to the surroundings	
ensure that it does not exceed the prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by	(II)	OPERATION PHASE	
prescribed standards. During night time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by	(I)	Noise should be controlled to	Not applicable in the area because no
time the noise levels measured shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		ensure that it does not exceed the	structure is available in the area.
shall be restricted to the permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		prescribed standards. During night	
permissible levels to comply with the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		time the noise levels measured	
the prevalent regulations (II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		shall be restricted to the	
(II) The green belt of the adequate width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		permissible levels to comply with	
width and density preferably with local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		the prevalent regulations	
local species along the periphery of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by	(11)	The green belt of the adequate	Green belt is developed in the power plant
of the power plant shall be raised so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		width and density preferably with	area in accordance with environmental
so as to provide protection against particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		local species along the periphery	clearance.
particulates and noise as suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		· · · · · · · · · · · · · · · · · · ·	
suggested by KSCZMA. (III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		so as to provide protection against	
(III) Project proponent shall support afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by		particulates and noise as	
afforestation activities by way of raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by			
raising and supply of required seedling by the locals within 5KM radius of the plant as suggested by	(III)	, , ,	Condition is noted & complied.
seedling by the locals within 5KM radius of the plant as suggested by			
radius of the plant as suggested by		raising and supply of required	
		, , ,	
KSCZMA		seedling by the locals within 5KM	
		seedling by the locals within 5KM radius of the plant as suggested by	

(IV)	The ground water level and its quality should be monitored regularly	and involvements wells of Monites 2022	no other industred. However oring is being constructed in the oring reports for	the period of April 22 is enclosed as
(V)	The mangroves, if any, on the site should not be disturbed in anyway		lied with at the ruction.	time of pipe line
(VI)	The environmental safeguards contained in the application should be implemented in letter and spirit	Comp	lied with.	
(VII)	A separate Environment management Cell with suitably qualified staff to carry out various environment related functions shall be set up under the charge of a Senior Executive who will report directly to the Chief Executive of the Company.	Enviro	ished which is	onment cell is headed by HOD-rectly reporting to
(VIII)	The funds earmarked for environment protection measures shall be maintained in a separate account and there shall be no diversion of these funds for any purpose. A year wise expenditure on environmental safeguards shall be reported to this Ministry's Regional Office at Bangalore.	Funds measu project have to Yearly yearly The operiod	ures were earmarket as per EIA repoeen implemented renvironmental but operating cost of Environment Exp	ked at the time of ort and measures . Judget is part of the
		S.No	Detail Description	Amount (Rs.)
		1	Afforestation	56,73,022.68
		2	Environment Monitoring	25,55,315.00
		3	General Environment Management	56,42,731.31
		4	Total	1,38,71,068.99
(IX)	In case of deviation or alteration in the project including the implementing agency, a fresh	Condi	tion is noted & co	mpliance.

	·	
4.0	reference shall be made to this Ministry for modification in the clearance conditions or imposition of new one for ensuring environmental protection. The project proponents shall be responsible for implementing the suggested safeguard measures.	
(×)	This Ministry reserves the right to revoke this clearance, if any of the conditions stipulated are not complied with to the satisfaction of this Ministry	Condition is noted & compliance.
(6)	GENERAL CONDITIONS	
(1)	Adequate provision for infrastructure facilities including water supply, fuel and sanitation must be ensured for construction workers during the construction phase of the project to avoid any damage to the environment.	Complied with. All the arrangements are made during the construction phase.
(11)	Appropriate measures must be taken while undertaking digging activities to avoid any likely degradation of water quality.	Condition is noted & complied.
(111)	Borrow sites for each quarry sites for road construction material and dump sites must be identified keeping in view the following	Not Applicable since no road construction work involved in the CRZ area.
(a)	No excavation or dumping on private property is carried out without written consent of the owner	Condition is noted & complied.
(b)	No excavation or dumping shall be allowed on wetlands, forest areas or other ecologically valuable or sensitive locations.	Condition is noted & complied.
(c)	Excavation work shall be done in close consultation with the Soil Conservation and Watershed Development Agencies working in the area, and	Condition is noted & complied.
(d)	Construction spoils including bituminous material and other hazardous materials must not be allowed to contaminate water courses and the dump sites for	Condition is noted & complied.

	T	
	such materials and the dump sites for such materials must be secured so that they shall not leach into the ground water	
(IV)	Adequate precautions shall be taken during transportation of the construction material so that it does not affect the environment adversely	Complied with. All the precautionary measures are taken during construction time.
(V)	Borrow pits and other scars created during the laying of cable shall be properly leveled and treated	Complied with. Was not applicable.
(VI)	Adequate financial provision must be made in the project to implement the aforesaid safeguards.	Complied with.
(VII)	The project proponent will set up separate environmental management cell for effective implementation of the stipulated environmental safeguards under the supervision of a Senior Executive.	Well qualified Environment cell is established which is headed by HOD-Environment who is directly reporting to Station Head.
(VIII)	Full support shall be extended to the officers of this Ministry/Regional Office at Bangalore by the project proponent during inspection of the project for monitoring purposes by furnishing full details and action plan including action taken reports in respect of mitigation measures and other environmental protection activities.	Noted for compliance.
(IX)	MoEF or any other competent authority may stipulate any additional conditions or modify the existing ones, if necessary in the interest of environment and the same shall be complied with.	Noted for compliance.
(X)	The Ministry reserves the right to revoke this clearance if any of the conditions stipulated are not complied with the satisfaction of the Ministry	Noted for compliance.

() (1)	I	
(XI)	In the event of a change in the project profile or change in the implementation agency, a fresh reference shall be made to the MoEF	Noted for compliance.
(XII)	The project proponents shall inform the Regional office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of land development work	The pipeline activity is a part of the total power project. The date of financial closure for the total project was 13.06.2007. The MOEF&CC clearance was originally received on 20.03.1997 and the clearance for augmented capacity (from 2 x 507.5 to 2 x 600 MW) was received on 09.09.2009. Consolidated Environmental clearance received on 01.09.2011. The land development work for the pipeline activity was commenced in March 2009.
(XIII)	KSPCB shall display a copy of the clearance letter at the Regional Office, District Industries Center and Collector's office/Tahsildar's office for 30 days.	Noted as related to KSPCB.
7	These stipulations would be enforced among others under the provisions of Water Act, 1974, Air Act, 1981, Environment Act, 1986, Public Liability Act, 1991 and EIA Notification 2006, including the amendments and rules made thereafter.	Noted for compliance.
8	All other statutory clearances such as the approvals for storage of diesel from CCE, Fire Department, Civil Aviation Dept, Forest Conservation Act, 1980 and Wild life Act, 1972, etc shall be obtained, as applicable by project proponents from the respective competent authorities.	Noted. These clearances were not applicable for sea water pipe line work.
9	The project proponent shall advertise in at least two local newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded EC and copies of clearance letters are available with the KSPCB and may also be seen on the website of	Complied with. A copy of advertisement in local newspaper is submitted to RO-MoEF&CC vide ref letter No: UPCL/B04/2010/1990 dated: 29.05.2010.

		,
10	MoEF at http://www.envfor.nic.in . The advertisement should be made within 10 days from the date of receipt of the Clearance letter and a copy of the same should be forwarded to the Regional Office of this Ministry at Bangalore.	Noted for compliance
10	EC is subject to final order of the Honorable Supreme Court of India in the matter of Goa Foundation Vs Union of India in Writ Petition (Civil) No.460 of 2004 as may be applicable to this project.	Noted for compliance.
11	Any appeal against this EC shall lie with National Environment Appellate Authority, if preferred, within a period of 30 days as prescribed under Section 11 of the National Environment Appellate Act, 1997.	Noted for compliance.
12	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zilla Parishad/Municipal Corporation, Urban Local Body and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	This is to clarify that the pipeline activity is a part of the main plant for which there was no need for public hearing as mentioned in MOEF&CC letter.113011/23/96-IA-II (T) Part dated 31.01.2005. Hence no representations were received and therefore this clause is not applicable.
13	The proponent shall upload the	Compliance status of the stipulated conditions uploaded on the website. However, results of monitoring data is not applicable since the activity involved is only laying of the water pipeline and no industrial activity involved in the area under discussion (CRZ). The monitoring data of the main plant is uploaded on the website and displayed near the main gate of the project. Reports are displayed in company website. http://www.adanipower.com/downloads

	·	
	displayed at a convenient location near the main gate of the company in the public domain.	
14	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and SPCB	Complied with. Six Monthly reports are regularly submitted to RO-MoEF&CC, RO-KSPCB and ZO-CPCB.
15	The Environmental Statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned KSPCB as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Office of MoEF at Bangalore by email.	Complied with. Copy of Environmental statement for the Financial Year 2021-22 is submitted to RO-MoEF&CC and RO-KSPCB is enclosed as <i>Annexure-XV</i> for reference. The copy of the same is displayed through company website as part of the six monthly EC compliance report. http://www.adanipower.com/downloads

METEOROLOGICAL DATA

Annexure-I

UPCL is having own Continuous Meteorological Observatory Station at site to observe below parameters:

- > Temperature
- Humidity
- Wind Speed
- Wind Direction
- > Rain fall

TABLE-1: AVERAGE DAILY METEOROLOGICAL DATA OF APRIL-2022

	Temperature (°C)		Relative Humidity (%)		Rain Fall
Date	Min	Max	Min	Max	(mm)
1-Apr-2022	26.00	34.20	79.36	89.30	0.00
2-Apr-2022	26.20	33.40	81.80	91.90	8.40
3-Apr-2022	23.80	34.40	83.90	99.20	0.00
4-Apr-2022	25.40	33.30	84.80	100.00	0.00
5-Apr-2022	24.40	35.70	78.65	93.90	0.00
6-Apr-2022	26.20	34.30	80.80	93.80	0.00
7-Apr-2022	25.50	33.80	78.37	90.10	0.00
8-Apr-2022	25.40	34.20	79.76	87.30	0.00
9-Apr-2022	26.50	33.30	82.10	93.50	5.98
10-Apr-2022	20.20	33.30	85.50	100.00	0.00
11-Apr-2022	22.90	32.60	83.40	94.30	0.00
12-Apr-2022	23.50	33.50	81.10	92.60	0.00
13-Apr-2022	27.10	34.00	85.40	93.40	21.81
14-Apr-2022	21.90	33.70	84.40	99.60	0.00
15-Apr-2022	21.80	33.20	86.60	100.00	0.00
16-Apr-2022	25.10	34.20	79.39	94.40	0.00
17-Apr-2022	24.60	33.40	82.50	92.60	0.00
18-Apr-2022	23.40	34.50	79.27	93.10	0.00
19-Apr-2022	24.10	33.70	79.34	89.20	0.00
20-Apr-2022	24.90	33.90	79.58	89.30	0.00
21-Apr-2022	24.00	34.90	79.20	93.20	1.17
22-Apr-2022	25.60	34.70	82.90	95.10	35.80
23-Apr-2022	22.00	36.10	79.46	100.00	0.00
24-Apr-2022	21.40	33.30	86.60	100.00	0.00
25-Apr-2022	26.40	34.20	83.80	96.00	0.00
26-Apr-2022	25.40	34.00	82.90	95.30	0.00
27-Apr-2022	24.80	34.50	79.92	92.10	0.00
28-Apr-2022	26.30	35.80	81.60	95.40	0.00
29-Apr-2022	27.60	34.50	83.70	93.70	0.00
30-Apr-2022	26.10	34.60	80.10	91.40	0.00
Min	20.20	32.60	78.37	87.30	
Max	27.60	36.10	86.60	100.00	73.16
Avg	24.62	34.11	81.87	94.32	

Wind Rose 01/04/2022 to 30/4/2022 (01:00 to 24:00) % Frequency of Wind Speed from a Direction

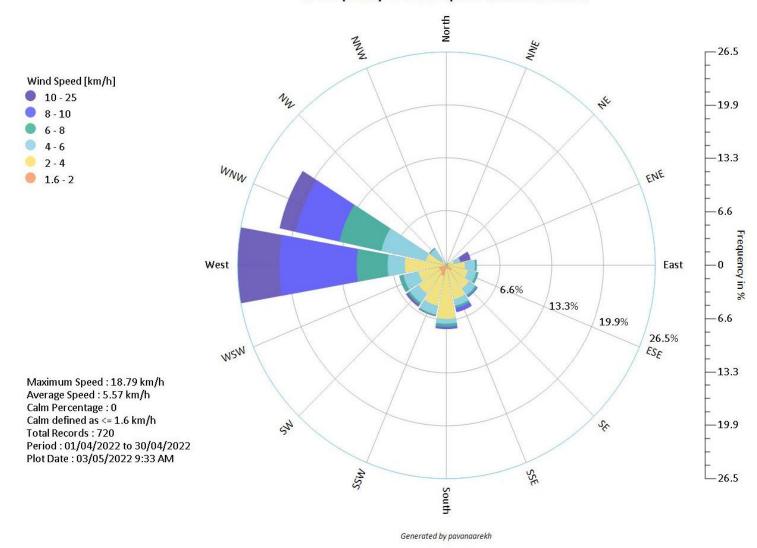


TABLE-2: AVERAGE DAILY METEOROLOGICAL DATA OF MAY- 2022

Data	Temperature (°C)		Relative Humidity (%)		Rain Fall
Date	Min	Max	Min	Max	(mm)
1-May-2022	26.90	34.10	67.70	91.60	0.00
2-May-2022	27.50	34.00	69.30	92.60	0.00
3-May-2022	26.30	34.70	60.80	93.40	6.36
4-May-2022	26.90	34.50	63.20	90.20	0.00
5-May-2022	25.60	33.40	72.50	100.00	0.00
6-May-2022	25.00	34.10	63.00	94.20	0.84
7-May-2022	24.50	34.60	64.70	91.60	0.00
8-May-2022	24.60	34.20	65.10	95.60	0.00
9-May-2022	26.00	33.20	70.10	94.50	2.57
10-May-2022	27.30	32.10	75.00	91.70	0.94
11-May-2022	25.90	32.20	75.10	99.40	22.50
12-May-2022	22.10	29.30	78.70	100.00	7.80
13-May-2022	23.90	28.70	85.20	100.00	1.00
14-May-2022	24.50	32.70	74.60	99.90	0.00
15-May-2022	25.50	33.40	71.60	99.90	5.10
16-May-2022	26.20	32.60	72.50	96.10	52.60
17-May-2022	23.00	32.40	77.80	100.00	15.30
18-May-2022	22.60	29.10	80.30	100.00	60.70
19-May-2022	23.40	28.90	85.50	100.00	47.40
20-May-2022	21.20	24.60	89.43	95.28	43.40
21-May-2022	23.80	29.90	86.96	95.08	8.80
22-May-2022	24.30	28.80	69.98	95.22	3.70
23-May-2022	25.00	30.10	68.76	95.05	0.00
24-May-2022	27.10	31.60	64.83	95.68	0.00
25-May-2022	26.20	33.00	66.23	96.51	0.00
26-May-2022	25.90	34.30	67.30	100.00	0.00
27-May-2022	25.70	33.70	65.60	98.50	0.00
28-May-2022	25.01	32.03	71.41	96.59	0.00
29-May-2022	24.70	31.30	69.20	97.30	0.00
30-May-2022	24.30	32.30	60.90	100.00	72.40
31-May-2022	24.40	33.10	60.40	98.40	31.50
Min	21.20	24.60	60.40	90.20	
Max	27.50	34.70	89.43	100.00	382.91
Avg	25.01	32.03	71.41	96.59	

Wind Rose Month of May - 2022 (01:00 - 24:00) % Frequency of Wind Speed from a Direction

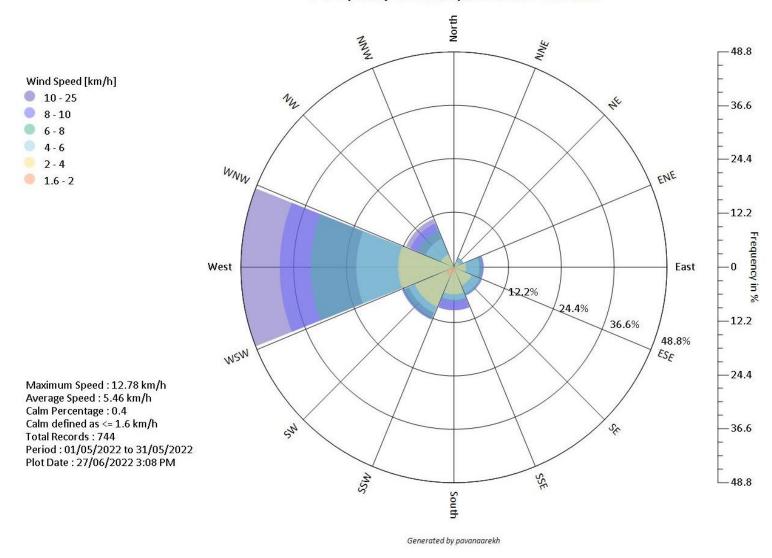


TABLE-3: AVERAGE DAILY METEOROLOGICAL DATA OF JUNE-2022

Data	Temperature (°C)		Relative Humidity (%)		Rain Fall
Date	Min	Max	Min	Max	(mm)
1-Jun-2022	22.60	32.40	67.40	100.00	0.00
2-Jun-2022	23.10	31.40	69.30	100.00	7.90
3-Jun-2022	24.00	32.50	69.30	100.00	1.40
4-Jun-2022	25.20	33.10	61.00	100.00	0.00
5-Jun-2022	24.30	33.30	62.50	100.00	39.60
6-Jun-2022	25.70	33.20	65.20	99.20	2.20
7-Jun-2022	23.20	32.00	71.60	100.00	6.60
8-Jun-2022	23.60	33.50	59.10	100.00	1.60
9-Jun-2022	23.30	31.60	69.20	100.00	3.30
10-Jun-2022	24.60	31.90	68.50	100.00	19.70
11-Jun-2022	23.10	32.30	65.80	100.00	0.00
12-Jun-2022	23.30	31.70	70.00	100.00	29.20
13-Jun-2022	22.90	31.20	72.60	100.00	0.00
14-Jun-2022	22.70	31.30	72.70	100.00	5.10
15-Jun-2022	24.00	32.20	67.90	99.10	7.70
16-Jun-2022	23.80	31.40	73.80	100.00	2.30
17-Jun-2022	23.80	31.20	70.50	100.00	6.80
18-Jun-2022	24.20	32.30	66.40	100.00	5.40
19-Jun-2022	24.40	30.50	74.30	100.00	33.20
20-Jun-2022	23.00	32.60	65.70	100.00	59.40
21-Jun-2022	22.70	30.70	75.10	100.00	31.10
22-Jun-2022	22.70	25.50	99.30	100.00	59.70
23-Jun-2022	23.00	26.20	99.40	100.00	26.20
24-Jun-2022	23.20	30.70	74.40	100.00	67.80
25-Jun-2022	23.00	30.30	79.10	100.00	12.20
26-Jun-2022	23.10	29.90	83.80	100.00	10.30
27-Jun-2022	23.80	30.30	79.10	100.00	26.40
28-Jun-2022	23.60	30.60	80.90	100.00	92.60
29-Jun-2022	22.80	27.30	98.30	100.00	135.20
30-Jun-2022	23.30	27.50	92.20	100.00	96.60
Min	22.60	25.50	59.10	99.10	
Max	25.70	33.50	99.40	100.00	789.50
Avg	23.53	31.02	74.15	99.94	

Wind Rose Month of June - 2022 (01:00 to 24:00) % Frequency of Wind Speed from a Direction

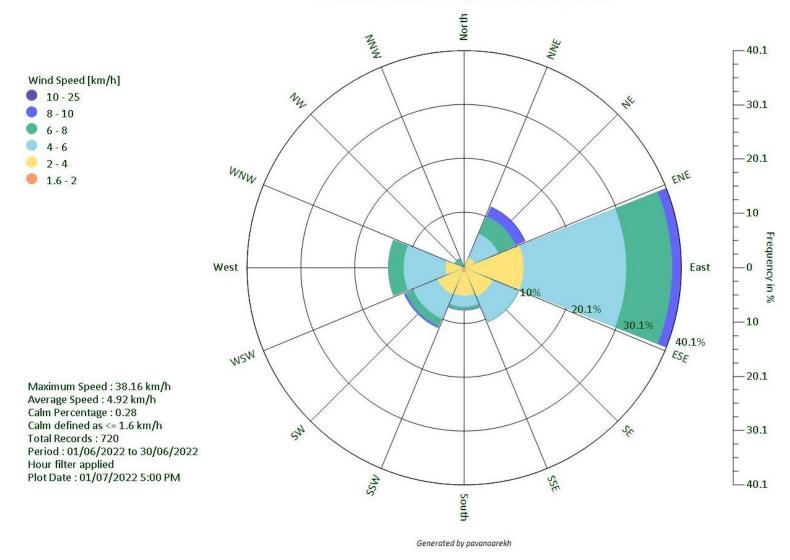


TABLE-4: AVERAGE DAILY METEOROLOGICAL DATA OF JULY- 2022

Data	Temper	ature (°C)	Relative H	umidity (%)	Rain Fall
Date	Min	Max	Min	Max	(mm)
1-Jul-2022	23.50	25.60	99.10	100.00	56.60
2-Jul-2022	23.40	26.60	96.60	100.00	20.30
3-Jul-2022	25.10	30.00	69.79	93.66	54.10
4-Jul-2022	23.70	26.10	88.16	94.93	126.80
5-Jul-2022	23.30	26.70	96.20	100.00	136.40
6-Jul-2022	23.10	25.70	98.90	100.00	69.70
7-Jul-2022	23.30	26.00	99.60	100.00	95.20
8-Jul-2022	23.30	25.20	91.12	96.18	133.40
9-Jul-2022	23.30	24.90	89.58	97.19	117.30
10-Jul-2022	23.10	25.80	97.20	100.00	115.37
11-Jul-2022	22.70	25.90	98.70	100.00	27.10
12-Jul-2022	22.60	26.90	95.70	100.00	26.70
13-Jul-2022	23.60	29.90	86.40	100.00	68.50
14-Jul-2022	22.80	26.80	95.60	100.00	33.70
15-Jul-2022	22.70	28.90	88.80	100.00	25.30
16-Jul-2022	23.40	30.10	86.80	100.00	81.60
17-Jul-2022	22.40	26.90	91.60	100.00	62.30
18-Jul-2022	23.40	29.40	90.40	100.00	5.10
19-Jul-2022	23.30	31.10	80.10	100.00	1.90
20-Jul-2022	23.80	29.70	83.40	100.00	17.80
21-Jul-2022	23.20	30.10	81.20	100.00	0.90
22-Jul-2022	23.10	30.90	75.70	100.00	0.00
23-Jul-2022	24.40	30.00	82.60	100.00	26.80
24-Jul-2022	23.40	28.90	88.30	100.00	7.60
25-Jul-2022	22.60	28.90	86.50	100.00	17.10
26-Jul-2022	23.10	29.90	80.90	100.00	8.20
27-Jul-2022	22.90	30.80	78.00	100.00	3.50
28-Jul-2022	23.70	30.40	84.72	100.00	0.00
29-Jul-2022	24.40	30.90	75.90	100.00	22.20
30-Jul-2022	25.20	31.80	78.00	100.00	0.00
31-Jul-2022	22.80	30.70	75.60	100.00	2.30
Min	22.40	24.90	69.79	93.66	
Max	25.20	31.80	99.60	100.00	1363.77
Avg	23.37	28.44	87.46	99.42	

Wind Rose Month of July-2022 (01:00 to 24:00) % Frequency of Wind Speed from a Direction

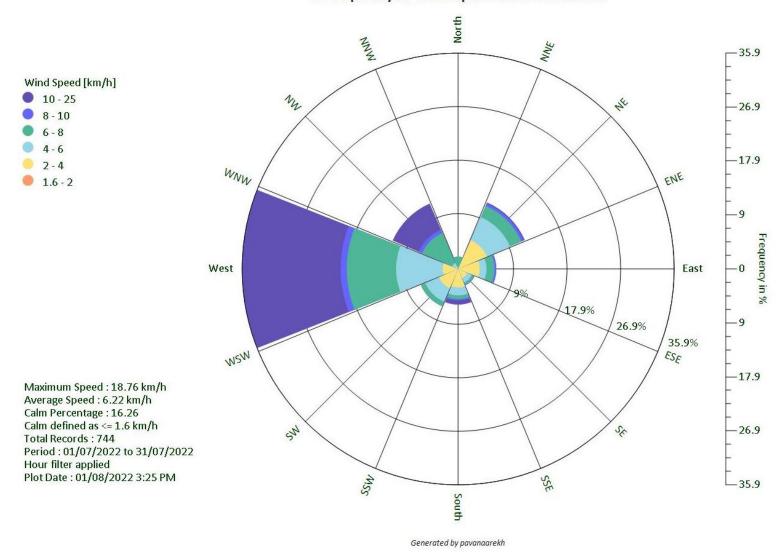
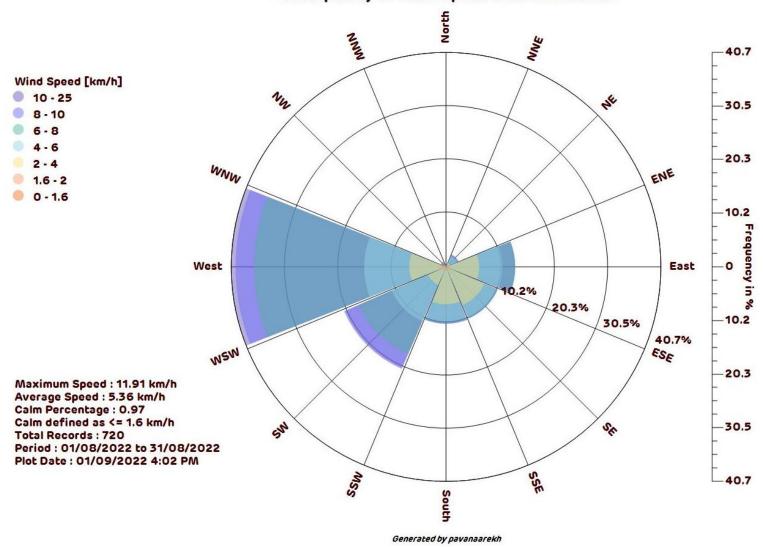


TABLE-5: AVERAGE DAILY METEOROLOGICAL DATA OF AUG-2022

Data	Temper	ature (°C)		umidity (%)	Rain Fall
Date	Min	Max	Min	Max	(mm)
1-Aug-2022	27.21	31.50	94.90	100.00	17.1
2-Aug-2022	25.72	28.40	98.60	100.00	63.9
3-Aug-2022	24.66	27.40	98.80	100.00	0.9
4-Aug-2022	25.44	29.30	97.60	100.00	98.4
5-Aug-2022	24.29	27.80	99.50	100.00	110.4
6-Aug-2022	23.26	24.70	100.00	100.00	67.4
7-Aug-2022	23.46	25.20	100.00	100.00	52.9
8-Aug-2022	24.01	25.20	99.80	100.00	25.7
9-Aug-2022	25.47	26.03	92.00	94.00	7.4
10-Aug-2022	26.70	29.76	86.30	93.70	16.8
11-Aug-2022	26.25	28.12	89.40	96.70	36.5
12-Aug-2022	26.40	29.89	87.70	96.40	8.7
13-Aug-2022	26.25	30.04	89.60	97.80	6.1
14-Aug-2022	26.81	30.48	85.50	96.60	5.3
15-Aug-2022	25.92	29.26	89.20	96.70	1.2
16-Aug-2022	26.72	29.87	87.30	98.00	0
17-Aug-2022	26.57	30.69	84.90	97.20	3.7
18-Aug-2022	26.82	31.05	84.00	96.80	19.5
19-Aug-2022	26.36	29.85	87.70	97.20	12.1
20-Aug-2022	26.54	29.80	87.60	97.50	45.7
21-Aug-2022	26.74	30.19	87.30	97.80	26.8
22-Aug-2022	26.00	29.91	91.90	97.90	38.1
23-Aug-2022	26.18	29.80	90.60	97.80	87.8
24-Aug-2022	25.63	29.59	93.00	98.10	18
25-Aug-2022	24.39	27.83	95.70	98.20	0
26-Aug-2022	26.24	30.49	88.20	98.10	0.9
27-Aug-2022	26.60	29.20	88.90	97.20	39.1
28-Aug-2022	26.32	29.78	90.30	97.40	2.3
29-Aug-2022	26.06	29.92	89.90	97.80	2.1
30-Aug-2022	26.69	30.01	89.90	97.00	8.4
31-Aug-2022	26.84	30.90	86.90	97.00	3.2
Min	23.26	24.70	84.00	93.70	
Max	27.21	31.50	100.00	100.00	826.40
Avg	25.89	29.10	91.39	97.84	

Wind Rose Month of August - 2022 (01:00 - 24:00) % Frequency of Wind Speed from a Direction



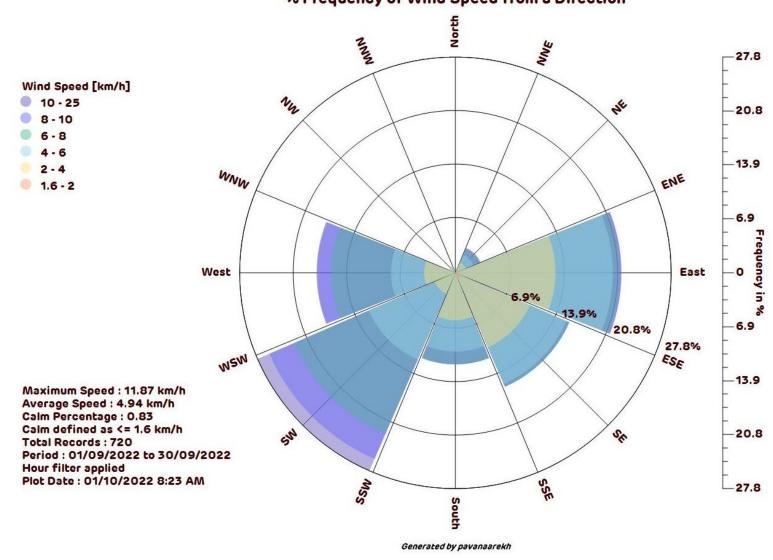


TABLE-6: AVERAGE DAILY METEOROLOGICAL DATA OF SEP-2022

Data	Temper	ature (°C)	Max Min Ma		Rain Fall
Date -	Min	Max	Min	Max	(mm)
1-Sep-2022	23.48	29.62	67.53	97.60	1.60
2-Sep-2022	24.31	29.68	69.00	97.60	0.00
3-Sep-2022	24.04	29.57	67.04	96.50	0.00
4-Sep-2022	24.55	30.60	65.31	97.00	0.00
5-Sep-2022	25.99	30.16	70.01	97.40	0.70
6-Sep-2022	24.82	29.05	72.98	98.20	123.10
7-Sep-2022	24.00	26.88	83.80	98.60	57.90
8-Sep-2022	23.94	26.75	84.90	98.60	33.70
9-Sep-2022	24.06	28.32	75.90	98.60	23.90
10-Sep-2022	23.97	28.21	77.94	98.40	23.40
11-Sep-2022	24.52	28.55	78.47	97.70	11.20
12-Sep-2022	25.31	28.78	76.56	96.50	19.40
13-Sep-2022	22.83	28.80	76.02	97.70	9.40
14-Sep-2022	24.80	29.25	70.22	97.70	13.10
15-Sep-2022	23.88	28.36	76.34	97.70	19.00
16-Sep-2022	23.93	29.08	72.58	97.40	22.50
17-Sep-2022	24.14	29.73	69.80	98.40	0.70
18-Sep-2022	24.53	29.85	65.26	98.20	2.10
19-Sep-2022	24.27	29.49	63.76	97.90	0.90
20-Sep-2022	24.08	29.72	60.99	96.90	3.00
21-Sep-2022	23.47	29.77	63.21	97.10	0.90
22-Sep-2022	23.19	30.11	55.15	97.30	0.00
23-Sep-2022	23.48	30.36	57.51	97.00	8.40
24-Sep-2022	23.07	30.05	64.70	97.00	11.70
25-Sep-2022	23.75	30.31	67.03	97.60	0.00
26-Sep-2022	23.80	30.42	63.98	95.10	0.00
27-Sep-2022	24.99	30.19	66.50	96.30	0.00
28-Sep-2022	24.30	30.03	66.78	95.90	0.00
29-Sep-2022	24.04	30.29	65.03	96.80	20.60
30-Sep-2022	23.96	27.63	83.20	98.20	9.10
Min	22.83	26.75	55.15	95.10	
Max	25.99	30.60	84.90	98.60	416.30
Avg	24.12	29.32	69.92	97.43	

Wind Rose 01/09/2022 to 30/09/2022 (01:00 - 24:00) % Frequency of Wind Speed from a Direction

STACK MONITORING

Annexure-II

Stack Monitoring has been carried out by NABL accredited laboratory in the frequency of once in fifteen days per month. The monitoring reports for both the units during the period of April 2022 to September 2022 are as Table-1 below.

Table-1: Stack monitoring report for the period of April 2022 to September 2022

Stack	Parameter	Аргі	il-22	May-	22	June-22	July-22	Aug-22	Sep-22	Avesage
Stack	s	06.04.2022	28.04.2022	05.05.2022						Average
	Particulate Matter (mg/Nm³)		27.30	26.50						26.90
	SO2 (mg/Nm³)		751.00	737.60						744.30
Boiler-I	NOx (mg/Nm³)	SD 26.40	144.60	142.80	SD	SD	SD	SD	SD	143.70
Boller	Mercury mg/Nm³)		BLQ	BLQ						BLQ
	Flue Gas Velocity (m/s)		23.30	23.00						23.15
	Flow Rate (Nm³/hr)		2194021.16	2056931.00						2125476.08
	Particulate Matter (mg/Nm³)	26.40 738.20	26.90	25.90						26.40
	SO2 (mg/Nm³)		755.30	722.00			SD			738.50
Boiler-	NOx (mg/Nm³)	140.10	143.30	140.70	SD	SD		SD	SD	141.37
II	Mercury (mg/Nm³)	140.10 BLQ 24.90	BLQ	BLQ				SD SD		BLQ
	Flue Gas Velocity (m/s)		22.30	22.40						23.20
	Flow Rate (Nm³/hr)	2362765.95	2120288.05	2107857.60						2196970.53

Note: SD = Shut down, BLQ = Below Limit of Quantification

Coal Handling Plant - Wind Shield

Annexure - III

Six Monthly Environmental Compliance Report for the Period from April 2022 to Sep 2022 for UPCL

Annexure-IV

Fly Ash Generation & Utilization for the period of April 2022 to September 2022

		Ash Generation	on		Ash Utilization	
Month	Fly Ash (MT)	Bottom Ash (MT)	Total Ash Generation (MT)	Fly Ash (MT)	Bottom Ash + Pond Ash (MT)	Total Ash Utilization (MT)
April 2022	10379	1713	12092	7301	2409	9710
May 2022	5657	463	6120	5441	541	5982
June 2022	0	0	0			210
July 2022	0	0	0	0	0	0
Aug 2022	0	0	0	44	0	44
Sep 2022	0	0	0	0	249	249
Total	16,036	2,176	18,212	12,936	3,259	16,195

TEST WELLS MONITORING AROUND ASH POND

Annexure-V

Ash pond is lined with LDPE film of 500 µ thickness as an impervious layer to avoid ground water leachate contamination.

Water samples from Test wells (4 No's) around the ash pond area are analyzed for Ground water monitoring.

Monitoring reports for the period of April 2022 to September 2022 is presented in the Table-1 to Table-4 as shown in below:

The nomenclature for test wells are as below:

- 1. Test well constructed on North Side of the Ash Pond
- 2. Test well constructed on South side of the Ash Pond
- 3. Test well constructed on East Side of the Ash Pond
- 4. Test well constructed on West Side of the Ash Pond

Table-1: Results of Water Sample from Test Well constructed in North side of Ash Pond sampling period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	April 2022	May 2022	June 2022	July 2022	Aug 2022	Sep 2022	Min	Max	Average
1	Color	Hazen	5	15	1.4	2.0	1.0	BLQ	BLQ	BLQ	1.0	2.0	1.47
2	рН	-	6.5 - 8.5	No Relaxation	6.94	6.91	6.89	6.71	6.97	6.98	6.71	6.98	6.90
3	Odour	-	Agreeable	Agreeable	А	Α	Α	Α	Α	А	А	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.40	1.80	2.00	1.40	1.50	1.40	1.40	2.00	1.58
6	TDS	mg/l	500	2000	73.00	75.00	84.00	65.00	68.20	78.00	65.00	84.00	73.87
7	Alkalinity as CaCO ₃	mg/l	200	600	48.00	36.00	44.00	38.00	40.20	42.00	36.00	48.00	41.37
8	Total Hardness	mg/l	200	600	28.00	16.00	26.00	36.00	39.50	40.00	16.00	40.00	30.92
9	Calcium as Ca	mg/l	75	200	5.61	4.40	7.21	7.29	8.23	8.01	4.40	8.23	6.79
10	Magnesium as Mg	mg/l	30	100	3.40	1.20	1.94	4.37	5.36	4.86	1.20	5.36	3.52
11	Iron as Fe	mg/l	0.3	No relaxation	0.27	0.27	0.26	0.21	0.22	0.25	0.21	0.27	0.25
12	Sulphate as SO ₄	mg/l	200	400	6.42	6.45	8.25	3.66	3.95	4.12	3.66	8.25	5.48
13	Chloride as Cl	mg/l	250	1000	11.80	15.70	21.77	15.83	16.24	19.74	11.80	21.77	16.85
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	0.35	0.31	0.25	0.18	0.18	0.14	0.14	0.35	0.23
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	2.51	BLQ	BLQ	BLQ	BLQ	2.51	2.51	2.51
29	E.Coli	MPN/ 100 ml	Should Not t	oe Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-2: Results of Water Sample from Test Well constructed in South side of Ash Pond sampling period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	April 2022	May 2022	June 2022	July 2022	Aug 2022	Sep 2022	Min	Max	Average
1	Color	Hazen	5	15	2.00	BLQ	2.00	BLQ	BLQ	BLQ	2.00	2.00	2.00
2	ρΗ	-	6.5 - 8.5	No Relaxation	6.72	6.89	6.97	6.86	6.96	6.85	6.72	6.97	6.88
3	Odour	-	Agreeable	Agreeable	Α	А	Α	А	А	Α	А	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	А	Α	А	А	Α	А	Α	Α
5	Turbidity	NTU	1	5	1.70	1.90	2.00	1.30	1.40	1.30	1.30	2.00	1.60
6	TDS	mg/l	500	2000	116.00	105.00	96.00	86.00	90.00	84.00	84.00	116.00	96.17
7	Alkalinity as CaCO ₃	mg/l	200	600	74.00	53.00	48.50	32.00	35.20	58.00	32.00	74.00	50.12
8	Total Hardness	mg/l	200	600	96.00	84.00	94.00	58.00	55.30	60.00	55.30	96.00	74.55
9	Calcium as Ca	mg/l	75	200	23.25	23.20	23.24	15.23	16.30	15.23	15.23	23.25	19.41
10	Magnesium as Mg	mg/l	30	100	9.23	6.32	8.74	4.86	5.32	5.35	4.86	9.23	6.64
11	Iron as Fe	mg/l	0.3	No relaxation	0.24	0.28	0.25	0.25	0.25	0.24	0.24	0.28	0.25
12	Sulphate as SO ₄	mg/l	200	400	2.71	1.73	5.86	18.06	9.34	8.69	1.73	18.06	7.73
13	Chloride as Cl	mg/l	250	1000	9.89	12.70	12.86	17.81	20.50	10.89	9.89	20.50	14.11
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	0.52	0.47	0.31	0.29	0.30	0.30	0.29	0.52	0.37
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-3: Results of Water Sample from Test Well constructed in East side of Ash Pond sampling period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	April 2022	May 2022	June 2022	July 2022	Aug 2022	Sep 2022	Min	Max	Average
1	Color	Hazen	5	15	BLQ	2.00	2.00	BLQ	BLQ	BLQ	2.00	2.00	2.00
2	рН	-	6.5 - 8.5	No Relaxation	6.84	6.95	6.86	6.76	6.98	6.93	6.76	6.98	6.89
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.40	1.30	1.70	1.60	1.50	1.10	1.10	1.70	1.43
6	TDS	mg/l	500	2000	114.00	80.00	109.00	87.00	69.30	61.00	61.00	114.00	86.72
7	Alkalinity as CaCO ₃	mg/l	200	600	25.00	34.00	15.00	10.00	11.30	28.00	10.00	34.00	20.55
8	Total Hardness	mg/l	200	600	75.00	14.00	85.00	48.00	23.70	24.00	14.00	85.00	44.95
9	Calcium as Ca	mg/l	75	200	32.06	3.60	20.04	30.46	28.50	4.00	3.60	32.06	19.78
10	Magnesium as Mg	mg/l	30	100	10.93	1.20	18.22	12.63	11.65	3.40	1.20	18.22	9.67
11	Iron as Fe	mg/l	0.3	No relaxation	0.17	0.27	0.26	0.21	0.23	0.24	0.17	0.27	0.23
12	Sulphate as SO ₄	mg/l	200	400	9.45	3.47	5.43	3.19	6.25	5.02	3.19	9.45	5.47
13	Chloride as Cl	mg/l	250	1000	27.21	17.60	37.11	28.70	26.80	9.89	9.89	37.11	24.55
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	0.72	0.69	0.54	0.43	0.42	0.40	0.40	0.72	0.53
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-4: Results of Water Sample from Test Well constructed in West side of Ash Pond sampling period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	April 2022	May 2022	June 2022	July 2022	Aug 2022	Sep 2022	Min	Max	Average
1	Color	Hazen	5	15	1.60	1.20	1.14	BLQ	BLQ	BLQ	1.14	1.6	1.31
2	рН	-	6.5 - 8.5	No Relaxation	6.91	6.96	6.96	6.89	6.97	6.96	6.89	6.97	6.94
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.10	1.60	1.60	1.90	1.60	1.20	1.10	1.90	1.50
6	TDS	mg/l	500	2000	71.00	102.00	100.50	93.00	96.30	85.00	71.00	102.00	91.30
7	Alkalinity as CaCO ₃	mg/l	200	600	46.00	54.00	62.00	38.00	41.20	58.00	38.00	62.00	49.87
8	Total Hardness	mg/l	200	600	36.00	32.00	33.00	58.00	62.50	54.00	32.00	62.50	45.92
9	Calcium as Ca	mg/l	75	200	7.21	8.82	8.01	15.23	17.52	15.23	7.21	17.52	12.00
10	Magnesium as Mg	mg/l	30	100	4.37	2.43	3.40	4.86	4.95	4.86	2.43	4.95	4.15
11	Iron as Fe	mg/l	0.3	No relaxation	0.26	0.27	0.23	0.27	0.25	0.24	0.23	0.27	0.25
12	Sulphate as SO ₄	mg/l	200	400	4.41	6.95	8.80	17.52	7.50	8.43	4.41	17.52	8.94
13	Chloride as Cl	mg/l	250	1000	11.87	16.60	10.88	17.81	19.54	8.91	8.91	19.54	14.27
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

AMBIENT AIR QUALITY MONITORING

Annexure-VI

The Ambient Air Quality samples were collected by representative from NABL accredited laboratory.

Method of Analysis

Pollutants	Method of Measurement
Particulate Matter (PM_{10}), $\mu g/m^3$	Gravimetric
Particulate Matter (PM _{2.5}), µg/m ³	Gravimetric
Sulphur dioxide (SO ₂), μg/m ³	Improved west and Geake method
Nitrogen Dioxide (NO ₂), μg/m ³	Modified Jacob & Hochheiser
Carbon Monoxide (CO), mg/m³	Non Dispersive Infra-Red

AMBIENT AIR QUALITY MONITORING LOCATIONS

Ambient Air Quality Monitoring (PM_{10} , $PM_{2.5}$, SO_2 , NO_X & CO) was done twice a week at following locations:

- 1. Near DM Plant (Inside Plant)
- 2. Near Admar Village
- 3. Near Inna Village
- 4. Near Hejmady Village
- 5. Near Baikampady Village
- 6. Near Paradka Village
- 7. Near Mudarangadi Village
- 8. Near Adani Pump House
- 9. Near Ash Pond

The Monitoring values for the period from April 2022 to September 2022 in the above said locations are presented in Table-1 to Table-9 as below.

Table-1: Ambient Air Quality Monitoring in Plant Site (Near DM Plant) for the period of April 2022 to Sep 2022

Lacabias	00b	PM1	0 (100 µg/	m³)	PM2	2.5 (60 µg.	/m³)	SC) ₂ (80 µg/r	n³)	NO	x (80 µg/	m³)	СО	(2.0 mg/	/m³)
Location	Month	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
_	APR 2022	45.10	46.40	45.60	28.10	29.90	29.20	10.40	10.90	10.70	11.40	11.90	11.70	BLQ	BLQ	BLQ
() [) [)	MAY 2022	43.90	47.20	45.50	28.10	30.30	29.10	10.10	11.20	10.70	11.20	12.20	11.70	BLQ	BLQ	BLQ
ant	JUNE 2022	35.20	40.20	37.60	23.30	25.40	24.40	8.90	10.70	9.80	10.30	11.80	10.90	BLQ	BLQ	BLQ
ja s	JULY 2022	32.40	36.70	33.90	21.50	23.40	22.50	9.00	9.90	9.50	10.10	10.90	10.50	BLQ	BLQ	BLQ
٥	AUG 2022	36.40	38.40	37.40	20.40	22.50	21.70	9.30	9.90	9.60	10.50	12.10	11.30	BLQ	BLQ	BLQ
lear	SEP 2022	39.50	41.80	40.20	21.90	24.60	23.30	9.60	10.20	9.90	10.90	12.40	11.60	BLQ	BLQ	BLQ
	AVG	38.75	41.78	40.03	23.88	26.02	25.03	9.55	10.47	10.03	10.73	11.88	11.28	BLQ	BLQ	BLQ

Table-2: Ambient Air Quality Monitoring at Admar village for the period of April 2022 to Sep 2022

Lasabiaa	00 t- b	PM1	0 (100 µg/ı	m³)	PM	2.5 (60 µg,	/m³)	SO	₂ (80 µg/r	n³)	NO	x (80 µg/	m³)	СО	(2.0 mg/	m³)
Location	Month	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
o o	APR 2022	46.90	48.50	47.70	28.60	32.30	30.90	9.10	10.30	9.80	10.50	11.90	11.40	BLQ	BLQ	BLQ
lage	MAY 2022	46.90	49.60	48.20	29.70	31.90	30.90	9.30	10.50	9.80	10.20	12.20	11.40	BLQ	BLQ	BLQ
=	JUNE 2022	32.30	39.80	35.70	24.30	26.80	25.50	8.60	9.90	9.30	10.20	11.60	11.00	BLQ	BLQ	BLQ
dmar (A2)	JULY 2022	32.20	36.20	34.40	23.30	24.90	24.00	8.50	9.60	9.08	10.30	11.20	10.80	BLQ	BLQ	BLQ
Ā	AUG 2022	40.30	41.80	41.00	23.30	24.70	24.10	8.80	9.50	9.20	10.10	11.30	10.80	BLQ	BLQ	BLQ
Near	SEP 2022	42.30	43.80	43.10	24.90	26.20	25.60	9.20	9.80	9.50	10.50	11.50	11.10	BLQ	BLQ	BLQ
_ <	AVG	40.15	43.28	41.68	25.68	27.80	26.83	8.92	9.93	9.45	10.30	11.62	11.08	BLQ	BLQ	BLQ

Table-3: Ambient Air Quality Monitoring at Inna village for the period of April 2022 to Sep 2022

Lasabias	Maakh	PM10	0 (100 µg/	m³)	PM	2.5 (60 µg	/m³)	sc) ₂ (80 µg/r	n³)	NO	x (80 µg/ı	m³)	СО	(2.0 mg/	′m³)
Location	Month	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
3	APR 2022	41.80	44.10	43.00	27.90	29.70	28.80	10.70	12.20	11.30	11.60	13.20	12.30	BLQ	BLQ	BLQ
₹ .	MAY 2022	42.10	44.90	43.20	26.20	30.20	28.50	10.90	12.60	11.70	11.20	12.90	12.20	BLQ	BLQ	BLQ
lage	JUNE 2022	35.30	39.20	37.20	24.30	25.90	24.90	10.10	11.30	10.70	10.20	12.10	11.30	BLQ	BLQ	BLQ
<u>=</u>	JULY 2022	33.80	37.20	35.50	22.10	23.80	23.00	9.80	10.90	10.45	10.40	11.70	11.20	BLQ	BLQ	BLQ
l na	AUG 2022	36.20	37.60	37.00	22.10	23.90	23.10	10.20	11.30	10.70	10.70	12.00	11.30	BLQ	BLQ	BLQ
- Jea	SEP 2022	38.40	39.80	39.10	23.70	25.20	24.50	10.50	11.70	11.10	11.20	12.40	11.70	BLQ	BLQ	BLQ
ž	AVG	37.93	40.47	39.17	24.38	26.45	25.47	10.37	11.67	10.99	10.88	12.38	11.67	BLQ	BLQ	BLQ

Table-4: Ambient Air Quality Monitoring at Hejmady Village for the period of April 2022 to Sep 2022

Lassias	Maabh	PM10) (100 µg/	m³)	PM	2.5 (60 µg	/m³)	sc) ₂ (80 µg/r	n³)	NO	x (80 µg/ı	m³)	СО	(2.0 mg/	m³)
Location	Month	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
96	APR 2022	45.70	48.70	47.20	27.40	29.80	28.60	10.20	11.70	10.80	11.90	14.20	13.40	BLQ	BLQ	BLQ
) e	MAY 2022	45.10	48.90	47.30	26.70	29.80	28.30	10.10	11.20	10.80	11.40	14.40	13.30	BLQ	BLQ	BLQ
> }	JUNE 2022	34.20	38.70	36.50	23.20	24.90	23.90	9.50	10.60	10.10	10.60	13.20	11.90	BLQ	BLQ	BLQ
M 96	JULY 2022	34.30	36.20	35.10	21.20	23.50	22.60	9.50	10.20	9.93	11.20	12.90	12.00	BLQ	BLQ	BLQ
leja (AUG 2022	36.20	37.80	37.10	22.50	24.90	23.80	10.30	11.30	10.70	11.80	13.50	12.70	BLQ	BLQ	BLQ
ar F	SEP 2022	37.60	38.40	38.10	23.90	25.80	24.90	10.60	11.20	10.90	12.20	13.90	13.30	BLQ	BLQ	BLQ
Ž	AVG	38.85	41.45	40.22	24.15	26.45	25.35	10.03	11.03	10.54	11.52	13.68	12.77	BLQ	BLQ	BLQ

Table-5: Ambient Air Quality Monitoring at Baikampady Village for the period of April 2022 to Sep 2022

l a sabia a	00 a a b b	PM1	0 (100 µg	/m³)	PM	2.5 (60 µg,	/m³)	SO ₂	(80 µg/n	n³)	NC	x (80 µg/r	n³)	СО	(2.0 mg/	′m³)
Location	Month	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
	APR 2022	54.80	56.50	55.40	30.90	32.90	32.00	17.20	18.70	18.10	22.90	25.10	23.80	BLQ	BLQ	BLQ
þ	MAY 2022	53.60	57.80	55.60	30.20	32.80	31.80	17.10	18.80	18.00	22.40	25.30	23.70	BLQ	BLQ	BLQ
mpa A5)	JUNE 2022	41.90	47.60	44.90	23.80	28.70	26.50	14.30	16.50	15.40	20.10	22.80	21.10	BLQ	BLQ	BLQ
aika ge (JULY 2022	42.90	44.80	43.80	24.20	26.30	25.40	14.20	16.10	15.12	20.00	22.10	21.00	BLQ	BLQ	BLQ
ar Ba	AUG 2022	47.40	48.90	48.10	24.80	26.90	26.20	14.70	15.80	15.30	19.90	20.90	20.40	BLQ	BLQ	BLQ
Ne Z	SEP 2022	48.40	49.70	49.10	25.90	27.80	27.10	15.10	16.10	15.60	20.50	21.30	20.90	BLQ	BLQ	BLQ
	AVG	48.17	50.88	49.48	26.63	29.23	28.17	15.43	17.00	16.25	20.97	22.92	21.82	BLQ	BLQ	BLQ

Table-6: Ambient Air Quality Monitoring at Paradka Village for the period of April 2022 to Sep 2022

Lacabias	Maakh	PM1	0 (100 µg/	m³)	PM	2.5 (60 µg.	/m³)	sc) ₂ (80 µg/r	n³)	NO	x (80 µg/	m³)	СО	(2.0 mg/	/m³)
Location	Month	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
90	APR 2022	34.50	36.40	35.40	22.90	25.60	24.50	10.70	12.10	11.30	11.70	12.80	12.20	BLQ	BLQ	BLQ
llag	MAY 2022	33.50	37.80	35.60	23.60	25.30	24.40	10.50	11.80	11.20	11.50	12.80	12.10	BLQ	BLQ	BLQ
e Z	JUNE 2022	30.20	32.80	31.10	19.20	21.90	20.80	10.10	10.90	10.50	11.10	12.30	11.40	BLQ	BLQ	BLQ
adka (A6)	JULY 2022	28.40	30.90	29.60	17.50	20.40	18.70	9.70	10.50	10.05	11.00	11.60	11.40	BLQ	BLQ	BLQ
Par (AUG 2022	30.90	32.60	31.80	20.50	21.70	21.20	9.80	10.70	10.30	11.40	12.20	11.80	BLQ	BLQ	BLQ
ear	SEP 2022	33.60	34.70	34.20	21.30	22.90	22.50	10.20	11.00	10.60	11.90	12.60	12.30	BLQ	BLQ	BLQ
Ž	AVG	31.85	34.20	32.95	20.83	22.97	22.02	10.17	11.17	10.66	11.43	12.38	11.87	BLQ	BLQ	BLQ

Table-7: Ambient Air Quality Monitoring at Mudarangadi Village for the period of April 2022 to Sep 2022

Lassias	00 a a b b	PM1	0 (100 μς	g/m³)	PM:	2.5 (60 µg,	/m³)	sc) ₂ (80 µg/n	n³)	NO	k (80 µg/ı	m³)	СО	(2.0 mg/	/m³)
Location	Month	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
	APR 2022	42.50	43.90	43.30	20.60	23.10	21.90	10.80	12.20	11.40	12.60	13.50	13.00	BLQ	BLQ	BLQ
ıgadi)	MAY 2022	42.10	44.80	43.40	21.30	22.90	22.00	11.10	11.90	11.40	12.20	13.80	13.00	BLQ	BLQ	BLQ
rang (A7)	JUNE 2022	37.50	39.90	38.90	17.30	19.70	18.10	10.10	10.90	10.40	11.20	12.80	11.90	BLQ	BLQ	BLQ
ndar ge (JULY 2022	38.10	39.90	39.10	17.30	19.70	18.30	10.10	10.90	10.38	11.20	12.80	12.00	BLQ	BLQ	BLQ
r Mt	AUG 2022	41.10	41.80	41.40	19.50	20.60	20.10	10.10	11.10	10.80	11.60	13.10	12.30	BLQ	BLQ	BLQ
Nea	SEP 2022	43.20	43.90	43.60	20.50	21.90	21.10	10.50	11.40	11.10	11.90	13.50	12.80	BLQ	BLQ	BLQ
	AVG	40.75	42.37	41.62	19.42	21.32	20.25	10.45	11.40	10.91	11.78	13.25	12.50	BLQ	BLQ	BLQ

Table-8: Ambient Air Quality Monitoring at Adani Pump House for the period of April 2022 to Sep 2022

1	00 15	PM1	Ο (100 μg	/m³)	PM2	2.5 (60 µg	/m³)	so	₂ (80 µg/ı	m³)	NO	x (80 µg/	m³)	СО	(2.0 mg/	/m³)
Location	Month	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
	APR 2022	38.90	41.10	40.10	28.40	30.40	29.60	10.80	12.10	11.40	12.60	13.90	13.30	BLQ	BLQ	BLQ
g E	MAY 2022	38.20	41.60	40.20	27.60	31.20	29.50	10.50	11.90	11.30	12.10	13.70	13.20	BLQ	BLQ	BLQ
. Pu	JUNE 2022	33.20	36.60	35.00	22.10	26.90	24.90	10.10	10.90	10.50	11.10	12.70	12.20	BLQ	BLQ	BLQ
dani se (/	JULY 2022	33.40	35.30	34.30	23.90	24.90	24.40	9.80	10.50	10.21	10.90	12.40	12.00	BLQ	BLQ	BLQ
l Ac	AUG 2022	35.70	36.90	36.40	19.80	21.60	20.90	10.10	10.80	10.50	12.10	12.90	12.50	BLQ	BLQ	BLQ
Ne.	SEP 2022	37.60	38.90	38.50	21.60	22.90	22.50	10.50	11.20	10.80	12.40	13.20	12.80	BLQ	BLQ	BLQ
	AVG	36.17	38.40	37.42	23.90	26.32	25.30	10.30	11.23	10.79	11.87	13.13	12.67	BLQ	BLQ	BLQ

Table-9: Ambient Air Quality Monitoring at Near Ash Pond for the period of April 2022 to Sep 2022

1	88 b	PM1	0 (100 μς	g/m³)	PM2	2.5 (60 µg	/m³)	so) ₂ (80 µg/r	m³)	NO	x (80 µg/	m³)	СО	(2.0 mg/	/m³)
Location	Month	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
	APR 2022	41.70	43.90	43.00	30.60	33.90	32.50	11.60	12.90	12.10	12.60	14.60	13.80	BLQ	BLQ	BLQ
A9)	MAY 2022	41.20	44.90	42.90	31.20	33.80	32.30	11.20	12.90	12.00	12.30	14.70	13.60	BLQ	BLQ	BLQ
) Pc	JUNE 2022	35.10	37.90	36.10	23.30	28.90	25.70	10.20	11.90	11.00	11.30	13.70	12.60	BLQ	BLQ	BLQ
Po	JULY 2022	31.20	33.90	32.50	19.80	24.90	23.00	10.00	11.50	10.60	10.90	13.20	12.20	BLQ	BLQ	BLQ
r Asl	AUG 2022	34.80	36.80	36.10	23.10	26.60	25.40	10.30	11.60	10.90	12.10	13.20	12.50	BLQ	BLQ	BLQ
Nea	SEP 2022	36.30	38.20	37.40	25.20	28.50	27.20	10.60	11.90	11.20	12.40	13.80	12.90	BLQ	BLQ	BLQ
	AVG	36.72	39.27	38.00	25.53	29.43	27.68	10.65	12.12	11.30	11.93	13.87	12.93	BLQ	BLQ	BLQ

GUARD POND EFFLUENT WATER MONITORING

Annexure-VII

All the effluents like condenser cooling water, cooling tower blow down and brine discharge from desalination plant is directly discharged to Guard pond, from where the water is going back to the Sea through Coro-coated MS Pipeline. Final discharge point is through guard pond.

Boiler Blowdown, Coal Settling Pond water and Floor washings are treated in ETP and reused in the areas including greenbelt development/ dust suppression.

Continuous Online Monitoring setup is installed in the Guard pond & ETP discharge line to monitor Temp, pH, DO and TSS.

Ash Pond is covered with green belt and the runoff due to rain is collected in the adjacent pond and used for dust suppression within ash pond area. There is no provision of any outlet from Ash pond, Hence there is no effluent generated from the Ash Pond.

Samples are collected weekly and the monitoring values for the period of April 2022 to Sep 2022 are presented in Table-1 to Table-3 as below:

Table-1: Guard Pond Effluent sample monitoring for the period of April 2022 to Sep 2022

S.No	Parameters	Limits	Units	April-22	May-22	June-22	July-22	Aug-22	Sep-22	Average
1	Temperature	Not more than 5°C higher than intake sea water	°C	29.00	29.15	29.06	28.98	28.90	29.13	29.04
2	pH (at 25 °C)	5.5 – 9.0	-	8.09	8.37	8.41	7.83	8.44	8.56	8.28
3	Colour	-	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4	Odour	-	-	Agreeable						
5	Total Suspended Solids	Not more than 10% higher than intake sea water	mg/l	6.47	4.23	5.38	5.83	3.98	5.15	5.17
6	Oil and Grease	20	mg/l	BLQ						
7	Total Residual Chlorine	1	mg/l	BLQ						
8	BOD	100	mg/l	BLQ						
9	COD	250	mg/l	BLQ						
10	Total Chromium	2	mg/l	BLQ						
11	Hexavalent Chromium	1	mg/l	BLQ						
12	Phenolic Compounds	5	mg/l	BLQ						
13	Mercury as Hg	0.01	mg/l	BLQ						
14	Lead as Pb	2	mg/l	BLQ						
15	Arsenic as As	0.2	mg/l	BLQ						
16	Iron	3	mg/l	0.24	0.29	0.26	0.23	0.24	0.27	0.25

Note: BLQ- Below Level of Quantification

Table-2: Cooling Tower Blow down Effluent monitoring for the period of April 2022 to Sep 2022

S.No	Parameters	Limits	Units	April-22	May-22	June-22	July-22	Aug-22	Sep-22	Average
1	Available Free Chlorine	0.5	mg/l	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	Zinc	1	mg/l	0.34	0.31	0.32	0.34	0.32	0.27	0.32
3	Chromium	0.2	mg/l	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
4	Phosphate	5	mg/l	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ

Note: BLQ- Below Level of Quantification

Table-3: Boiler Blow down Effluent sample monitoring for the period of April 2022 to Sep 2022

S.No	Parameters	Limits	Units	April-22	May-22	June-22	July-22	Aug-22	Sep-22	Average
1	Oil & Grease	20	mg/l	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	Copper	1	mg/l	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
3	Suspended Solids	100	mg/l	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
4	Iron	1	mg/l	0.23	0.24	0.28	0.28	0.24	0.23	0.25

Note: BLQ- Below Level of Quantification

WATER QUALITY MONITORING

Annexure-VIII

Water quality monitoring is carried in the eleven locations which are finalized in consultation with KSPCB and monitoring carried for the period of April 2022 to September 2022 is presented in the Table-1 to Table-11 as below:

Water Quality Sampling Location- Ground/Surface:

S.No	Name of the Location	Code	Source
1	Karnire River near Palimar village	SW-1	River
2	Pangala River Water	SW-2	River
3	Santhoor village	GW-1	Open well
4	Nandikur Village	GW-2	Open well
5	Palimar Village	GW-3	Open well
6	Simanthoor Village	GW-4	Open well
7	Admar Village	GW-5	Open well
8	Bappanadu Village	GW-6	Open well
9	Hejamady Village	GW-7	Open well
10	North Side of the UPCL Plant	GW-8	Open well
11	South Side of the UPCL plant	GW-9	Open well

Water Sample Analysis Parameters:

S.No	Parameters	S.No	Parameters
1	Color	16	Fluoride
2	рН	17	Phenolic Compounds
3	Odour	18	manganese
4	Taste	19	zinc
5	Turbidity	20	Arsenic
6	TDs	21	cyanide
7	Alkalinity	22	cadmium
8	Total Hardness as CaCO ₃	23	chromium
9	Calcium as Ca	24	Aluminium
10	Magnesium	25	Selenium
11	Iron	26	Lead
12	Sulphate as SO ₄	27	Mercury
13	Chloride	28	Nitrate nitrogen
14	Boron	29	Ecoli
15	Residual Free Chlorine		

The Water Quality test results for the period of April 2022 to September 2022 is presented in the Table-1 to Table-11 as below.

Table-1: Water Quality Monitoring carried out in Karnire River (Back Water) (SW-1) for the period of April 2022 to September 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	7.12	6.86	6.78	6.95	6.80	6.77	6.77	7.12	6.88
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	0.70	1.90	2.80	2.90	2.60	2.10	0.70	2.90	2.17
6	TDS	mg/l	500	2000	160.00	166.00	152.00	98.00	120.00	34.00	34.00	166.00	121.67
7	Alkalinity as CaCO ₃	mg/l	200	600	120.00	110.00	70.00	10.00	15.20	8.00	8.00	120.00	55.53
8	Total Hardness	mg/l	200	600	60.35	66.52	170.00	38.00	42.00	9.00	9.00	170.00	64.31
9	Calcium as Ca	mg/l	75	200	13.16	13.25	32.06	6.41	7.62	1.60	1.60	32.06	12.35
10	Magnesium as Mg	mg/l	30	100	10.41	10.20	21.87	5.34	5.34	1.20	1.20	21.87	9.06
11	Iron as Fe	mg/l	0.3	No relaxation	0.11	0.08	0.20	0.24	0.26	0.18	0.08	0.26	0.18
12	Sulphate as SO ₄	mg/l	200	400	26.34	16.34	67.09	9.83	11.52	6.95	6.95	67.09	23.01
13	Chloride as Cl	mg/l	250	1000	34.52	36.30	35.90	42.55	44.65	9.89	9.89	44.65	33.97
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	0.98	0.85	0.41	BLQ	BLQ	BLQ	0.41	0.98	0.75
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	1.83	2.01	1.22	0.97	0.97	0.81	0.81	2.01	1.30
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	BLQ	BLQ	1.07	1.12	BLQ	1.07	1.12	1.10
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-2: Water Quality Monitoring carried out in Pangala River (SW-2) for the period of April 2022 to September 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	6.84	7.24	6.75	6.85	6.79	6.72	6.72	7.24	6.87
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	3.87	1.70	1.30	2.90	2.20	1.90	1.30	3.87	2.31
6	TDS	mg/l	500	2000	153.00	170.00	140.00	98.00	64.00	24.00	24.00	170.00	108.17
7	Alkalinity as CaCO₃	mg/l	200	600	120.00	100.00	20.00	10.00	13.40	12.00	10.00	120.00	45.90
8	Total Hardness	mg/l	200	600	70.32	70.60	85.00	38.00	19.50	10.00	10.00	85.00	48.90
9	Calcium as Ca	mg/l	75	200	13.85	17.26	20.04	6.41	4.50	2.00	2.00	20.04	10.68
10	Magnesium as Mg	mg/l	30	100	11.82	9.60	8.50	5.34	2.40	1.20	1.20	11.82	6.48
11	Iron as Fe	mg/l	0.3	No relaxation	0.22	0.26	0.22	0.24	0.25	BLQ	0.22	0.26	0.24
12	Sulphate as SO ₄	mg/l	200	400	23.41	22.15	25.85	9.83	4.86	1.95	1.95	25.85	14.68
13	Chloride as Cl	mg/l	250	1000	36.12	37.30	26.19	42.55	14.58	7.91	7.91	42.55	27.44
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	0.75	0.87	0.25	BLQ	BLQ	BLQ	0.25	0.87	0.62
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	0.33	0.24	0.14	0.97	0.25	0.11	0.11	0.97	0.34
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	1.37	1.37	1.07	BLQ	BLQ	1.07	1.37	1.27
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Six Monthly Environmental Compliance Report for the period from April 2022 to Sep 2022 for UPCL

Table-3: Water Quality Monitoring Carried out at Open well in Santhoor Village (GW-1) for the period of April 2022 to September 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	6.82	6.72	6.77	6.94	6.97	6.95	6.72	6.97	6.86
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste		Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	BLQ	0.7	0.9	BLQ	BLQ	BLQ	0.70	0.90	0.80
6	TDS	mg/l	500	2000	74	70	66	34	34.6	32	32.00	74.00	51.77
7	Alkalinity as CaCO ₃	mg/l	200	600	20	24	20	14	14.8	14	14.00	24.00	17.80
8	Total Hardness	mg/l	200	600	23	16	28	12	12.5	13	12.00	28.00	17.42
9	Calcium as Ca	mg/l	75	200	6.41	4	3.88	2.4	3.1	3.2	2.40	6.41	3.83
10	Magnesium as Mg	mg/l	30	100	1.7	1.46	2.91	1.46	2.24	1.21	1.21	2.91	1.83
11	Iron as Fe	mg/l	0.3	No relaxation	BLQ	0.05	0.039	BLQ	BLQ	BLQ	0.04	0.05	0.04
12	Sulphate as SO ₄	mg/l	200	400	BLQ	1.3	2.12	3.27	4.32	1.59	1.30	4.32	2.52
13	Chloride as Cl	mg/l	250	1000	17.02	16.6	17.81	9.89	12.6	9.89	9.89	17.81	13.97
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	2.37	2.76	11.09	BLQ	BLQ	BLQ	2.37	11.09	5.41
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-4: Water Quality Monitoring Carried out at Open well in Nandikur Village (GW-2) for the period of April 2022 to September 2022

			Acceptable	Permissible									
S.No	Parameters	Unit	Limits as per IS:10500:2012	Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	6.85	6.78	6.85	6.76	6.96	7.25	6.76	7.25	6.91
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
6	TDS	mg/l	500	2000	85	105	89	83	85.2	97	83.00	105.00	90.70
7	Alkalinity as CaCO₃	mg/l	200	600	62	60	64	64	66.7	70	60.00	70.00	64.45
8	Total Hardness	mg/l	200	600	52	46	54	58	59.5	64	46.00	64.00	55.58
9	Calcium as Ca	mg/l	75	200	11.22	12.02	12.02	14.42	16.3	11.22	11.22	16.30	12.87
10	Magnesium as Mg	mg/l	30	100	5.83	3.88	5.83	5.34	6.84	8.74	3.88	8.74	6.08
11	Iron as Fe	mg/l	0.3	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
12	Sulphate as SO ₄	mg/l	200	400	4.83	3.14	5.88	5.76	6.12	6.34	3.14	6.34	5.35
13	Chloride as Cl	mg/l	250	1000	11.87	28.7	12.86	11.87	13.64	10.89	10.89	28.70	14.97
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Six Monthly Environmental Compliance Report for the period from April 2022 to Sep 2022 for UPCL

Table-5: Water Quality Monitoring carried out at Open well in Palimar Village (GW-3) for the period of April 2022 to September 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	ı	6.5 - 8.5	No Relaxation	6.91	6.90	6.88	6.79	6.97	6.96	6.79	6.97	6.90
3	Odour	İ	Agreeable	Agreeable	Α	А	Α	Α	Α	Α	Α	Α	Α
4	Taste	į	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	BLQ	0.7	1.7	1.2	1.0	1.02	0.7	1.7	1.12
6	TDS	mg/l	500	2000	95	109	130	120	140	126	95.00	140.00	120.00
7	Alkalinity as CaCO₃	mg/l	200	600	50	52	70	52	55.3	64	50.00	70.00	57.22
8	Total Hardness	mg/l	200	600	56	58	90	70	74.2	86	56.00	90.00	72.37
9	Calcium as Ca	mg/l	75	200	15.23	16.03	36.07	16.83	18.61	25.65	15.23	36.07	21.40
10	Magnesium as Mg	mg/l	30	100	4.37	4.37	24.3	6.8	5.24	5.34	4.37	24.30	8.40
11	Iron as Fe	mg/l	0.3	No relaxation	BLQ	0.067	0.16	0.25	0.22	0.15	0.07	0.25	0.17
12	Sulphate as SO ₄	mg/l	200	400	5.94	5.24	26.9	12.5	13.6	2.24	2.24	26.90	11.07
13	Chloride as Cl	mg/l	250	1000	19.79	14.84	23.72	28.7	30.4	24.74	14.84	30.40	23.70
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	1.34	1.43	BLQ	BLQ	BLQ	1.34	1.43	1.39
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-6: Water Quality Monitoring carried out at Open well in Simanthoor Village (GW-4) for the period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	6.84	6.81	6.93	6.86	6.98	6.94	6.81	6.98	6.89
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.40	1.70	1.40	1.20	1.40	BLQ	1.20	1.70	1.42
6	TDS	mg/l	500	2000	96.00	104.00	80.00	84.00	85.50	48.00	48.00	104.00	82.92
7	Alkalinity as CaCO₃	mg/l	200	600	58.30	85.00	76.00	44.00	42.60	30.00	30.00	85.00	55.98
8	Total Hardness	mg/l	200	600	112.00	110.00	86.00	42.00	43.40	49.00	42.00	112.00	73.73
9	Calcium as Ca	mg/l	75	200	9.30	6.07	8.05	8.81	9.54	1.60	1.60	9.54	7.23
10	Magnesium as Mg	mg/l	30	100	3.40	4.86	3.88	4.86	5.32	1.20	1.20	5.32	3.92
11	Iron as Fe	mg/l	0.3	No relaxation	0.26	0.14	0.24	0.26	0.24	BLQ	0.14	0.26	0.23
12	Sulphate as SO ₄	mg/l	200	400	11.50	22.10	23.06	8.02	8.54	2.05	2.05	23.06	12.55
13	Chloride as Cl	mg/l	250	1000	19.50	14.43	16.62	14.84	15.87	19.79	14.43	19.79	16.84
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	1.04	1.45	3.36	1.84	1.84	1.46	1.04	3.36	1.83
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-7: Water Quality Monitoring carried out at Open well in Admar Village (GW-5) for the period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	7.53	6.82	6.88	6.89	6.91	6.89	6.82	7.53	6.99
3	Odour	-	Agreeable	Agreeable	Α	А	А	Α	Α	Α	Α	Α	Α
4	Taste		Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.20	1.80	1.20	1.30	1.50	1.70	1.20	1.80	1.45
6	TDS	mg/l	500	2000	92.00	45.00	40.00	69.00	71.30	26.00	26.00	92.00	57.22
7	Alkalinity as CaCO ₃	mg/l	200	600	68.00	26.00	26.00	44.00	45.60	10.00	10.00	68.00	36.60
8	Total Hardness	mg/l	200	600	52.00	11.00	14.00	40.00	43.40	5.00	5.00	52.00	27.57
9	Calcium as Ca	mg/l	75	200	14.42	2.40	3.20	10.42	12.40	1.20	1.20	14.42	7.34
10	Magnesium as Mg	mg/l	30	100	3.88	1.20	1.45	3.40	3.80	BLQ	1.20	3.88	2.75
11	Iron as Fe	mg/l	0.3	No relaxation	0.27	0.26	0.12	0.15	0.18	0.18	0.12	0.27	0.19
12	Sulphate as SO ₄	mg/l	200	400	9.80	1.09	2.16	8.11	8.34	1.09	1.09	9.80	5.10
13	Chloride as Cl	mg/l	250	1000	10.88	9.89	1.45	9.89	9.65	6.93	1.45	10.88	8.12
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	0.15	0.11	0.41	1.41	0.36	0.28	0.11	1.41	0.45
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-8: Water Quality Monitoring carried out at Open well in Bappanadu Village (GW-6) for the period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	7.04	6.85	6.96	6.81	6.92	7.35	6.81	7.35	6.99
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	А
5	Turbidity	NTU	1	5	0.70	1.20	1.40	1.80	1.60	BLQ	0.70	1.80	1.34
6	TDS	mg/l	500	2000	125.00	120.00	78.00	86.00	89.20	102.00	78.00	125.00	100.03
7	Alkalinity as CaCO₃	mg/l	200	600	73.00	80.00	78.00	46.00	49.40	64.00	46.00	80.00	65.07
8	Total Hardness	mg/l	200	600	115.00	110.00	88.00	52.00	55.40	58.00	52.00	115.00	79.73
9	Calcium as Ca	mg/l	75	200	40.08	34.06	30.46	13.62	15.80	13.62	13.62	40.08	24.61
10	Magnesium as Mg	mg/l	30	100	9.79	6.07	2.91	4.37	5.60	5.83	2.91	9.79	5.76
11	Iron as Fe	mg/l	0.3	No relaxation	0.05	0.15	0.25	0.27	0.23	BLQ	0.05	0.27	0.19
12	Sulphate as SO ₄	mg/l	200	400	8.98	14.35	21.22	8.55	9.21	6.14	6.14	21.22	11.41
13	Chloride as Cl	mg/l	250	1000	29.48	27.38	35.63	12.86	14.75	10.88	10.88	35.63	21.83
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	1.33	3.34	1.98	1.92	BLQ	1.33	3.34	2.14
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Six Monthly Environmental Compliance Report for the period from April 2022 to Sep 2022 for UPCL

Table-9: Water Quality Monitoring carried out at Open well in Hejamady Village (GW-7) for the period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	7.15	6.79	6.95	6.76	6.98	7.03	6.76	7.15	6.94
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	А	Α	Α	Α	Α	А
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.80	1.20	1.30	1.90	1.50	BLQ	1.20	1.90	1.54
6	TDS	mg/l	500	2000	121.00	137.00	82.00	83.00	86.80	47.00	47.00	137.00	92.80
7	Alkalinity as CaCO ₃	mg/l	200	600	105.00	95.00	78.00	44.00	47.00	10.00	10.00	105.00	63.17
8	Total Hardness	mg/l	200	600	96.40	115.00	88.00	48.00	49.50	12.00	12.00	115.00	68.15
9	Calcium as Ca	mg/l	75	200	24.06	28.07	29.65	12.82	13.64	2.40	2.40	29.65	18.44
10	Magnesium as Mg	mg/l	30	100	8.50	4.86	3.40	3.89	4.25	1.46	1.46	8.50	4.39
11	Iron as Fe	mg/l	0.3	No relaxation	0.17	0.18	0.21	0.24	0.23	BLQ	0.17	0.24	0.21
12	Sulphate as SO ₄	mg/l	200	400	7.94	22.05	20.53	8.48	9.33	2.09	2.09	22.05	11.74
13	Chloride as Cl	mg/l	250	1000	34.43	31.86	36.62	12.86	13.42	18.80	12.86	36.62	24.67
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	1.05	3.32	1.86	1.75	1.45	1.05	3.32	1.89
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Six Monthly Environmental Compliance Report for the period from April 2022 to Sep 2022 for UPCL

Table-10: Water Quality Monitoring carried out at North Side of UPCL Plant site (GW-8) for the period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	6.82	6.73	6.81	6.87	6.98	6.89	6.73	6.98	6.85
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	BLQ	BLQ	2.00	1.60	1.40	BLQ	1.40	2.00	1.67
6	TDS	mg/l	500	2000	42.00	52.00	110.00	71.00	74.60	40.00	40.00	110.00	64.93
7	Alkalinity as CaCO₃	mg/l	200	600	19.95	30.00	60.00	54.00	55.20	24.00	19.95	60.00	40.53
8	Total Hardness	mg/l	200	600	18.00	22.00	62.00	50.00	52.50	22.00	18.00	62.00	37.75
9	Calcium as Ca	mg/l	75	200	4.81	6.41	14.42	13.62	14.84	4.80	4.80	14.84	9.82
10	Magnesium as Mg	mg/l	30	100	1.46	1.46	6.31	3.89	4.13	2.43	1.46	6.31	3.28
11	Iron as Fe	mg/l	0.3	No relaxation	BLQ	0.04	0.12	0.18	0.16	BLQ	0.04	0.18	0.13
12	Sulphate as SO ₄	mg/l	200	400	1.24	1.95	20.40	3.83	3.95	1.07	1.07	20.40	5.41
13	Chloride as Cl	mg/l	250	1000	11.15	10.89	15.89	10.89	12.64	9.89	9.89	15.89	11.89
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	BLQ	2.17	1.07	1.05	BLQ	1.05	2.17	1.43
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-11: Water Quality Monitoring carried out at South Side of UPCL plant site (GW-9) for the period of April 2022 to Sep 2022

S.No	Parameters	Unit	Acceptable Limits as per IS:10500:201 2	Permissible Limits as per IS:10500:201 2	Арг-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	ρН	-	6.5 - 8.5	No Relaxation	6.91	6.88	6.82	6.84	6.91	7.28	6.82	7.28	6.94
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	0.80	BLQ	0.70	BLQ	BLQ	BLQ	0.70	0.80	0.75
6	TDS	mg/l	500	2000	98.00	78.00	94.00	89.00	92.00	95.00	78.00	98.00	91.00
7	Alkalinity as CaCO ₃	mg/l	200	600	58.00	54.00	80.00	66.00	68.40	68.00	54.00	80.00	65.73
8	Total Hardness	mg/l	200	600	52.00	46.00	76.00	56.00	58.50	58.00	46.00	76.00	57.75
9	Calcium as Ca	mg/l	75	200	10.80	12.82	26.07	13.62	13.75	14.42	10.80	26.07	15.25
10	Magnesium as Mg	mg/l	30	100	6.07	3.40	19.44	5.34	5.65	5.34	3.40	19.44	7.54
11	Iron as Fe	mg/l	0.3	No relaxation	0.26	BLQ	0.10	BLQ	BLQ	BLQ	0.10	0.26	0.18
12	Sulphate as SO ₄	mg/l	200	400	3.12	3.58	6.03	6.55	6.98	6.56	3.12	6.98	5.47
13	Chloride as Cl	mg/l	250	1000	11.60	11.87	28.20	12.86	13.64	10.88	10.88	28.20	14.84
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Six Monthly Environmental Compliance Report for the period from April 2022 to Sep 2022 for UPCL

Rain Water Harvesting Ponds Annexure - IX

Three Numbers of Rain Water Harvesting Ponds constructed to conserve rain water

Six Monthly Environmental Compliance Report for the Period from April 2022 to September 2022 for UPCL

INDIA NON JUDICIAL Government of Karnataka

e-Stamp

Certificate No.

Certificate Issued Date Account Reference

Unique Coc. Reference

Purchased by

Description of Document

Description

Consideration Price (Rs.)

First Party

Second Party

Stamp Duty Paid By

Stamp Duty Amount(Rs.)

: IN-KA18483757771281M

: 14-Aug-2014 01:01 PM

: NONACC (BK)/ kakscub08/ BANGALORE4/ KA-BA

SUBIN-KAKAKSCUB0890564982776431M

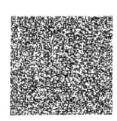
: UDUPI POWER CORPORATION LIMITED

: Article 12 Bond

: AGREEMENT

: 0

(Zero)


: GOVERNMENT OF KARNATAKA DEPARTMENT OF FISHERIES

: UDUPI POWER CORPORATION LIMITED

: UDUPI POWER CORPORATION LIMITED

: 200

(Two Hundred only)

n Cherative Urban Benks Federation Ltd. Authorised Signatory

AMENDMENT TO AGREEMENT

This Amendment to the Agreement dated 9th March 2000 is made on 14th August 2014 by and between:

Government of Karnataka, Department of Fisheries, represented by the Deputy Director of Fisheries, Mangalore, hereinafter referred to as "Grantor" of the one part,

(SECOND COPY OF THE AGREEMENT)

Stati, tony weet.

The submitted of the State Derfaces about be verified of "www.dr.kiebbring.com
activide on the website renders in wall?

The result of the extern malantimars is on the users of the pertilicate.

AND

Udupi Power Corporation Limited (formerly known as Nagarjuna Power Corporation Limited), a Company incorporated under the Companies Act, 1956 and having its Registered Office at 2nd Floor, 'Le-Parc Richmonde', No. 51, Richmond Road, Bangalore – 560 025, hereinafter referred to as "Grantee" of the other part,

The terms "Grantor and Grantee", individually referred to as Party and collectively as Parties, which includes their successors and assignees.

WHEREAS:

- (A) The Grantee was initially establishing 2 x 507.5MW coal fired thermal power station in Udupi District, Kamataka. Subsequently the capacity of the power project of the Grantee was augmented from 2 x 507.5MW to 2 x 600 MW with necessary approvals from Government of Karnataka, Ministry of Environment and Forests (Government of India) and Kamataka State Pollution Control Board.
- (B) The parties have entered into an Agreement dated 9th March 2000 (hereinafter referred to as Agreement).
- (c) Subsequent to entering of the Agreement, the Grantee had sought certain amendments to conditions imposed in the Agreement, for which, the Grantor, after examining the amendments sought, has approved the amendments vide its letter bearing No. ಪಸಂಮೀ:24:ಮಿಇಳ:2010 dated 19.06.2014.
- (D) The parties have agreed to amend the Agreement to incorporate the amendments approved by the Grantor.

600

2

(SECOND COPY OF THE AGREEMENT)

NOW THEREFORE IT IS HEREBY AGREED BY AND BETWEEN THE PARTIES HERETO AS FOLLOWS:

Item No.4, page 2 of the Agreement be read as follows:

*4. Sea water intake point shall be located at a depth of not less than 6.97 m and at a distance of 1430 m inside the sea from the coast."

Item No.5, page 2 of the Agreement be read as follows:

The effluent from the power station shall be discharged at depth of minimum 4.99 m. and 670 m inside the Sea from the coast."

All other terms and conditions in the Agreement that are not hereby amended are to remain in full force and effect.

IN WITNESS WHEREOF the parties herein have signed this Agreement on the day, month and year first above written, in the presence of:

Deputy Director of Fisheries, Mangalore On behalf of Governor of Karnataka

Director & Chief Operating Officer for and on behalf of Udupi Power Corporation Ltd.,

1. Simil L. Naik 504 1015 Ar Main 4th Block 3th Augu Baranyhivajanagal Belom 59 2. Lulullo

SUSHMITHA RAO, ASST. DIR OF FISHERIES, STO DY. DIR. OF FISHERIES,

MANGALORE.

(SECOND COPY OF THE AGREEMENT)

Green Belt development:

Plantation was carried in and around plant premises with local species. Total plantation carried so far is around 370905 No's in 195 acres.

Plantation Details	Area (Acres)		
370905	195		

List of the Plant Species planted in and around the UPCL plant premises

S.No	Species
1	Honge
2	Neem
3	Mahagani
4	T. Rosea
5	Melengia
6	Seetha Ashoka
7	Alstonia
8	T. Arjuna
9	Honne
10	Kadu Badami
11	Lebeka
12	Leqestonia
13	Nerale
14	Peltaform
15	Rain Tree
16	Gulmava
17	Beete
18	Cassurina
19	Holenandi
20	May Flower
21	Palaksha
22	Garige
23	Budubende
24	Surage
25	Dhupa
26	Basavanapada
27	Jack Fruit
28	Ramatre
29	Coconut Plant

Road Side Plantation

Thick plantation near Coal Handling Plant on both sides of the Road

Six Monthly Environmental Compliance Report for the Period from April 2022 to Sep 2022 for UPCL

Plantation developed all along the Outside boundary

Plantation developed all along the Inside boundary

Six Monthly Environmental Compliance Report for the Period from April 2022 to Sep 2022 for UPCL

Gardening Plantation developed

Vegetable & Fruit Plantation developed

Plantation near Fly Ash silo

Plantation developed Surrounding Guest House

Six Monthly Environmental Compliance Report for the Period from April 2022 to Sep 2022 for UPCL

it accessiv Nagaguan Power Corporation Limited)

Ref: UPCL/HR/R&R/2011/3@98

dated 26th March, 2011

The Special Land Acquisition Officer Karnataka Industrial Area Development Board Baikampady Industrial Area MANGALORE.

Dear Sir.

Subject:

Udupi Power Corporation Limited -- 1200 MW Thermal Power Project-Providing of employment under Rehabilitation and Resettlement Policy

of Government of Karnataka.

References:

(i) Your Office Letter No. LAQ/SR 1/92-93/1157, dated 18.02.2008

(ii) Your Office Letter.No. LAQ/SR/1/2007-08/1294, dated 29.03.2008

(iii) Your Office Letter No. LAQ/5R:1/08-09, dated 08.01.2010


(iv) Your Office Letter No. LAQ/SR/1/2008-09/189, dated 27.04.2010

(v) Your Office Letter No. LAQ/SR/1/2008-09/399, dated 17.06.2010

This is with regard to above subject and with reference to your letters under references. Please note that, in terms of the Government of Karnataka Order bearing No. RD 118 REN 91 dated 30.04.1997 read with Government of Karnataka Order No. RD 118 REN 91, dated 18.12.1992 and as per the letters issued by you, action taken by Udupi Power Corporation Limited on the 36 applications cleared by your office is furnished in the list enclosed herewith as 'Annexure – A'. It may please be noted that since the nominees mentioned as against the SI. Nos. 6 and 14 are pursuing Diploma and Engineering course respectively, they may take-up employment with us on completion of their studies i.e., by July, 2011. The issue of employment letters to the nominees mentioned against the SI. Nos. 12, 15 and 34 are under process.

Contd...2

Registered Office : II Floor, Le-Parc Richmonde', No.51, Richmond Road, Bangalore - 500 025 T +91-080-40254025, F +91-080-40254000

Further it may please be noted that among the applications cleared by your office for providing employment under R&R policy, we found some discrepancies in four applications. The details of the discrepancies and also our observations are given in the 'Annexure-B', which is enclosed herewith. We, therefore, are returning these 4 applications to you along with this letter with a request to provide us necessary clarifications / confirmations so as to consider these applications for employment at the earliest.

napolis pod Shire

We would also request you to inform us of any further applications pending with you for providing employment under R&R Policy and if there are any, the same may be please be forwarded to us with necessary supporting documents.

Thanking you

Yours faithfully for UDUPI POWER CORPORATION LIMITED

M.V. Ramana Rao Sr. General Manager – H.R

Encl:

Annexure – A

2. Annexure - B

ದಿಶೇಷ ಭೂಸ್ಥಾರ್ ನ ಅರ್ರಕ್ಷೆಗಳ ನಿನ್ನ ಕ. ಕೈ ಪ್ರ ಆ ಮಂಪಳ ಜೈಕಂತಾಡಿ, ಮೂನಿಕೂರು - 575 011

Udupi Power Corporation Limited

CSR Initiatives

For the Period April - September, 2022

Highlights:

Educational Initiatives

• Education Kits: Distributed Education Kits to 6,283 students, studying in Government Kannada Medium Schools, covering 73 Schools located in 37 villages in Udupi District.

Community Infrastructure Development

• Safe Drinking Water Units: Providing potable drinking water through Safe Drinking Water Units, installed at 5 villages.

Community Health

- Adani Mobile Health Service: Mobile Health Services in 13 villages, delivering cashless medical facilities to the villagers at their doorsteps.
- Adani Aarogya Card / Health Insurance: Medical Insurance covered for the residents of Yellur and Mudarangadi Grama Panchayat, facilitating Cashless medical treatment at private hospitals.

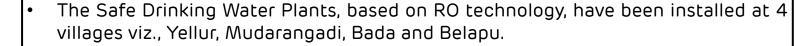
Impromptu Nature

• **Support to Department of Forests** by way of providing a vehicle for patrolling. To strengthen the Departmental activities for creating an awareness on environment protection in the western ghat terrain.

Educational Initiatives:

Education Kits

- To promote education in rural areas
- To reduce drop out cases in Government Schools
- To provide education to the financially weaker sections of the society
- Education Kits comprising of Notebooks, Bag, Compass Box and Umbrella were distributed to the students studying in Kannada Medium Government Schools.
- Totally 6,283 students were distributed with the education kits.
- 74 Government Schools located in 37 villages in the rural areas of Udupi District were covered under this activity.
- Total Project Cost : Rs. 47.55 Lakhs



Community Infrastructure Development:

Safe Drinking Water Plants

- To provide potable drinking water to the community
- To arrest people suffering from water borne diseases.
- To overcome the problem of salt water being faced by community

- Additionally one Safe Drinking Water Unit is set-up in R&R colony, facilitating the colony residents to avail the benefit. The residents located in and around the R&R colony are also accessible to this benefit.
- Each RO unit is having the capacity of purifying 1,000 litres per hour. The tanks of 5000 litres capacity has been installed for storage of purified water.
- Total number of beneficiaries / enrolled under this facility as on date is 6,200

Community Health:

Mobile Health Care Unit (MHCU)

- Delivering the Cash Less Quality Medical Services at the doorsteps of the villagers.
- 1 Ambulance with a qualified Doctor and Nurse are plying to 2 villages each day.
- Services being delivered in 13 villages
- Total Number of Patients visited the Mobile Health Unit during the period April to September, 2022:
 - Male \rightarrow 3,685
 - Female → 5,424

TOTAL → 9,109

- Number of Days camps conducted → 153 days
- Number of Camps → 306 camps
- Average Number of patients benefitted per camp is 30.
- Average Number of patients benefitted per day is 60.

Community Health:

Adani Aarogya Card (Health Insurance)

- Facilitate all the villagers of Yellur and Mudarangadi to avail cash-less medical treatment / specialized treatments in the private multi-specialty hospitals.
- Reducing the burden on needy and poor villagers for expensive medical treatment.
- Improve the health condition of the villagers.
- Helping tool to the senior citizens to avail medical treatment in cases of emergency, who does not have any support, morally and financially.
- To facilitate the needy villagers requiring health treatment in multi-specialty hospitals and to have free medical treatment at private and renowned hospitals, Adani Foundation, has covered the Health Insurance / Medi-claim Insurance from ICICI Lombard General Insurance Company Limited and issued the Adani Aarogya Cards to the villagers of Mudarangadi and Yellur.
- The facility was extended to the free lancer journalists and members of Kapu Press Club
- The Adani Aarogya Card will help villagers of all the age group to have free medical treatment upto a sum insured of Rs.50,000/- per family
- The renewed Insurance Cards were distributed to the respective family members through Grama Panchayats.
- Total Beneficiaries under the Scheme is 9,502 villagers.
- The Total premium amount paid to ICICI Lombard Insurance Company is Rs. 61.36 lakhs
- The Total sum assured is Rs. 50,000/- per family
 - ☐ Family means 7 members

Financials:

SI. No.	Activity Head	Budget for the FY 2022-23 Rs. In Lakhs	Utilization as on 30.09.22 Rs. In Lakhs
А	Educational Initiative	66.00	47.55
В	Community Health Care Initiative	79.66	74.92
С	Community Infrastructure Development Initaitive	108.20	0.72
D	Administrative Expenses	21.50	7.37
E	Impromptu Expenses	27.50	12.50
	TOTAL	302.86	143.06

Comparison of Base Line Data with the analysis report of September 2022:

Annexure-XIV

S.No	Parameters	Karnire (Su	rface water)	Nandiku	r Village	Santhoo	r Village		Acceptable	Permissible
		As Per EIA- 507.5 MU	Sep 2022	As Per EIA- 507.5 MU	Sep 2022	As Per EIA- 507.5 MU	Sep 2022	UNIT	IIT Limits as per IS:10500:2012	Limits as per IS:10500:2012
1	Color	Colorless	BLQ	Colorless	BLQ	Colorless	BLQ	Hz	5	15
2	Odour		А		Α		А	-	Agreeable	Agreeable
3	Taste		А		Α		А	-	Agreeable	Agreeable
4	Turbidity		2.10		BLQ		BLQ	NTU	1	5
5	TDS	17222	34.00	8	97.00	16	32.00	mg/l	500	2000
6	ρН	7.1	6.77	6.2	7.25	6.8	6.95	-	6.5 - 8.5	No relaxation
7	Alkalinity		8.00		70.0		14.0	mg/l	200	600
8	Total Hardness as CaCO3		9.00		64.0		13.0	mg/l	200	600
9	Calcium as Ca		1.60		11.22		3.2	mg/l	75	200
10	Magnesium as Mg		1.20		8.74		1.21	mg/l	30	100
11	Iron as Fe	0.1	0.18	0.3	BLQ	1.5	BLQ	mg/l	0.3	No relaxation
12	Sulphate as SO4	1096	6.95	1.9	6.34	2.1	1.59	mg/l	200	400
13	Chloride as Cl	9264	9.89	8.6	10.89	9.6	9.89	mg/l	250	1000
14	Fluoride as F	0.5	BLQ	0.05	BLQ	0.1	BLQ	mg/l	1	1.5
15	Phenolic Compounds	0.04	BLQ	0.01	BLQ	0.02	BLQ	mg/l	0.001	0.002
16	Manganese as Mn		BLQ		BLQ		BLQ	mg/l	0.1	0.3
17	Zinc as Zn	0.02	0.81	0.02	BLQ	0.03	BLQ	mg/l	5	15
18	Arsenic as As	ND	BLQ	ND	BLQ	ND	BLQ	mg/l	0.05	No relaxation
19	Cyanide as CN		BLQ	ND	BLQ		BLQ	mg/l	0.05	No relaxation
20	Cadmium as Cd	ND	BLQ	ND	BLQ	ND	BLQ	mg/l	0.003	No relaxation
21	Chromium as Cr6+	ND	BLQ	ND	BLQ	ND	BLQ	mg/l	0.05	No relaxation
22	Aluminium as Al		BLQ	ND	BLQ		BLQ	mg/l	0.03	0.2
23	Selenium as Se	ND	BLQ	ND	BLQ	ND	BLQ	mg/l	0.01	No relaxation
24	Lead as Pb	ND	BLQ	ND	BLQ	ND	BLQ	mg/l	0.01	No relaxation
25	Mercury as Hg	ND	BLQ	ND	BLQ	ND	BLQ	mg/l	0.001	No relaxation
26	Boron as B	ND	BLQ	ND	BLQ	ND	BLQ	mg/l	0.5	1
27	Residual Free Chlorine	NT	BLQ	ND	BLQ	NT	BLQ	mg/l	0.2	1
28	Nitrate as NO3-N		BLQ	ND	BLQ		BLQ	mg/l	45	No relaxation
29	E.Coli	280	Nil	350	Nil	1800	Nil	MPN/ 100 ml		table in any 100 ml nple

Note: A- Agreeable, BLQ-Below Level of Quantification, ND-Not detectable, NT-Not Traceable & Nil-Zero

Comparison of Base Line Data of EIA Report (2009) with the Ambient air quality analysis report of September 2022

Annexure-XIV

Location: Plant Site									
	Septem	ber - 20	22		As per EIA Report - 2009				
Date of Sampling	SO ₂	NO ₂	PM 10	PM _{2.5}	Date of Sampling	SO ₂	NO ₂	PM 10	PM _{2.5}
		þg	J/m³				μg	/m³	
08.09.2022	10.2	11.5	39.5	24.6	28.04.2007	BDL	12.5	138	45
09.09.2022	10.1	11.3	40.2	23.4	30.04.2007	BDL	9.5	121	41
15.09.2022	9.8	11.2	39.9	21.9	07.05.2007	BDL	15.0	148	47
16.09.2022	9.9	10.9	39.8	22.8	11.05.2007	BDL	8.0	92	35
22.09.2022	10.0	11.4	39.7	23.4	14.05.2007	BDL	9.5	132	43
23.09.2022	9.9	12.2	40.6	23.9	18.05.2007	BDL	8.5	118	38
28.09.2022	9.6	12.4	40.3	22.5	20.05.2007	BDL	10.5	138	45
29.09.2022	9.8	12.1	41.8	23.8	23.05.2007	BDL	8.5	85	30
Min.	9.6	10.9	39.5	21.9	Min.	0	8.0	85.0	30.0
Max.	10.2	12.4	41.8	24.6	Max.	0	15.0	148.0	47.0
Avg.	9.9	11.6	40.2	23.3	Avg. 0		10.25	121.5	40.5
NAAQ Standards (2009)	80	80	100	60	NAAQ Standards (1994)	120	120	500	150

Note: BDL-Below detection level

	Location: Mudarangadi									
	22		As p	er EIA	Report -	2009				
Date of Sampling	SO ₂	NO ₂	PM 10	PM _{2.5}	Date of Sampling	SO ₂	NO ₂	PM 10	PM _{2.5}	
		hõ	g/m³		mg/m³		μģ	g/m³		
08.09.2022	11.0	12.9	43.6	21.8	29.04.2007	5.5	31.5	120	65	
09.09.2022	11.4	13.2	43.2	21.9	03.05.2007	6.0	34.5	135	72	
15.09.2022	10.9	13.5	43.8	20.5	05.05.2007	5.5	30.5	130	68	
16.09.2022	10.7	12.9	43.3	20.8	09.05.2007	5.0	28.5	102	57	
22.09.2022	11.4	12.3	43.4	21.1	13.05.2007	5.0	32.5	112	60	
23.09.2022	11.2	12.5	43.7	21.6	16.05.2007	6.5	38.5	138	72	
28.09.2022	11.4	12.8	43.5	20.5	22.05.2007	6.0	36.5	141	74	
29.09.2022	10.5	11.9	43.9	20.9	25.02.2007	6.5	32.5	118	68	
Min.	10.5	11.9	43.2	20.5	Min.	5.0	28.5	102.0	57.0	
Max.	11.4	13.5	43.9	21.9	Max.	6.5	38.5	141.0	74.0	
Avg.	11.1	12.8	43.6	21.1	Avg.	5.75	33.12	124.5	67.0	
NAAQ Standards (2009)	80	80	100	60	NAAQ Standards (1994)	120	120	500	150	

REF: UPCL/PLANT/08M/ENV/2022-23/ 47

12.09.2022

To,
The Environment Officer,
Karnataka State pollution Control Board,
Regional Office,
Plot No-36-C, Shivalli Industrial Area,
Manipal, Udupi-576104

Sub: Submission of Environment statement for Financial Year 2021-22 in Form-V for 2 X 600 MW coal based Subcritical Thermal Power Plant of Udupi Power Corporation Limited

Ref: 1) Consent for Operation No: - AWH - 301645 dated: 15/12/2016.

2) Environmental Clearance No: - J-13011/23/1996-IA.II (T) dated: 01.09.2011

Dear Sir,

With reference to the above cited subject, please find the enclosed Environment Statement in Form-V for the financial year 2021-22 for 2X600 MW coal based Subcritical Thermal Power Plant of Udupi Power Corporation Limited.

Thanking you,

Yours faithfully

Authorized Signatory Udupi Power Corporation Limited.

Enclosure: Environment Statement in Form-V

Copy to:

The Member Secretary, Karnataka State Pollution Control Board "Parisara Bhavana", #49 1st to 5th Floor Church Street, Bengaluru – 560001

CIN: U31909GJ1996PLC125650

ANNEXURE

ENVIRONMENTAL STATEMENT FORM-V (See rule 14)

Environmental Statement for the financial year ending with 31st March 2022

PART-A

i	Name and address of the owner/occupier of the industry	Mr. Arindam Chatterjee Station Head Udupi Power Corporation Limited Yelluru Village, Pillar Post Padubidri, Udupi District Karnataka – 574113		
ii	Industry category Primary-(STC code) Secondary- (STC Code)	Large scale Industry- Red Category		
iii	Production category –Units	2X600 MW Imported Coal based Thermal Power Plant		
iv	Year of establishment	Unit-I: 11 th Nov 2010 Unit-II: 19 th Aug 2012		
v	Date of the last environmental statement submitted	Letter No: UPCL/PLANT/08M/ENV/2021-22/490 Dated: 24.09.2021		

PART-B

Water and Raw Material Consumption:

i. Water consumption in m³/d

 Process
 : 16081.46

 Cooling
 : 85500.35

 Domestic
 : 69.75

 Total
 : 101651.56

 Sea Water returned back to Sea
 : 56484.47

	Process water consumption per unit of products					
Name of Products	During the previous financial year (2020-21)	During the current financial year (2021-22)				
Power Generation (1712.42 MU)	0.00779 kl/kwh	0.00566 kl/kwh				

ii. Raw material consumption

Name of raw		Consumption of raw material per unit of output				
materials	Name of Products	During the previous financial year (2020-21)	During the current financial year (2021-22)			
Coal	Power Generation	0.420 kg/kWh	0.424 kg/kWh			
Heavy Fuel Oil (HFO)	Flame Stabilization during power	Nil	Nil			
Light Diesel oil (LDO)	Diesel oil generation and start-up 0.000740 ml/kWh		0.000503 ml/kWh			

^{*}Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

PART-C

Pollution discharged to environment/unit of output (Parameter as specified in the consent issued)

Pollutants		ity of Pollutan mass/day) i.e.,					Percentage of variation from prescribed standards with reasons		
	Pa	rameter	Results	Para	ameter	Results			
	Odour		Agreeable	Odour		Agreeable			
	Colou	r	Not	Colour		1.21			
	рН		Applicable	рН		7.55			
	TSS	- Majer (Audi	105.16	TSS, m	ng/l	5.96	le tradicional strendilina (1)		
	BOD	Control of the	BLQ	BOD, r	ng/l	BLQ	Hallett of a		
	COD		BLQ	COD, mg/l		BLQ	No deviation		
a) Water	Oil& grease		BLQ	Oil & grease		BLQ			
	Arsenic		BLQ	Arsenic		BLQ	e many many transfer to the land of		
	Lead		BLQ	Lead		BLQ			
	Mercury		BLQ	Mercury		BLQ			
	Total	Cr	BLQ	Total Cr		BLQ	Colleges Sales States		
	Hexav	alent Cr	0.45	Hexavalent Cr		Hexavalent Cr 0.03		0.03	
	Phenolic Compounds		BLQ	Phenolic Compounds		BLQ			
		Unit-l kg/day)	Unit-II (kg/day)	Unit-I (mg/Nm³)		Unit-I		Unit-II	to the fact
b) Air						(mg/Nm³)	No deviction		
	PM	1311.18	1493.90	PM	23.87	27.03	No deviation		
	SO _X	43847.96	47617.42	SO _X	798.33	861.57	Date Helphia		
	NOx	8912.40	9472.43	NOx	162.27	171.39	California de la companya del companya del companya de la companya		

Note: BLQ = Below Limit of Quantification

PART-D

HAZARDOUS WASTE

[As specified under the Hazardous and Other wastes (Management and Transboundary Movement)
Rules, 2016]

		7.0.	23, 2010						
		Total Quantity (MT)							
На	zardous Wastes	During the previous fina (2020-21)	ncial year	During the current financial year (2021-22)					
	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Used Oil	14.59 MT	Used Oil	8.40 MT				
		Oil Soaked Cotton waste	2.42 MT	Oil Soaked Cotton waste	4.33 MT				
		Discarded Containers	11.14 MT	Discarded Containers	4.56 MT				
1)	From Process	Spent Ion exchange		Spent Ion exchange					
		resins containing toxic metals	7.22 MT	resins containing toxic metals	0.00 MT				
		Paint Residue	1.5 MT	Paint Residue	0.00 MT				
2)	From Pollution Control Facilities	Not Applicable		Not Applicable					

PART-E SOLID WASTES*

	And the second s	SOLID WASTES*	The state of the s				
	Total Quantity (MT)						
Solid Wastes		evious financial year 2020-21)	During the current financial year (2021-22)				
a)From Process	Bottom Ash	7363.00	Bottom Ash	5590.00			
b)From Pollution Control	Fly Ash	61957.00	Fly Ash	51633.74			
Facility	Gypsum	1041.73	Gypsum	402.41			
c) Quantity recycled or	Fly Ash	53589.00	Fly Ash	41091.00			
reutilized	Bottom Ash	15915.00	Bottom Ash	17632.00			
redemzed	Gypsum	1244.59	Gypsum	244.51			

PART-F

Please specify the characteristics (in terms of concentration and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

- a) Hazardous waste: As per Hazardous and Other Wastes (Management & Transboundary Movement) Rules 2016, hazardous wastes generated in the industry are of five categories i.e., 5.1 Used Oil, 5.2 Oil soaked Cotton Waste, 21.1 Paint Sludge, 33.1 Discarded Containers and 35.2 Spent Ion Exchange resin. All these generated wastes are stored on the concrete platform and covered shed in designated location and disposed to KSPCB/CPCB authorized vendors.
- b) Solid Waste: Solid waste in the industry is generated from process and pollution control facilities.
- i. Bottom Ash is generated from the process of burning coal and is collected in the water impounding basin and the same is disposed to brick manufacturers & disposal to ash pond which is 3 km away from the plant.
- ii. Fly Ash is generated from the process is trapped in the electro static precipitators (ESPs) in dry form and stored in silos. Fly ash is disposed to various end users like cement manufacturers, brick manufacturers and Ready Mix Concrete works.
- iii. Gypsum is generated from the FGD (flue gas desulphurization) units when flue gas is passed through wet lime to remove Sulphur Di-oxides. Generated gypsum is disposed to end users like cement manufacturers, fertilizers industries and plasterboard manufacturers.
- iv. Sludge generated from the STP was utilized as manure after drying and composting along with garden waste.

PART-G

Impact of the pollution control measures taken on conservation of natural resources and consequently on the cost of production

- a) The Ambient Air Quality surrounding the coal handling facility is monitored through Online Continuous Ambient Air Quality Monitoring Stations and the Ambient Air Quality is within the prescribed limits throughout the year.
- b) The coal conveyor belts are fully covered and installed with Dust Suppression system at transfer points for arresting the fugitive emissions.
- c) The Units are equipped with Pollution Control Equipment such as Low NOx Burner, ESP & FGD (flue gas desulphurization) for controlling the Stack Emission.
- d) Fly Ash generated is conveyed in dry form through conduits and stored in silos. Fly Ash is utilized by cement manufacturers, brick manufacturers and RMC works.
- e) Gypsum generated is stored in closed yard and disposed to end users like cement manufacturers, fertilizers industries and plasterboard manufacturers.
- f) ETP of 7200 KLD is in operation and treated water is reused for green belt development/gardening.
- g) Water Sprinkling is undertaken in the Ash Pond for suppression of dust.

PART-H

Additional measures/investment proposal for environmental protection including abatement of pollution

- a) Rain Harvesting Pond of capacity 143000 m³ is constructed for harvesting rainwater during rainy season and utilization in Cooling Tower and other purposes.
- b) Fly Ash brick manufacturing plant is installed for production of fly ash brick for internal utilization.

PART-I

Any other particulars in respect of environmental protection and abatement of pollution

- a) UPCL is certified with ISO 9001, ISO 14001, ISO 45001, ISO 50001, ISO 55001, ISO 22301 and ISO 46001.
- b) World Environment Day celebration to create Environmental awareness among employees and community by conducting various environmental competitions, workshops & presentations.

c) Nearly 2000 saplings were planted inside and outside the plant on the occasion of world Environment Day - 2021.

d) As a CSR activity, 10 nos. Pediatric ICU ventilator beds are set-up at Karkala Government Hospital, Mainda Lake Rejuvenation work completed, Community Infrastructure Development works and Mobile Health Care Unit is operational in surrounding villages.

e) Certified as SUP (Single Use Plastic) free plant by CII (Confederation of Indian Industry) as an initiative to mitigate the problems caused by single use of Plastic to environment.

CAUTION BOARDS AT PIPE LINE CORRIDOR

Annexure-XVI

Caution Boards are installed at every 500 meters length throughout the 6 km pipe line corridor. Snapshots of the caution boards are placed below:

Six Monthly Environmental Compliance Report for the period from April 2022 to September 2022

Sea Water Monitoring reports

Introduction:

The M/s Udupi Power Corporation Limited. (UPCL) is a 2 X 600 MW imported coal based power project in the Udupi District of Karnataka. Situated in the western coastal region of India, the plant is situated in the village of Yellur, between Mangalore and Udupi.

The base line data on environmental parameters are pre-requisites for understanding the impact of developmental activity and to assess the environmental quality before, during and after implementation of project in order to assess the quality of water. Therefore, it is essential to study the spatial and temporal variations of physical, chemical and biological parameters in the potential impact zone.

Objectives:

- Assessment of physical and chemical parameters of seawater near the vicinity of effluent discharge point.
- 2. Seasonal and temporal variation of phytoplankton, zooplankton and benthic organisms.
- 3. Bioassay studies on the receiving water.

Work plan:

Altogether, seven station were selected and the sampling was carried out at surface and subsurface depths of discharge points. The water and sediment samples collected were analysed for physical, chemical and biological characteristics. Standard procedure was followed for the analyses. The details of results obtained for the month of April, 2022 is provided in this report.

Annexure - XVII

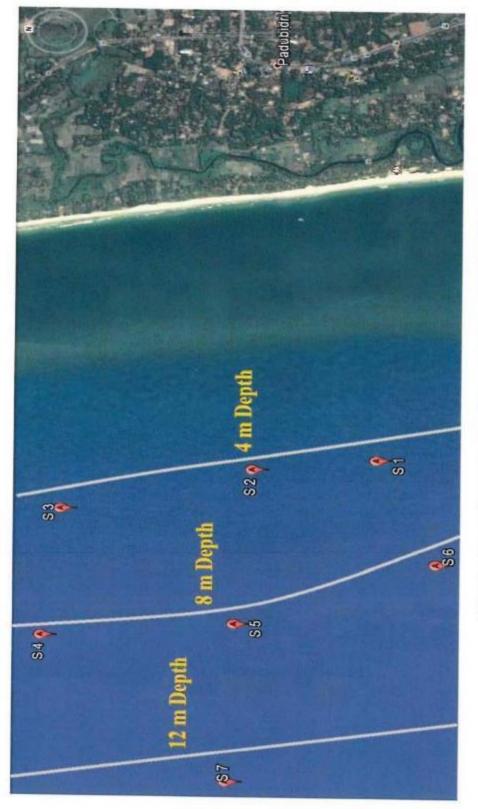


Fig 1. Location of sampling stations off Padubidri

Table 1. Data on water quality parameters off Padubidri during April, 2022

SI.	Parameters		Stations						
No.	2 10 111101111	_	1	2	3	4	5	6	7
1	Water Temperature (⁰ C)	S	30.10	30.30	30.00	30.50	30.60	30.60	30.20
25		SS	29.10	29.00	28.70	28.80	29.00	29.10	29.80
2	pН	S	7.90	8.10	8.60	8.43	8.08	7.90	7.58
-	pii	SS	7,95	7.80	8.05	7.98	7.60	8.45	7.82
3	Salinity (psu)	S	31.47	30.50	31.80	31.05	31.30	32,41	32.80
J	Samity (psu)	SS	30.60	31.87	32.00	31,47	33.68	32.78	32.06
4 D	Disselved Occordens	S	5.30	4.38	4.88	6,12	5.67	6.40	5.89
7	Dissolved Oxygen (mg/l) SS 5.	5.14	6.03	5.78	5.58	5.22	6.74	5.51	
5	BOD₃ at 27°C	S		1.90			2.22	-	2.22
-	BOD3 at 27 C	SS	1.75	2.40	5 53		1,64		2.30
6	COD (mg/l)	S	755	28			22		20
		SS		30			20		18
7	Transparency (m)		3.12	1.05	1.98	2.01	2.86	2.03	4.74
8	Total Suspended Solids (mg/l)		-	87			110	(4)	116
9	Total Dissolved Solids (mg/I)		•	1740	-	7:	1240	•	1832
10	Ammonia (µg-at/l)	S	0.94	0.75	0.78	0.29	0.59	0.29	0.75
	Ammonia (µg-at/1)	SS	1.30	1.55	1.25	0.39	1.35	0.30	0.66
11	Nitrite (µg-at/l)	S	1.38	0.95	0.71	0.82	0.76	0.88	0.37
A: A:	mane (µg-abr)	SS	1.21	0.35	0.83	0.27	0.59	0.45	0.69
12	Nitrate (µg-at/l)	S	1.62	1.62	1.98	1.69	1.30	1.33	1.95
	ritiate (µg-acr)	SS	1.85	1.23	1.62	1.57	1.41	1.95	1.12
13	Phosphate (µg-at/l)	S	0.52	0.29	0.22	0.32	0.24	0.47	0.36
	· osspinise (µg-aut)	SS	0.41	0.32	0.25	0.42	0.50	0.61	0.54
14	Silicate (µg-at/l)	S	15.02	15.95	12.30	13.50	14.62	14.42	10.14
	oment (hg-to-t)	SS	12.32	12.50	11.83	12.49	14.82	12,62	12.32
15	Oil and Grease (mg/l) BDL: Below Detectable Le	S	BDL	BDL.	BDL	BDL	BDL	BDL.	BDL

BDL: Below Detectable Level

 $\label{eq:constant} \textbf{Table 2. Phytoplankton diversity (no/m}^3) \ and \ Biomass \ (mg/m^3) \ in \ the \ coastal \ waters \ off \\ Padubidri \ during \ April, \ 2022 \\$

Sl. No.			Depth (m)				
	Flora	4	8	12			
I	Diatoms						
1	Asterionella						
	a. A. japonica	5100	2500	1400			
	b. Others	-	2300	1400			
2	Bacteriastrum						
	a. B. varians	1250	1000	1870			
	b. Others	800	650	1100			
3	Biddulphia 800 030 1100						
	a. Biddulphiaregia	3500	6450	2550			
	b. B.sinensis	2680	1200	1200			
	c. Biddulphiamobiliensis	5000	6500	-			
	d. Others	2000	0300	8000			
4	Cerataulina						
	a. C. perlagica	100	100	200			
	b. Others	100	100	200			
5	Chaetoceros						
	a. C. torenziamus	920	1200	050			
	b. C. decipiens	3100	1000	850 2250			
	c. C. compressus	5100	1000	2230			
	d. C. curvisetus	-		2200			
	e. Others						
6	Coscinodiscus						
	a. C. oculus iridis	7000	6400	7200			
	b. C. lineatus	4200	5300	4200			
	c. C. excentricus	- 4200	2300	4200			
	d. Others			-			
7	Cyclotella						
	a. C. stelligera		-	-			
	b. Others		-	-			
8	Dynobryonsetularia	1200	2500	1.000			
9	Ditylum	1 1200	2300	1600			
	a. D. brightwelli		1	2.795			
	b. Others			-			
10	Eucamphia	-					
	a. E. zoodiacus						
	b. Others	-		0.00			

11	Fragillaria			-2			
	a. F. oceanica	1900	1600	1700			
	b. Others		-	-			
12	Gyrosigma						
	a. G. balticum	1400	2700	3200			
	b. Others			7			
13	Lauderia						
	a. L. borealis	700	600	700			
	b. Others	*		-			
14	Leptocylindricus						
	a. L. danicus	500	1200	1000			
	b. Others	-	-	-			
15	Melosira						
	a. M. monilifornas			-			
	b. Others		-	(*)			
16	Navicula			-			
200	a. N. longa	+		-			
	b. Others	1200	1000	900			
17	Nitzschia			3.95			
	a. N. closterium	14		-			
	b. N. striata	-	-	-			
	c. N. longissima	-		-			
	d. Others	-	-	-			
18	Planktoniella						
	a. P. sol	-					
	b. Others	-	-				
19	Pleurosigma						
	a. P. normanii	8800	2400	7100			
	b. P. elongatum	7000	6400	7600			
	c. Others	2100	5200	2600			
20	Rhizosolenia	100000	-	3000			
	a. R. stolterfothii	5000	2500	700			
	b. R. shrubsolei	7500	6400	7200			
	c. R. stliformis	4100	5200	4600			
	d. Others	-		1000			
21	Skeletonema						
	a. S. costatum	-		-			
	b. Others	-	181	_			
22	Staurastrumsp.	-	-				
23	Streptotheca						
	a. S. thamensis	7200	8000	2600			
	b. Others	7000	6300	6700			
24	Thalassiothrix	7,000	v.ruv	0700			
	a. T. decipiens		-	210			
	b. T. longissima		-	-			

	c. Others	-	-	-			
25	Triceratium						
	a. T. reticulate	1200		300			
	b. T. favus	800		-			
	c. Others	-		-			
26	Diatoma						
	a. Diatoma vulgare	-	-	-			
27	Other diatoms	1400	1200	500			
11	Dinoflagellates			1			
1	Ceratium						
	a. C. macroceros	3200	2500	1600			
	b. C. fusus	1800	1500	3000			
	c. C. longipes	-	*	600			
	d. others	-		-			
2	Dinophysis						
	a. D. acuta	700	640	720			
	b. Others	1400	1500	1600			
3	Gymnodinium						
	a. G. splendens	-		-			
	b. G. rhombodes	-	-	-			
	c. Others			-			
4	Ornithocerosmagnificus						
5	Peridinium			-			
	a. P. depressum	8200	5200	9800			
	b. P. divergens	9500	13000	8500			
	c. P. granii	1600	1200	1600			
	d. P. excentricum		-	-			
	e. Others	-	-	-			
6	Preperidinium						
7	Noctifuca						
	a. N. Scintillans	300	550	220			
	b. Others	-	-	-			
Ш	Blue green algae	-		-			
1	Blue Green Algae	+		- 20			
	ass [wet weight - mg/m ³]						

-: Absent

Table 3. Zooplankton diversity (no/m³) and Biomass (mg/m³) in the coastal waters off Padubidri during April, 2022

SI.	Fauna	Depth (m)						
No.	1 auna	4	8	12				
1	Tintinids							
	a. Tintinopsissp.	9500	12000	8000				
	b. Rabdonellasp.	1500	12,000	0000				
	c. Favellasp.	1200	800	500				
2	Radiolarians	400	100	600				
3	Medusae	1.000	100	000				
	a. Obelia sp.	1200	3200	5400				
	b. Octocostatumsp.	-	3200	3400				
	c. Quadratasp.			-				
4	Siphonophores			-				
	a. Lensia sp.	1 -						
	b. Diphysissp.	300	250	360				
5	Ctenophores	200	+00	300				
	a. Plurobranchia sp.							
6	Chaetognaths			-				
	a.Sagittaenflata							
	b. Pterosagittadraco	-		-				
	c. Krohnitta subtilis			-				
7	Polychaetes	150	140	500				
8	Cladocerans							
	a. Peniliaavirostris	1200	2500	1500				
	b. Evadnaenordmanni	1500	2500	1700				
9	Copepods	1200	2000	1700				
	a. Calanusfinmarchicus	1500	1000	2500				
	b. Tamoralongicornis	1200	1500	1600				
	c. Parapontellabrevicornis	1700	3400	The second section of the second section is a second section of the section of the second section of the section of the second section of the section of				
	d. Oithonahelgolandica		3400	800				
10	Copepod nauplius	1200	6500	1000				
11	Lucifer	1200	0.500	1000				
12	Planktonic Urochordates	1	-	-				
	a. Frilillariasp.							
	b. Oikopleurasp.	1900	1000	1200				
	c. Doliolomsp.	-	1000					
13	Fish Eggs	700	500	4600				
14	Copepod egg	1200	3000	4600				
15	Echinoderm Larvae	1200	3000	2500				
16	Decapod Larvae	1500	2500	2500				
17	Bivalve Larvae	100	300	2500				
18	Fish Larvae	500	250	50				
19	Polychaete Larvae	-		+				
20	Chaetognath Larvae		-	*				
21	Others	60	50	22				
	s [wet weight - mg/m ³]	238.12	249.75	32				
	- Ingilia	4.70,12	249.75	258.41				

Table 4. Macrobenthos diversity (no/m²) in the coastal waters off Padubidri during April,

SI. No	. F	Depth (m)			
	Fauna	4	8	12	
I	Molluses				
A	Bivalves				
1	Arca sp.	-	7 -	-	
2	Anadorasp.	30	10	10	
3	Bivalve Spats	10	20	50	
4	Cardium sp.	-	14	20	
5	Donax sp.	30	20	50	
6	Katalysiasp.	-	- 10	-	
7	Meritrix sp.	10	40	50	
8	Perna sp		-		
9	Modiolussp.	-	-	-	
10	Pecten sp.	-	-	-	
В	Gastropods				
1	Babylonia sp.			-	
2	Cavoliniasp.		-		
3	Cerithediasp.	20	10	20	
4	Conus sp.	8			
5	Oliva sp.	-	-		
6	Patella sp.		-	10	
7	Surcula sp.	10	25		
8	Telescopium sp.	10	-		
9	Trochus sp.		20		
10	Turitella sp.	20	10	30	
11	Umbonium sp.	40	30	30	
c	Scaphopods	5000		30	

ensity	y (Individuals/m²)	822.00	754.00	791.00
6	Egg Cases	30	10	20
5	Sand tubes	20	30	10
4	Mud tubes	20	-	-
3	Fishes	*		-
2	Shrimps	50	20	10
1	Crabs	2	-	*
VII	Miscellaneous			
VI	Coclenterates	5	+	20
V	Polychaetes	50	10	80
IV	Sipunculids	(8)	las .	-
m	Echiuroids	-	-	10
3	Holothuriasp.		-	-
2	Ophiocoma sp.	10	-	-
1	Astropecten sp.		-	-
II	Echinodermata			
D	Other Molluscs		-	-
1	Dentalium sp.	45	20	10

- : Absent

Table 5. Results of Bioassay experiment for the coastal waters off Padubidri during April, 2022

1.	Organism Used for the Test	: Perna viridis (Green mussel)			
2.	Length of the Test Organism	: 3.92cms (Average)			
3.	Weight of the Test Organism				
	weight of the Test Organism	: 1.34gms (Average)			
4.	Test Medium	: Sea water collected from the vicinity of effluentfallout from UPCL, Padubidri			
5.	Control	: Filtered sea water			
6.	Container	: Glass aquarium of 20 ltr. capacity			
7.	Number of Organisms	: 10 in each container			
8.	Number of Experiments	: Two			
9.	Duration of the Test	: 96 hrs.			
10.	Methodology	: Static bioassay			

EXPERIMENT

MEDIUM		HOUR/MO	ORTALITY (%)	
	24	48	72	96
CONTROL	Nil	Nil	Nil	Nil
TEST MEDIUM	Nil	Nil	Nil	Nil

Result: No mortality

Inference:

The inferences drawn on the various physical, chemical and biological parameters for the month of April, 2022are given below.

The water temperature varied from 28.70°C to 30.60°C. The pHvalues ranged between 7.58 and 8.60. The salinity varied from 30.50psu to 33.68 psu. The dissolved oxygen (DO) varied between 4.38 mg/l and 6.74 mg/l. The biochemical oxygen demand (BOD₃) is an empirical biological test in which the water conditions such as temperature; dissolved oxygen and microbial flora play a decisive role. The BOD₃ values ranged from 1.64 mg/l to 2.34 mg/l in the study region. The COD values ranged between 18.00 mg/l and 28.00 mg/l. The total suspended solids (TSS) ranged between 87.0 mg/l and 116.0 mg/l and the total dissolved solids (TDS) ranged between 1240 mg/l and 1832 mg/l. The transparency values varied from 1.05 m to 4.74 m.

Nutrients play a vital role in the biogeochemical cycles in the marine environment. The concentrations of nitrite (NO₂-N) varied from 0.27 µg-at/l to 1.38 µg-at/l, while nitrate (NO₃-N) varied between 0.29 µg-at/l and 0.68 µg-at/l, which are within the acceptable limits of coastal environment. Ammonia content (NH₃-N) varied between 0.39 µg-at/l and 1.55 µg-at/l. Inorganic phosphate (PO₄-P) was in the range of 0.25 µg-at/l and 0.61 µg-at/l. Silicate – Silicon (SiO₂-Si), one of the major nutrients for phytoplankton growth ranged between 10.14 and 15.02 µg-at/l in the coastal waters off Padubidri. The oil and grease content was below detectable limits.

Phytoplankton:

The relative abundance of various forms of phytoplankton is depicted inrespective Table. Phytoplankton's were dominant in the study area with 17 different genera with the abundance of Laudaria, Ceratium and Biddulphia. The phytoplankton species recorded in this area are common types occurring along the west coast of India. The biomass varied from 213.19 mg/m³ to 252.62mg/m³.

Zooplankton:

The qualitative analyses revealed the presence of 15 different groups of zooplankton, Among zooplankton, Copepods, Cladocerans and Copepod nauplius were dominant. The biomass ranged from 238.12 mg/m³ to 258.41 mg/m³.

Macrobenthos:

The qualitative analyses revealed the presence of 19 different groups of macrobenthos. Bivalve spats dominated the macrobenthos, followed byCoelenterates andMeritrix. Thedensity ranged from 754.00 no/m² to822.00 no/m².

Bioassay:

()

The bioassay studies indicated no mortality of mussels in the seawater samples collected from effluent discharge location in the Padubidri region.

(Lakshmipathi M. T.)

Principal Investigator

Dept. of Aquatic Environment Managesic

College of Fisheries, Mangaluru - 2

Table 1. Data on water quality parameters in the beach waters of Padubidri during May 2022.

SI. No.	Parameters	Stations				
DR 1104	rarameters	1	2	3		
1.	Temperature (°C)	29.60	29.80	29.70		
2.	pН	8.0	8.05	8.10		
3.	Salinity (ppt)	30.10	30.50	30.30		
4.	Dissolved Oxygen (mg/l)	5.15	5.31	5.65		
5.	BOD ₃ (mg/l)	1.42	1.13	1.20		
6.	COD (mg/l)	17.13	12.64	14.65		
7.	Turbidity (NTU)	88.20	59.76	76.54		
8.	Total Suspended Solids (mg/l)	120.65	154.76	155.76		
9.	Total Dissolved Solids (mg/l)	26300	24500	24800		
10.	Ammonia (μg-at/l)	12.15	10.66	12.65		
11.	Nitrite (µg-at/l)	0.67	0.87	0.86		
12.	Nitrate (µg-at/l)	2.43	1.83	2.54		
13.	Phosphate (µg-at/l)	0.98	0.56	0.87		
14.	Silicate (µg-at/I)	21.65	17.25	19.65		
15.	Oil and Grease (mg/l)	BDL	BDL	BDL		

BDL: Below Detectable Level

Table 2. Phytoplankton diversity (no/m³) and biomass (mg/m³) in the Beach waters of Padubidri during May 2022.

Sl.	100%		Stations			
No.	Flora	1	2	3		
I	DIATOMS		S 0			
1.	Asterionella	1400	1520	1300		
2.	Bacteriastrum	-	=			
3.	Biddulphia	1500	1550	1590		
4.	Cerataulina	1100	1250	1300		
5.	Chaetoceros	1200	8500	1000		
6.	Coscinodiscus	2800	8500	2300		
7.	Cyclotella			-		
8.	Ditylum	900	-	200		
9.	Dynobryon	-	-			
10.	Eucamphia	-	-	-		
11.	Fragillaria	-	-	_		
12.	Gyrosigma	-	2	2		
13.	Lauderia	2	_	-		
14.	Leptocylindricus	-	2	-		
15.	Melosira	-		-		
16.	Navicula	4				
17.	Nitzschia	3500	1000	4300		
18.	Pediastrum		-	-		
19.	Planktoniella	1600	1800	1000		
20.	Pleurosigma	1350	1250	1300		
21.	Rhizosolenia	-		_		
22.	Skeletonema	-	72	-		
23.	Staurastrum	-	9			
24.	Streptotheca	-	19	-		
25.	Thallassiothrix		-			
26.	Triceratium	1200	2100	1100		
27.	Other diatoms		5000			
II	DINOFLAGELLATES					
1.	Ceratium	5000	8000	3500		
2.	Dinophysis	1750	2500	1500		
3.	Gymnodinium	-	-	8 7		
4.	Ornithoceros	-	-	-		
5.	Peridinium	- "	100			
6.	Preperidinium	-	-	-		
7.	Noctiluca	-				
Ш	BLUE GREEN ALGAE	27	0			
1.	Blue Green Algae	25000	18000	21000		
Biom	ass (mg/m³)	112.54	161.65	130.98		

Table 3. Zooplankton diversity (no/m³) and biomass (mg/m³) in the beach waters of Padubidri during May 2022.

SI.		Stations				
No.	Fauna	1	2	3		
1.	Tintinids	1430	1200	2500		
2.	Medusae	-		-		
3.	Ctenophore	-	-	*		
4.	Chaetognath	-	0.50	*		
5.	Chaetognath Larvae	1210	1300	1500		
6.	Polychaete	100	150	100		
7.	Polychaete Larvae	90	-	-		
8.	Cladocera	3000	2000	3000		
9.	Ostracoda		-	7		
10.	Rotifera		-	-		
11.	Copepod	12400	13400	3200		
12.	Copepod nauplius	1000	12000	32000		
13,	Copepod egg	100	-	177		
14.	Lucifer		500			
15.	Decapod Larvae	100	150	100		
16.	Gastropod Larvae			123		
17.	Barnacle Larvae	-	-	-		
18.	Bivalve Larvae	1200	1600	1400		
19.	Echinoderm Larvae	in in	(III)	70		
20.	Oikopleura	1 2	1100	1000		
21.	Doliolids	-) e 3	-		
22.	Lensia	7	•	-		
23.	Creseis	-				
24.	Cavolinia		I e	-11		
25.	Fish Eggs	50	10	10		
26.	Fish Larvae	*	-			
Biom	ass (mg/m³)	115.47	123.08	139.67		

^{&#}x27;-': Absent

Table 4. Macrobenthos diversity (no/m²) and density (no/m²) in the beach waters of Padubidri during May 2022.

SI. No.	Forms		Stations			
	Fauna	1	2	3		
I	Echiuroids	-		-		
п	Sipunculids	-	7	-		
Ш	Mud tubes	-				
IV	Sand tubes	-		-		
V	Polychaetes	-	-			
VI	Coelenterates	-	-			
VII	Molluses					
1.	Arca	12	16	20		
2.	Anadora	-	-	0.50		
3.	Auger	7.	-	-		
4.	Babylion	10	25	20		
5.	Bivalve Spats		-	-		
6.	Cardium	10	10	20		
7.	Cavolinia	10	10	20		
8.	Cerithedia	-		2575		
9.	Conus	10	30	20		
10.	Dentalium	75	28	25		
11.	Donax	-	-	- 10.772		
12.	Drupa	5	-			
13.	Katalysia	-	-	-		
14.	Littorina	-	-	-		
15.	Meritrix	20	20	10		
16.	Modiolus	-	-	-		
17.	Oliva	-	-	-		
18.	Patella	-	-	-		
19.	Scallop	-	*	- 7		
20.	Surcula	-		-		
21.	Telescopium	-		-		
22.	Trochus	-	*	-		
23.	Turitella	50	20	30		
24.	Umbonium	-				
25.	Other Molluses	20		10		
VIII	Echinodermata					
1.	Astropecten			-		
2.	Ophiocoma	-		-		
3.	Egg Cases	20	10	50		
IX	Miscellaneous					
1.	Crab	30	10	20		
2.	Shrimp		20	10		
3.	Fish		-	-		
	sity (Individuals/m²)	140	170	200		

5

Table 5. Results of Bioassay experiment in the beach waters of Padubidri during May 2022.

1 Test Organism

: Green Mussel (Perna viridis)

 Number of Test Organisms : 10 per replicate

3 Number of Replicates

: 3 for each treatment

4 Size (Average)

: 3.12 - 3.76 cm

EXPERIMENT

	Mortality			
Medium	24h	48h	72h	96h
Control (aged seawater)	Nil	Nil	Nil	Nil
50% seawater from station 2 + 50% aged seawater	Nil	Nil	Nil	Nil
100% seawater from station 2	Nil	Nil	Nil	Nil

6

Inference:

The inferences drawn on the various physical, chemical and biological parameters in the shore waters of Padubidri for the month of May, 2022 are given below.

The water temperature varied from 29.60°C to 29.70°C. The pH values ranged between 8.00 and 8.10. The salinity varied from 30.10 psu to 30.30 psu. The dissolved oxygen (DO) varied between 5.15 mg/l and 5.65 mg/l. The biochemical oxygen demand (BOD₃) is an empirical biological test in which the water conditions such as temperature; dissolved oxygen and microbial flora play a decisive role. The BOD₃ values ranged from 1.13 mg/l to 1.42 mg/l in the study region indicate that these values are within the primary water quality criteria and do not pose any threat to the environment under the present condition. The COD values ranged between 12.64 mg/l to 17.13 mg/l, the total suspended solids (TSS) ranged between 120.65 mg/l to 155.76 mg/l and the total dissolved solids (TDS) ranged between 24500 mg/l to 26300 mg/l. The turbidity values were in the range of 59.76 NTU to 88.70 NTU.

Nutrients play a vital role in the biogeochemical cycles in the marine environment. The concentrations of nitrite (NO₂-N) in beach waters varied from 0.42 µg-at/l to 0.61 µg-at/l, while nitrate (NO₃-N) varied between 3.98 µg-at/l and 4.52 µg-at/l, which are within the acceptable limits of coastal environment. Ammonia content (NH₃-N) varied between 10.66 µg-at/l and 12.65 µg-at/l. Inorganic phosphate (PO₄-P) was in the range of 0.56 µg-at/l and 0.98 µg-at/l. Silicate – Silicon (SiO₃-Si), one of the major nutrients for phytoplankton growth ranged between 17.25 and 21.65 µg-at/l in the beach waters.

The oil and grease content was below detectable limits.

Phytoplankton:

The relative abundance of various forms of phytoplankton is depicted in Table 2. Phytoplankton study showed the presence of 20 different genera with the abundance of *Biddulphia*, *Chaetoceros, Guinardia and Asterionella*. The phytoplankton species recorded in this area are common types occurring along the west coast of India. The biomass varied from 112.54 mg/m³ to 161.65 mg/m³.

Zooplankton:

7

The qualitative analyses revealed the presence of 8 different groups of zooplankton. Among zooplankton, Copepods remained the most dominant group, followed by Copepods and Tintinids. The biomass ranged between $115.47~\text{mg/m}^3$ to $139.67~\text{mg/m}^3$.

Macrobenthos:

The qualitative analyses revealed the presence of 11 different groups of macrobenthos. Bivalve spats dominated the macrobenthos followed by *Donax, Turitella and Dentalium*. Macrofaunal density ranged from 140 no/m² to 200 no/m².

Bioassay:

The bio assay studies indicated no mortality of mussels in the beach waters of Padubidri. The results indicated no environmental stress on aquatic life.

(LAKSHMIPATHI M. T)

Principal Investigator cept. of Aquatic Environment Management College of Fisheries, Mangaluru - 2

Table 1. Data on water quality parameters in the beach waters of Padubidri during June, 2022.

SI. No.	Parameters	Stations			
	A CONTRACTOR OF THE PARTY OF TH	1	2 3		
1.	Temperature (°C)	30.00	30.10	30.30	
2.	pH	8.00	7.90	8.00	
3.	Salinity (ppt)	30.10	30.00	30.10	
4.	Dissolved Oxygen (mg/l)	5.40	5.50	5.80	
5.	BOD ₃ (mg/l)	3.10	3.15	3.80	
6.	COD (mg/l)	18.10	12.43	12.62	
7.	Turbidity (NTU)	99.10	102.50	99.10	
8.	Total Suspended Solids (mg/l)	107.67	177.15	131.75	
9.	Total Dissolved Solids (mg/l)	12300	15400	20800	
10.	Ammonia (µg-at/l)	8.10	10.00	8.31	
11.	Nitrite (µg-at/I)	0.42	0.61	0.77	
12.	Nitrate (µg-at/I)	3.45	1,15	2.10	
13.	Phosphate (µg-at/l)	0.99	0.91	0.85	
14.	Silicate (µg-at/l)	23.55	22.29	29.65	
15.	Oil and Grease (mg/l)	BDL	BDL	BDL	

BDL: Below Detectable Level

8

Table 2. Phytoplankton diversity (no/m³) and biomass (mg/m³) in the Beach waters of Padubidri during June, 2022.

SI.	PM .	Stations			
No.	The second secon	1	2	3	
I	DIATOMS		-14		
1.	Asterionella	1200	1220	1000	
2.	Bacteriastrum	-	-		
3.	Biddulphia	-		-	
4.	Cerataulina	2500	2000	2650	
5.	Chaetoceros	1300	1050	1300	
6.	Coscinodiscus	1/4/		-	
7.	Cyclotella	7.5	-	-	
8.	Ditylum	1650	1260	2650	
9.	Dynobryon		-		
10.	Euçamphia	+1	-		
11.	Fragillaria	1550	1200	1000	
12.	Gyrosigma	3000	1200	2180	
13.	Lauderia	-	-	-	
14.	Leptocylindricus	-	-		
15.	Melosira	-	-	-	
16.	Navicula				
17.	Nitzschia	1600	1100	4300	
18.	Pediastrum	-	-		
19.	Planktoniella	1000	1200	1500	
20.	Pleurosigma	1100	1200	1500	
21.	Rhizosolenia	2		1500	
22.	Skeletonema	-	-		
23.	Staurastrum	2		-	
24.	Streptotheca	_			
25.	Thallassiothrix	1700	2000	1500	
26.	Triceratium	-	-	- 1500	
27.	Other diatoms	*	-	1020	
П	DINOFLAGELLATES				
1.	Ceratium	1630	1280	1140	
2.	Dinophysis	1200	2000	1500	
3.	Gymnodinium	10800	10300	16000	
4.	Ornithoceros	-	-	10000	
5.	Peridinium	2500	2200	1600	
6.	Preperidinium	-	2000	1000	
7.	Noctiluca	- 2		-	
m	BLUE GREEN ALGAE				
1.	Blue Green Algae	10000	10000	8000	
ioma	ss (mg/m³)	145.78	151.54	158.99	

Table 3. Zooplankton diversity (no/m³) and biomass (mg/m³) in the beach waters of Padubidri during June, 2022.

SI.	Fauna	Stations			
No.		1	2	3	
1.	Tintinids	10000	11000	8000	
2.	Medusae	22	100	-	
3.	Ctenophore	-	-	-	
4.	Chaetognath	1100	3200	2100	
5.	Chaetognath Larvae	3200	1800	6000	
6.	Polychaete	875		-	
7.	Polychaete Larvae	-	-	-	
8.	Cladocera	3000	5000	2000	
9.	Ostracoda	-	-	-	
10.	Rotifera	-	-	_	
11.	Copepod	2000	6000	5000	
12.	Copepod nauplius	1200	2000	3500	
13.	Copepod egg	1280	-	-	
14.	Lucifer	5000	1200	1800	
15.	Decapod Larvae		-	_	
16.	Gastropod Larvae	-	-	_	
17.	Barnacle Larvae	4	-	-	
18.	Bivalve Larvae	1500	1200	1000	
19.	Echinoderm Larvae	-	_	-	
20.	Oikopleura	_	1100	1000	
21.	Doliolids	-	_	-	
22.	Lensia	1200	1400	1250	
23.	Creseis	800	1200	1500	
24.	Cavolinia	-	_	_	
25.	Fish Eggs	-	-	-	
26.	Fish Larvae	-	-	8#0	
ioma	ss (mg/m³)	189.13	191.28	212.10	

^{&#}x27;-': Absent

Table 4. Macrobenthos diversity (no/m²) and density (no/m²) in the beach waters of Padubidri during June, 2022.

SL No.	Fauna		Stations	
		1	2	3
<u> </u>	Echiuroids		-	-
П	Sipunculids	-		-
Ш	Mud tubes	1 2		
IV	Sand tubes	-	•	
V	Polychaetcs	220	250	120
VI	Coelenterates	8		
VII	Molluses	V	MESSE TEST	
1.	Arca	10	15	25
2.	Anadora	90	105	210
3.	Auger	-	2/	
4.	Babylion	75	28	25
5.	Bivalve Spats	10	10	20
6.	Cardium	540	-	-
7.	Cavolinia	7	- 10 To 1	-
8,	Cerithedia	-		-
9.	Conus	10	30	20
10.	Dentalium	50	20	20
11.	Donax	70	140	150
12.	Drupa	120	200	190
13.	Katalysia	4.0	-	7-
14.	Littorina	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
15.	Meritrix	20	10	10
16.	Modiolus	_	-	-
17.	Oliva			1
18.	Patella	4		-
19.	Scallop	12		
20.	Surcula		-	
21.	Telescopium			-
22.	Trochus	-		- 1/2
23.	Turitella	36	12	24
24.	Umbonium			27
25.	Other Molluses	25		12
VIII	Echinodermata	No.		12
1.	Astropecten	-		
2.	Ophiocoma	-	-	
3.	Egg Cases	90	60	20
IX	Miscellaneous			20
1.	Crab	18	10	20
2.	Shrimp	50	30	10
3.	Fish	-		
	ty (Individuals/m²)	232	252	190

Table 5. Results of Bioassay experiment in the beach waters of Padubidri during June, 2022.

1 Test Organism : Green Mussel (Perna viridis)

2 Number of Test : 10 per replicate Organisms

3 Number of Replicates : 3 for each treatment

4 Size (Average) : 3.10 – 3.70 cm

EXPERIMENT

Medium	Mortality			
Medium	24h	48h	72h	96h
Control (aged seawater)	Nil	Nil	Nil	Nil
50% seawater from station 2 + 50% aged seawater	Nil	Nil	Nil	Nil
100% scawater from station 2	Nil	Nil	Nil	Nil

Inference:

The inferences drawn on the various physical, chemical and biological parameters in the shore waters of Padubidri for the month of June, 2022 are given below.

The water temperature varied from 30.00°C to 30.30°C. The pHvalues ranged between 7.90 and 8.00. The salinity varied from 30.00 psu to 30.10 psu. The dissolved oxygen (DO) varied between 5.40 mg/l and 5.80 mg/l. The biochemical oxygen demand (BOD₃) is an empirical biological test in which the water conditions such as temperature; dissolved oxygen and microbial flora play a decisive role. The BOD₃ values ranged from 3.10 mg/l to 3.80 mg/l in the study region indicate that these values are within the primary water quality criteria and do not pose any threat to the environment under the present condition. The COD values ranged between 12.43 mg/l to 18.0 mg/l, the total suspended solids (TSS) ranged between 107.67 mg/l to 177.51 mg/l and the total dissolved solids (TDS) ranged between 12300 mg/l to 20800 mg/l. The turbidity values were in the range of 99.10 NTU to 102.50 NTU.

Nutrients play a vital role in the biogeochemical cycles in the marine environment. The concentrations of nitrite (NO₂-N) in beach waters varied from 0.42 μg-at/l to 0.77 μg-at/l, while nitrate (NO₃-N) varied between 1.15 μg-at/l and 3.45 μg-at/l, which are within the acceptable limits of coastal environment. Ammonia content (NH₁-N) varied between 8.10 μg-at/l and 10.00 μg-at/l. Inorganic phosphate (PO₄-P) was in the range of 0.85 μg-at/l and 0.99 μg-at/l. Silicate – Silicon (SiO₃-Si), one of the major nutrients for phytoplankton growth ranged between 22.29 and 29.65 μg-at/l in the beach waters.

The oil and grease content was below detectable limits.

Phytoplankton:

The relative abundance of various forms of phytoplankton is depicted in Table 2. Phytoplankton study showed the presence of 20 different genera with the abundance of *Biddulphia*, *Chaetoceros, Guinardia and Asterionella*. The phytoplankton species recorded in this area are common types occurring along the west coast of India. The biomass varied from 145.78 mg/m³ to 158.99 mg/m³.

Zooplankton:

The qualitative analyses revealed the presence of 8 different groups of zooplankton. Among zooplankton, Copepods remained the most dominant group, followed by Copepods and Tintinids. The biomass ranged between 189.13 mg/m³ to 212.10 mg/m³.

Macrobenthos:

The qualitative analyses revealed the presence of 12 different groups of macrobenthos. Bivalve spatsdominated the macrobenthos followed by *Arca, Donax, Turitelia and Dentalium*. Macrofaunal density ranged from 190 no/m² to 252 no/m².

Bioassay:

The bio assay studies indicated no mortality of mussels in the beach waters of Padubidri. The results indicated no environmental stress on aquatic life.

(LAKSHMIPATHI M. T)

Loucxunpula

rincipal Investigator

2pt. of Aquatic Environment Management
College of Fisheries, Mangaluru - 2

Table 1. Data on water quality parameters in the beach waters of Padubidri during July, 2022.

SL No.	Parameters	Stations					
		1	2	3			
1.	Temperature (°C)	28.60	28.80	28.90			
2.	pI1	8.10	8.00	8.10			
3.	Salinity (ppt)	29,70	29.50	29.70			
4,	Dissolved Oxygen (mg/l)	6.25	6.76	6.75			
5.	BOD ₃ (mg/l)	1.43	1.43	1.10			
6.	COD (mg/l)	15.12	13.61	16.62			
7.	Turbidity (NTU)	108.50	112.54	97.14			
8.	Total Suspended Solids (mg/l)	112.65	156.65	132,70			
9.	Total Dissolved Solids (mg/l)	14500	12400	24800			
10,	Ammonia (µg-at/l)	10.12	10.60	9.32			
11.	Nitrite (µg-at/l)	0.43	0.65	0.76			
12.	Nitrate (µg-at/l)	3.43	1.85	2.50			
13.	Phosphate (µg-at/l)	0.76	0.51	0.20			
4.	Silicate (µg-at/l)	43.65	22.20	29.54			
5.	Oil and Grease (mg/l)	BDL	BDL.	BDI.			

BDL: Below Detectable Level

Table 2. Phytoplankton diversity (no/m³) and biomass (mg/m³) in the Beach waters of Padubidri during July, 2022.

SL			Stations					
No.		1	2	3				
I	DIATOMS							
1.	Asterionella	1600	1540	1250				
2,	Bacteriastrum	- 1		144				
3.	Biddulphia	1500	1550	1590				
4.	Cerataulina	1450	1200	1350				
5.	Chaetoceros	1200	8000	1200				
6.	Coscinodiscus	2500	2800	2500				
7.	Cyclotella	3000	4500	4000				
8.	Ditylum	900	-	2000				
9.	Dynobryon	-	1	1-200				
10.	Eucamphia		-	-				
11.	Fragillaria	1200	800	1000				
12.	Gyrosigma	600	1200	800				
13.	Lauderia	-	-	300				
14.	Leptocylindricus	NAME OF THE OWNER.	-	-				
15.	Melosira	-	-					
16.	Navicula	_		-				
17.	Nitzschia	3000	1500	4200				
18.	Pediastrum			7200				
19.	Planktoniella	1550	1200	1000				
20.	Pleurosigma	1200	1200	1300				
21.	Rhizosolenia	-		1.500				
22.	Skeletonema			9				
23.	Staurastrum	-	-	-				
24.	Streptotheca		<u> </u>					
25.	Thallassiothrix	2000	4500	1600				
26.	Triceratium	1200	2100	1100				
27.	Other diatoms		5	- 1.00				
II	DINOFLAGELLATES							
1.	Cerutium	2500	3500	3000				
2.	Dinophysis	1250	2500	1500				
3.	Gymnodinium	-	-	1500				
4.	Ornithoceros	182		- 100				
5.	Peridinium	1000	1000	1400				
6.	Preperidinium	2	- 1000	1400				
7.	Noctiluca			- 87E				
Ш	BLUE GREEN ALGAE	1		157				
1.	Blue Green Algae	12000	15000	13000				
Siomass (mg/m³)		102.09	189.76	156.87				

Table 3. Zooplankton diversity (no/m³) and biomass (mg/m³) in the beach waters of Padubidri during July, 2022.

SI. No		Stations					
-	• • • • • • • • • • • • • • • • • • •	1	2	3			
1.	Tintinids	1400	1000	2000			
2.	Medusae	-	-	_			
3.	Ctenophore	N=1	-	-			
4.	Chaetognath	-		T -			
5.	Chaetognath Larvae	-					
6.	Polychaete	1000	1500	1000			
7,	Polychaete Larvae	-	-	+4			
8.	Cladocera	3000	5000	2000			
9.	Ostracoda	-		-			
10.	Rotifera	-					
11.	Copepod	12500	13000	13500			
12.	Copepod nauplius	1200	1200	3000			
13.	Copepod egg	-		-			
14,	Lucifer	-	2				
15,	Decapod Larvae	100	150	100			
16.	Gastropod Larvae			-			
17.	Barnacle Larvae						
18.	Bivalve Larvae	1200	1600	1400			
19.	Echinoderm Larvae	15-	-	1400			
20.	Oikoplewa		1100	1000			
21.	Dolinlids	-		1000			
22.	Lensia						
13.	Creseis	-	_				
4.	Cavolinia	_	1000				
5.	Fish Eggs	-					
6.	Fish Larvae	-					
ioma	ss (mg/m³)	109.23	110.65	122.60			

^{&#}x27;-': Absent

Table 4. Macrobenthos diversity (no/m²) and density (no/m²) in the beach waters of Padubidri during July, 2022.

Sl. No.	Fauna		Stations	
		1	2	3
_ I	Echiuroids			
_ <u>III</u>	Sipunculids	-		
III	Mud tubes		-	T .
-IV V	Sand tubes	-	+	-
	Polychaetes	-	*	-
VI	Coelenterates	-	-	1
VII	Molluses			
1	Arca	10	1.5	25
2.	Anadora	-		
3.	Auger	-	-	-
4.	Babylion	-		+
5.	Bivalve Spats	10	10	20
6.	Cardium		10	- 20
7,	Cavolinia	-	-	†
8.	Cerithedia	-	-	+-
9.	Conus	-	35	25
10.	Dentalium	70	30	20
11.	Donax			
12.	Drupa	T -	-	· · ·
13.	Katalysia	-		
14.	Littorina	1	-	
15.	Meritrix	22	12	1.5
16.	Modiolus	T -	12	15
17.	Oliva	1	-	
18.	Patella			
19.	Scallop	<u> </u>	<u> </u>	
	Surcula			-
	Telescopium	- ·		-
	Trochus		-	
	Turitella	10	10	
	Umbonium	- 10		20
	Other Molluses	25		- 10
III I	Cchinodermata			12
1. /	Stropecten			
2. ()phiocoma			
	gg Cases	10	16	
-	Iiscellaneous	10	16	12
The second second	rab	12	16	
	hrimp		15	25
	ish			11
	(Individuals/m ²)	110		
	()	110	120	180

Table 5. Results of Bioassay experiment in the beach waters of Padubidri during July, 2022.

1 Test Organism

: Green Mussel (Perna viridis)

2 Number of Test Organisms

: 10 per replicate

3 Number of Replicates

: 3 for each treatment

4 Size (Average)

: 3.12 - 3.76 cm

EXPERIMENT

Medium	Mortality							
Medium	24h	48h	72h	96h				
Control (aged scawater)	Nil	Nil	Nil	Nil				
50% scawater from station 2 + 50% aged scawater	Nil	Nil	Nil	Nil				
100% seawater from station 2	Nil	Nil	Nil	Nil				

Inference:

The inferences drawn on the various physical, chemical and biological parameters in the shore waters of Padubidri for the month of July, 2022 are given below.

The water temperature varied from 28.60°C to 28.90°C. The pH values ranged between 8.00 and 8.10. The salinity varied from 29.50 psu to 29.70 psu. The dissolved oxygen (DO) varied between 6.25 mg/l and 6.76 mg/l. The biochemical oxygen demand (BOD₃) is an empirical biological test in which the water conditions such as temperature; dissolved oxygen and microbial flora play a decisive role. The BOD₃ values ranged from 1.10 mg/l to 1.43 mg/l in the study region indicate that these values are within the primary water quality criteria and do not pose any threat to the environment under the present condition. The COD values ranged between 13.61 mg/l to 16.62 mg/l, the total suspended solids (TSS) ranged between 112.65 mg/l to 156.65 mg/l and the total dissolved solids (TDS) ranged between 12400 mg/l to 24800 mg/l. The turbidity values were in the range of 97.14 NTU to 112.54 NTU.

Nutrients play a vital role in the biogeochemical cycles in the marine environment. The concentrations of nitrite (NO₂-N) in beach waters varied from 0.43 µg-at/l to 0.76 µg-at/l, while nitrate (NO₃-N) varied between 1.85 µg-at/l and 3.43 µg-at/l, which are within the acceptable limits of coastal environment. Ammonia content (NH₃-N) varied between 9.32 µg-at/l and 10.12 µg-at/l. Inorganic phosphate (PO₄-P) was in the range of 0.20 µg-at/l and 0.76 µg-at/l. Silicate – Silicon (SiO₃-Si), one of the major nutrients for phytoplankton growth ranged between 22.20 and 43.65 µg-at/l in the beach waters.

The oil and grease content was below detectable limits.

Phytoplankton:

The relative abundance of various forms of phytoplankton is depicted in Table 2. Phytoplankton study showed the presence of 20 different genera with the abundance of *Biddulphia*, *Chaetoceros*, *Guinardia and Asterionella*. The phytoplankton species recorded in this area are common types occurring along the west coast of India. The biomass varied from 102.09 mg/m³ to 189.76 mg/m³.

Zooplankton:

The qualitative analyses revealed the presence of 8 different groups of zooplankton. Among zooplankton, Copepods remained the most dominant group, followed by Copepods and Tintinids. The biomass ranged between 109,23 mg/m³ to 122,60 mg/m³.

Macrobenthos:

The qualitative analyses revealed the presence of 12 different groups of macrobenthos. Bivalve spatsdominated the macrobenthos followed by Donax, Turitella and Dentalium, Macrofaunal density ranged from 110 $\mathrm{no/m^2}$ to $180~\mathrm{no/m^2}.$

Bioassay:

The bio assay studies indicated no mortality of mussels in the beach waters of Padubidri. The results indicated no environmental stress on aquatic life.

> (LAKSHMIPATHI M. T) Principal Investigator
> Dept. of Aquatic Environment Management
> College of Fisheries, Mangalum - 2

Table 2. Phytoplankton diversity (no/m³) and biomass (mg/m³) in the Beach waters of Padubidri during August 2022.

SI.			Stations		
No.		1	2	3	
I	DIATOMS	11 V.P			
1.	Asterionella	5000	2500	2500	
2,	Bacteriastrum	-	-	-	
3.	Biddulphia	-		-	
4.	Cerataulina	1200	1450	1000	
5.	Chaetoceros	1600	9500	10000	
6.	Coscinodiscus	2500	8000	2000	
7.	Cyclotella	2		-	
8.	Ditylum	900	2000	2000	
9.	Dynobryon	-	-		
10.	Eucamphia	7600	7500	9000	
11.	Fragillaria	8000	12000	10000	
12.	Gyrosigma	(9 0)	1 1000		
13.	Lauderia		-	-	
14.	Leptocylindricus	x • x	-	-	
15.	Melosira		-	-	
16.	Navicula				
17.	Nitzschia	5500	4300	4000	
18.	Pediastrum	-	-	3000	
19.	Planktoniella	1300	1200	1000	
20.	Pleurosigma	1650	1180	1250	
21.	Rhizosolenia	-	-	1250	
22.	Skeletonema		-		
23.	Staurastrum	-		_	
24.	Streptotheca	-	2. - 2	_	
25.	Thallassiothrix		-		
26.	Triceratium	1000	2000	1200	
27.	Other diatoms	1000	5000	2500	
П	DINOFLAGELLATES				
1.	Ceratium	3500	10000	8500	
2.	Dinophysis	1250	5500	2500	
3.	Gymnodinium	1300	1200	1750	
4.	Ornithoceros			1750	
5.	Peridinium	1600	1000	1300	
6.	Preperidinium	- 1	-	1300	
7.	Noctiluca		-		
m	BLUE GREEN ALGAE				
1.	Blue Green Algae	10000	12000	23000	
iomas	ss (mg/m ³)	342.12	306.15	365.11	

Table 3. Zooplankton diversity (no/m³) and biomass (mg/m³) in the beach waters of Padubidri during August 2022,

Sl.	Fauna	0	Stations	. 7/2	
No.	rauna	1	2	3	
1.	Tintinids	15000	10000	8500	
2.	Medusae	-	2		
3.	Ctenophore	- F	-	-	
4.	Chactognath	=	-	1	
5.	Chaetognath Larvae	8500	3000	5000	
6.	Polychaete	100	150	100	
7.	Polychaete Larvae	-		7.0	
8.	Cladocera	10000	12000	9000	
9.	Ostracoda		-	-	
10.	Rotifera	4500	4300	4400	
11.	Copepod	14000	10000	13000	
12.	Copepod nauplius	1000	12000	32000	
13.	Copepod egg	1 -	-		
14,	Lucifer		-	-	
15.	Decapod Larvae	1000	1500	1000	
16.	Gastropod Larvae	1200	1500	2500	
17.	Barnacle Larvae	-		-	
18.	Bivalve Larvae	1000	1000	900	
19.	Echinoderm Larvae	-	2		
20.	Oikopleura		*		
21.	Doliolids	=	_	_	
22.	Lensia	-	-	-	
23.	Creseis		-	-	
24.	Cavolinia				
25.	Fish Eggs	-	-	-	
26.	Fish Larvae	-	-		
ioma	ss (mg/m³)	206.40	190.00	189.22	

^{-&#}x27;: Absent

Table 4. Macrobenthos diversity (no/m²) and density (no/m²) in the beach waters of Padubidri during August 2022.

Sl. No.	Fauna		Stations			
		1	2	3		
I	Echiuroids		Marie State			
П	Sipunculids	-	-			
m	Mud tubes	25	20	20		
IV	Sand tubes			-		
V	Polychaetes	600	100	500		
VI	Coclenterates			-		
VII	Molluses					
l.	Arca	80	60	50		
2.	Anadora	40	12	15		
3.	Auger	-	4			
4.	Bahylion	-	14			
5.	Bivalve Spats	-		1 .		
6.	Cardium	10	10	20		
7.	Cavolinia	10	10	20		
8.	Cerithedia	0.22		20		
9.	Corrus	10	30	20		
10.	Dentalium	75	28	25		
11.	Donax			23		
12.	Drupa	-	-			
13,	Katalysia	-				
14.	Littorina	1		— -		
15.	Meritrix	20	20	10		
16.	Modiolus	-	20			
17.	Oliva	-				
18.	Patella		-			
19.	Scallop			-		
	Surcula	-				
21.	Telescopium	1 .		•		
22.	Trochus		4	-		
23.	Turitella	120	200	150		
24.	Umbonium	80	120	150		
	Other Molluses	20	10	250		
	Echinodermata	20	10	10		
	Astropecten					
2.	Ophiocoma		•	1.00		
	Egg Cases	200	100	-		
	Miscellaneous	200	100	150		
	Crah					
	Shrimp	150	200	-		
	ish	130	200	100		
			-			

Table 5. Results of Bioassay experiment in the beach waters of Padubidri during August 2022.

Test Organism

: Green Mussel (Perna viridis)

2 Number of Test Organisms

: 10 per replicate

3 Number of Replicates

: 3 for each treatment

4 Size (Average)

: 3.12 - 3.76 cm

EXPERIMENT

Medium	Mortality						
rectum	24h	48h	72h	96h			
Control (aged seawater)	Nii	Nil	Nil	Nil			
50% seawater from station 2 + 50% aged seawater	Nil	Nil	Nil	Nil			
100% seawater from station 2	Nil	Nil	Nil	Nil			

Inference:

The inferences drawn on the various physical, chemical and biological parameters in the shore waters of Padubidri for the month of August, 2022 are given below.

The water temperature varied from 28.20°C to 28.50°C. The pH values ranged between 8.10 and 8.10. The salinity varied from 29.10 psu to 29.50 psu. The dissolved oxygen (DO) varied between 4.10 mg/l and 5.30 mg/l. The biochemical oxygen demand (BOD₃) is an empirical biological test in which the water conditions such as temperature; dissolved oxygen and microbial flora play a decisive role. The BOD₃ values ranged from 2.00 mg/l to 2.10 mg/l in the study region indicate that these values are within the primary water quality criteria and do not pose any threat to the environment under the present condition. The COD values ranged between 15.60 mg/l to 18.20 mg/l, the total suspended solids (TSS) ranged between 104.16 mg/l to 115.70 mg/l and the total dissolved solids (TDS) ranged between 10800 mg/l to 12300 mg/l. The turbidity values were in the range of 50.26 NTU to 67.50 NTU.

Nutrients play a vital role in the biogeochemical cycles in the marine environment. The concentrations of nitrite (NO₂-N) in beach waters varied from 0.60 μ g-at/l and 0.80 μ g-at/l, while nitrate (NO₃-N) varied between 1.43 μ g-at/l and 2.43 μ g-at/l, which are within the acceptable limits of coastal environment. Ammonia content (NH₃-N) varied between 8.15 μ g-at/l and 10.15 μ g-at/l. Inorganic phosphate (PO₄-P) was in the range of 1.28 μ g-at/l and 2.18 μ g-at/l. Silicate – Silicon (SiO₃-Si), one of the major nutrients for phytoplankton growth ranged between 11.60 and 17.15 μ g-at/l in the beach waters.

The oil and grease content was below detectable limits.

Phytoplankton:

The relative abundance of various forms of phytoplankton is depicted in Table 2. Phytoplankton study showed the presence of 20 different genera with the abundance of *Fragillaria*, *Biddulphia*, *Chaetoceros*, *Guinardia and Asterionella*. The phytoplankton species recorded in this area are common types occurring along the west coast of India. The biomass varied from 306.15 mg/m³ to 365.11 mg/m³.

7

Zooplankton:

The qualitative analyses revealed the presence of 9 different groups of zooplankton. Among zooplankton, Copepods remained the most dominant group, followed by Copepods and Tintinids. The biomass ranged between 189.22 mg/m³ to 206.40 mg/m³.

Macrobenthos:

The qualitative analyses revealed the presence of 11 different groups of macrobenthos. Bivalve spats dominated the macrobenthos followed by Arca, Donax, Turitella and Dentalium. Macrofaunal density ranged from 1070 no/m² to 1250 no/m².

Bioassay:

The bio assay studies indicated no mortality of mussels in the beach waters of Padubidri.

The results indicated no environmental stress on aquatic life.

(LAKSHMIPATHI M. T)

Principal Investigator

Dept. of Aquatic Environment Management
College of Fisheries, Mangaluru - 2

8

TEST WELL MONITORING:

Annexure-XVIII

Test Wells are installed in the Sea Water Pipe line fenced area and the monitoring is carried for the period from April 2022 to September 2022 is presented in the Table-1 to Table-6 as below:

The locations of test wells are:

S.NO	Name of the Location	Code	Source
1	Pipe line Corridor test well	PC-1	Test Well
2	Pipe line Corridor test well	PC-2	Test Well
3	Pipe line Corridor test well	PC-3	Test Well
4	Pipe line Corridor test well	PC-4	Test Well
5	Pipe line Corridor test well	PC-5	Test Well
6	Pipe line Corridor test well	PC-6	Test Well

Water Sample Analysis Parameters:

S.No	Parameters	S.No	Parameters
1	Color	16	Fluoride
2	рН	17	Phenolic Compounds
3	Odor	18	manganese
4	Taste	19	zinc
5	Turbidity	20	Arsenic
6	TDs	21	cyanide
7	Alkalinity	22	cadmium
8	Total Hardness as CaCO3	23	chromium
9	Calcium as Ca	24	Aluminium
10	Magnesium	25	Selenium
11	Iron	26	Lead
12	Sulphate as SO4	27	Mercury
13	Chloride	28	Nitrate nitrogen
14	Boron	29	E.coli
15	Residual Free Chlorine		

Table-1: Pipe line corridor test well (PC-1) for the period of April 2022 to September 2022

S.No	PARAMETERS	UNIT	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
2	рН	-	6.5 - 8.5	No Relaxation	6.96	6.89	6.87	6.92	6.96	6.88	6.87	6.96	6.91
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	А
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.30	1.10	1.40	1.80	1.20	1.30	1.10	1.80	1.35
6	TDS	mg/l	500	2000	187.00	35.00	31.00	67.00	70.00	123.00	31.00	187.00	85.50
7	Alkalinity as CaCO ₃	mg/l	200	600	18.00	12.00	10.00	10.00	12.50	12.00	10.00	18.00	12.42
8	Total Hardness	mg/l	200	600	30.00	5.00	9.00	20.00	22.40	18.00	5.00	30.00	17.40
9	Calcium as Ca	mg/l	75	200	4.80	1.20	1.60	4.00	4.50	4.00	1.20	4.80	3.35
10	Magnesium as Mg	mg/l	30	100	4.37	BLQ	1.20	2.43	2.58	1.94	1.20	4.37	2.50
11	Iron as Fe	mg/l	0.3	No relaxation	0.23	0.27	0.21	0.27	0.26	0.16	0.16	0.27	0.23
12	Sulphate as SO ₄	mg/l	200	400	17.68	3.05	2.69	4.66	4.68	8.38	2.69	17.68	6.86
13	Chloride as Cl	mg/l	250	1000	19.06	9.89	10.88	27.71	27.84	53.44	9.89	53.44	24.80
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	1.30	BLQ	1.17	1.81	1.65	1.86	1.17	1.86	1.56
29	E.Coli	MPN/ 100 ml	Should Not t	oe Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-2: Pipe line corridor test well (PC-2) for the period of April 2022 to September 2022

S.N o	PARAMETERS	UNIT	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	BLQ	1.30	BLQ	BLQ	BLQ	BLQ	1.30	1.30	1.30
2	ρН	-	6.5 - 8.5	No Relaxation	6.98	6.83	6.87	6.85	6.91	6.93	6.83	6.98	6.90
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	А	А	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.60	1.00	1.50	1.70	1.00	1.70	1.00	1.70	1.42
6	TDS	mg/l	500	2000	107.00	122.00	115.00	62.00	65.50	102.00	62.00	122.00	95.58
7	Alkalinity as CaCO ₃	mg/l	200	600	14.00	26.00	24.00	6.00	7.20	10.00	6.00	26.00	14.53
8	Total Hardness	mg/l	200	600	28.00	36.00	42.00	12.00	13.20	18.00	12.00	42.00	24.87
9	Calcium as Ca	mg/l	75	200	5.61	6.41	8.01	2.40	2.70	4.00	2.40	8.01	4.86
10	Magnesium as Mg	mg/l	30	100	3.40	4.86	5.34	1.46	1.86	1.94	1.46	5.34	3.14
11	Iron as Fe	mg/l	0.3	No relaxation	0.18	0.27	0.24	0.26	0.22	0.11	0.11	0.27	0.21
12	Sulphate as SO ₄	mg/l	200	400	18.84	23.97	22.26	3.15	3.78	8.51	3.15	23.97	13.42
13	Chloride as Cl	mg/l	250	1000	38.96	45.52	46.51	43.54	24.60	35.42	24.60	46.51	39.09
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	BLQ	1.06	1.06	1.69	1.52	1.91	1.06	1.91	1.45
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-3: Pipe line corridor test well (PC-3) for the period of April 2022 to September 2022

S.No	PARAMETERS	UNIT	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	1.00	2.00	BLQ	BLQ	BLQ	BLQ	1.00	2.00	1.50
2	ρН	-	6.5 - 8.5	No Relaxation	6.92	6.86	6.97	7.34	7.21	7.18	6.86	7.34	7.08
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.80	1.50	1.40	1.40	1.10	1.20	1.10	1.80	1.40
6	TDS	mg/l	500	2000	188.00	184.00	165.00	174.00	75.00	124.00	75.00	188.00	151.67
7	Alkalinity as CaCO ₃	mg/l	200	600	30.00	46.00	BLQ	BLQ	2.50	12.00	2.50	46.00	22.63
8	Total Hardness	mg/l	200	600	38.00	32.00	52.00	46.00	29.30	32.00	29.30	52.00	38.22
9	Calcium as Ca	mg/l	75	200	8.01	16.03	9.61	8.01	8.95	7.21	7.21	16.03	9.64
10	Magnesium as Mg	mg/l	30	100	4.37	3.89	6.80	6.31	7.54	3.40	3.40	7.54	5.39
11	Iron as Fe	mg/l	0.3	No relaxation	0.24	0.27	0.25	0.18	0.21	0.14	0.14	0.27	0.22
12	Sulphate as SO ₄	mg/l	200	400	22.28	27.65	26.04	29.30	6.40	27.68	6.40	29.30	23.23
13	Chloride as Cl	mg/l	250	1000	48.29	46.81	49.48	43.54	23.70	41.52	23.70	49.48	42.22
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	1.31	BLQ	1.25	BLQ	BLQ	BLQ	1.25	1.31	1.28
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-4: Pipe line corridor test well (PC-4) for the period of April 2022 to September 2022

S.No	PARAMETERS	UNIT	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	1.00	1.90	BLQ	BLQ	BLQ	BLQ	1.00	1.90	1.45
2	ρН	-	6.5 - 8.5	No Relaxation	7.59	6.79	6.83	6.89	6.97	6.84	6.79	7.59	6.99
3	Odour	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.30	1.40	1.20	1.60	1.00	1.60	1.00	1.60	1.35
6	TDS	mg/l	500	2000	172.00	185.00	102.00	178.00	80.02	57.00	57.00	185.00	129.00
7	Alkalinity as CaCO ₃	mg/l	200	600	98.00	100.00	50.00	BLQ	BLQ	32.00	32.00	100.00	70.00
8	Total Hardness	mg/l	200	600	100.00	94.00	56.00	46.00	29.80	38.00	29.80	100.00	60.63
9	Calcium as Ca	mg/l	75	200	14.84	14.04	16.03	9.61	9.88	8.01	8.01	16.03	12.07
10	Magnesium as Mg	mg/l	30	100	9.23	8.26	3.88	5.34	6.34	4.37	3.88	9.23	6.24
11	Iron as Fe	mg/l	0.3	No relaxation	0.28	0.27	0.22	0.26	0.23	0.18	0.18	0.28	0.24
12	Sulphate as SO ₄	mg/l	200	400	10.30	5.51	10.90	28.73	5.70	6.67	5.51	28.73	11.30
13	Chloride as Cl	mg/l	250	1000	33.65	19.79	12.86	38.49	26.13	6.93	6.93	38.49	22.98
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO ₃₋ N	mg/l	45	No relaxation	1.05	2.14	2.71	BLQ	BLQ	BLQ	1.05	2.71	1.97
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-5: Pipe line corridor test well (PC-5) for the period of April 2022 to September 2022

S.No	PARAMETERS	UNIT	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	1.00	2.00	1.00	BLQ	BLQ	BLQ	1.00	2.00	1.33
2	ρН	-	6.5 - 8.5	No Relaxation	6.98	6.88	6.72	6.88	6.95	6.91	6.72	6.98	6.89
3	Odour	-	Agreeable	Agreeable	Α	А	Α	Α	Α	Α	Α	Α	Α
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.60	1.40	1.10	1.70	1.02	1.20	1.02	1.70	1.34
6	TDS	mg/l	500	2000	92.00	103.00	97.00	143.00	72.08	82.00	72.08	143.00	98.18
7	Alkalinity as CaCO ₃	mg/l	200	600	64.00	74.00	60.00	10.00	11.20	52.00	10.00	74.00	45.20
8	Total Hardness	mg/l	200	600	38.00	40.00	48.00	60.00	26.10	56.00	26.10	60.00	44.68
9	Calcium as Ca	mg/l	75	200	9.61	9.45	14.42	10.12	11.80	13.62	9.45	14.42	11.50
10	Magnesium as Mg	mg/l	30	100	3.40	3.89	2.91	8.26	8.76	3.34	2.91	8.76	5.09
11	Iron as Fe	mg/l	0.3	No relaxation	0.27	0.28	0.26	0.23	0.25	0.25	0.23	0.28	0.26
12	Sulphate as SO ₄	mg/l	200	400	8.37	3.75	6.48	1.72	1.95	8.06	1.72	8.37	5.06
13	Chloride as Cl	mg/l	250	1000	12.86	12.66	18.80	37.30	22.50	12.86	12.66	37.30	19.50
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO₃-N	mg/l	45	No relaxation	1.04	BLQ	BLQ	BLQ	BLQ	BLQ	1.04	1.04	1.04
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Table-6: Pipe line corridor test well (PC-6) for the period of April 2022 to September 2022

S.No	PARAMETERS	UNIT	Acceptable Limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012	Apr-22	May-22	June-22	July-22	Aug-22	Sep-22	Min	Max	Average
1	Color	Hazen	5	15	2.00	BLQ	2.10	BLQ	BLQ	BLQ	2.00	2.10	2.05
2	ρН	-	6.5 - 8.5	No Relaxation	6.80	6.95	6.86	6.93	6.98	6.97	6.80	6.98	6.92
3	Odour	-	Agreeable	Agreeable	Α	А	Α	А	Α	А	А	Α	А
4	Taste	-	Agreeable	Agreeable	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Turbidity	NTU	1	5	1.90	1.90	1.40	1.10	1.02	1.40	1.02	1.90	1.45
6	TDS	mg/l	500	2000	98.70	108.40	186.00	146.00	70.20	160.00	70.20	186.00	128.22
7	Alkalinity as CaCO ₃	mg/l	200	600	40.00	70.00	20.00	8.00	9.10	12.00	8.00	70.00	26.52
8	Total Hardness	mg/l	200	600	84.00	80.00	93.00	62.00	25.62	68.00	25.62	93.00	68.77
9	Calcium as Ca	mg/l	75	200	12.64	16.11	18.07	14.42	16.34	15.23	12.64	18.07	15.47
10	Magnesium as Mg	mg/l	30	100	3.17	5.96	8.50	6.32	6.52	7.29	3.17	8.50	6.29
11	Iron as Fe	mg/l	0.3	No relaxation	0.28	0.27	0.23	0.17	0.19	0.21	0.17	0.28	0.23
12	Sulphate as SO ₄	mg/l	200	400	6.24	7.51	4.05	BLQ	2.50	1.24	1.24	7.51	4.31
13	Chloride as Cl	mg/l	250	1000	13.47	16.52	41.04	33.24	23.40	39.18	13.47	41.04	27.81
14	Boron as B	mg/l	0.5	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
15	Residual Free Chlorine	mg/l	0.2	1	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
16	Fluoride as F	mg/l	1	1.5	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
17	Phenolic Compounds	mg/l	0.001	0.002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
18	Manganese as Mn	mg/l	0.1	0.3	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
19	Zinc as Zn	mg/l	5	15	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
20	Arsenic as As	mg/l	0.01	0.05	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
21	Cyanide as CN	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
22	Cadmium as Cd	mg/l	0.003	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
23	Chromium as Cr	mg/l	0.05	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
24	Aluminium	mg/l	0.03	0.2	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
25	Selenium as Se	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
26	Lead as Pb	mg/l	0.01	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
27	Mercury as Hg	mg/l	0.001	No relaxation	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
28	Nitrate as NO₃-N	mg/l	45	No relaxation	3.57	1.17	BLQ	BLQ	BLQ	BLQ	1.17	3.57	2.37
29	E.Coli	MPN/ 100 ml	Should Not b	e Detectable	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent